Professor Jennifer Balakrishnan, jbala@bu.edu

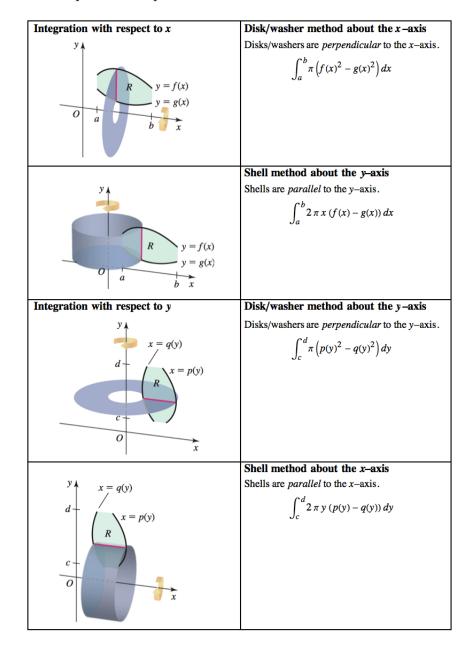
What is on today

1 Final exam review II

1

1 Final exam review II

Here are some techniques to compute volumes:



Here is a table of commonly used antiderivatives:

1.
$$\int k \, dx = kx + C, k \text{ real}$$

2.
$$\int x^p dx = \frac{x^{p+1}}{p+1} + C, p \neq -1 \text{ real}$$
 3. $\int \cos ax dx = \frac{1}{a} \sin ax + C$

3.
$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C$$

4.
$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C$$
 5. $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C$ **6.** $\int \csc^2 ax \, dx = -\frac{1}{a} \cot ax + C$

$$5. \int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C$$

$$\mathbf{6.} \int \csc^2 ax \, dx = -\frac{1}{a} \cot ax + \frac{1}{a} \cot a$$

7.
$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C$$

8.
$$\int \csc ax \cot ax \, dx = -\frac{1}{a} \csc ax + C$$

9.
$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

10.
$$\int \frac{dx}{x} = \ln |x| + C$$

11.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

7.
$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C$$
8. $\int \csc ax \cot ax \, dx = -\frac{1}{a} \csc ax + C$
9. $\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C$
10. $\int \frac{dx}{x} = \ln|x| + C$
11. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$
12. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C, a > 0$

13.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right| + C, a > 0$$
 14. $\int \tan ax \, dx = \frac{1}{a} \ln|\sec ax| + C$ **15.** $\int \cot ax \, dx = \frac{1}{a} \ln|\sin ax| + C$

14.
$$\int \tan ax \, dx = \frac{1}{a} \ln |\sec ax| + C$$

15.
$$\int \cot ax \, dx = \frac{1}{a} \ln |\sin ax| + C$$

16.
$$\int \sec ax \, dx = \frac{1}{a} \ln|\sec ax + \tan ax| + C$$

16.
$$\int \sec ax \, dx = \frac{1}{a} \ln|\sec ax + \tan ax| + C$$
 17. $\int \csc ax \, dx = -\frac{1}{a} \ln|\csc ax + \cot ax| + C$

Example 1 (§8.5.67). Find the area of the region bounded by the curve $y = \frac{10}{x^2-2x-24}$, the x-axis, and the lines x = -2 and x = 2.

Here is a table of all convergence tests:

Table 10.4 Special Series and Convergence Tests

Series or Test	Form of Series	Condition for Convergence	Condition for Divergence	Comments
Geometric series	$\sum_{k=0}^{\infty} ar^k, a \neq 0$	r < 1	$ r \ge 1$	If $ r < 1$, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}.$
Divergence Test	$\sum_{k=1}^{\infty} a_k$	Does not apply	$\lim_{k\to\infty}a_k\neq 0$	Cannot be used to prove convergence
Integral Test	$\sum_{k=1}^{\infty} a_k$, where $a_k = f(k)$ and f is continuous, positive, and decreasing	$\int_{1}^{\infty} f(x) \ dx $ converges.	$\int_{1}^{\infty} f(x) \ dx $ diverges.	The value of the integral is not the value of the series.
<i>p</i> -series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	p > 1	$p \le 1$	Useful for comparison tests
Ratio Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k\to\infty}\left \frac{a_{k+1}}{a_k}\right <1$	$\lim_{k\to\infty}\left \frac{a_{k+1}}{a_k}\right >1$	Inconclusive if $\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right = 1$
Root Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k\to\infty}\sqrt[k]{ a_k }<1$	$\lim_{k\to\infty}\sqrt[k]{ a_k }>1$	Inconclusive if $\lim_{k\to\infty} \sqrt[k]{ a_k } = 1$
Comparison Test	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k > 0$	$a_k \le b_k$ and $\sum_{k=1}^{\infty} b_k$ converges.	$b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges.	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k, \text{ where } $ $a_k > 0, b_k > 0$	$0 \le \lim_{k \to \infty} \frac{a_k}{b_k} < \infty \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ converges.}$	$\lim_{k \to \infty} \frac{a_k}{b_k} > 0 \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ diverges.}$	$\sum_{k=1}^{\infty} a_k $ is given; you supply $\sum_{k=1}^{\infty} b_k$.
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^k a_k, \text{ where } a_k > 0$	$\lim_{k \to \infty} a_k = 0 \text{ and}$ $0 < a_{k+1} \le a_k$	$\lim_{k\to\infty}a_k\neq 0$	Remainder R_n satisfies $ R_n \le a_{n+1}$
Absolute Convergence	$\sum_{k=1}^{\infty} a_k, a_k \text{ arbitrary}$	$\sum_{k=1}^{\infty} a_k \text{ converges.}$		Applies to arbitrary series

Example 2 (Midterm 2 #8f, #8h). Do the following converge or diverge?

$$1. \ \sum_{k=3}^{\infty} \frac{2}{k(2-k)}$$

2.
$$\left\{ \frac{(3k^2 + 2k + 1)\sin(k)}{4k^3 + k} \right\}_{k=1}^{\infty}$$

Here is a list of commonly used Taylor series:

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^k + \dots = \sum_{k=0}^{\infty} x^k, \text{ for } |x| < 1$$

$$\frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^k x^k + \dots = \sum_{k=0}^{\infty} (-1)^k x^k, \text{ for } |x| < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \text{ for } |x| < \infty$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^k x^{2k+1}}{(2k+1)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \text{ for } |x| < \infty$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^k x^{2k}}{(2k)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}, \text{ for } |x| < \infty$$

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{k+1} x^k}{k} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}, \text{ for } -1 < x \le 1$$

$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^k}{k} + \dots = \sum_{k=1}^{\infty} \frac{x^k}{k}, \text{ for } -1 \le x < 1$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^k x^{2k+1}}{2k+1} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}, \text{ for } |x| \le 1$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2k+1}}{(2k+1)!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \text{ for } |x| < \infty$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2k}}{(2k)!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \text{ for } |x| < \infty$$

$$(1 + x)^p = \sum_{k=0}^{\infty} {p \choose k} x^k, \text{ for } |x| < 1 \text{ and } {p \choose k} = \frac{p(p-1)(p-2) \dots (p-k+1)}{k!}, {p \choose 0} = 1$$

Example 3 (§11.4 Ex. 33). Consider the differential equation y'(t) - y = 0 with initial condition y(0) = 2. Find a power series for the solution of the differential equation and identify the function represented by the power series.