Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

\qquad

1 Taylor series

Briggs-Cochran-Gillett-Schulz §11.3 pp. 731-740

Example 1 (§11.3 Ex. 30, 32). Find the first four nonzero terms of the Taylor series for the given function centered at a and write the power series using summation notation.

1. $f(x)=1 / x, a=2$
2. $f(x)=e^{x}, a=\ln 2$

Here are commonly used Taylor series and the functions to which they converge.

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2}+\cdots+x^{k}+\cdots=\sum_{k=0}^{\infty} x^{k}, \text { for }|x|<1 \\
\frac{1}{1+x} & =1-x+x^{2}+\cdots+(-1)^{k} x^{k}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} x^{k}, \text { for }|x|<1 \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \text { for }|x|<\infty \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}+\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \text { for }|x|<\infty \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+\frac{(-1)^{k} x^{2 k}}{(2 k)!}+\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}, \text { for }|x|<\infty \\
\ln (x+1) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+\frac{(-1)^{k+1} x^{k}}{k}+\cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}, \text { for }-1<x \leq 1 \\
-\ln (1-x) & =x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+\frac{x^{k}}{k}+\cdots=\sum_{k=1}^{\infty} \frac{x^{k}}{k}, \text { for }-1 \leq x<1 \\
\tan { }^{-1} x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+\frac{(-1)^{k} x^{2 k+1}}{2 k+1}+\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2 k+1}, \text { for }|x| \leq 1 \\
\sinh x & =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{2 k+1}}{(2 k+1)!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}, \text { for }|x|<\infty \\
\cosh x & =1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{2 k}}{(2 k)!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}, \text { for }|x|<\infty \\
(1+x)^{p} & =\sum_{k=0}^{\infty}\binom{p}{k} x^{k}, \text { for }|x|<1 \text { and }\binom{p}{k}=\frac{p(p-1)(p-2) \cdots(p-k+1)}{k!},\binom{p}{0}=1
\end{aligned}
$$

Example $2(\S 11.3$ Ex. 36, 42). Use the Taylor series in the table above to find the first four nonzero terms of the Taylor series for the following functions centered at 0.

1. $\sin x^{2}$
2. $x \tan ^{-1} x^{2}$
