1

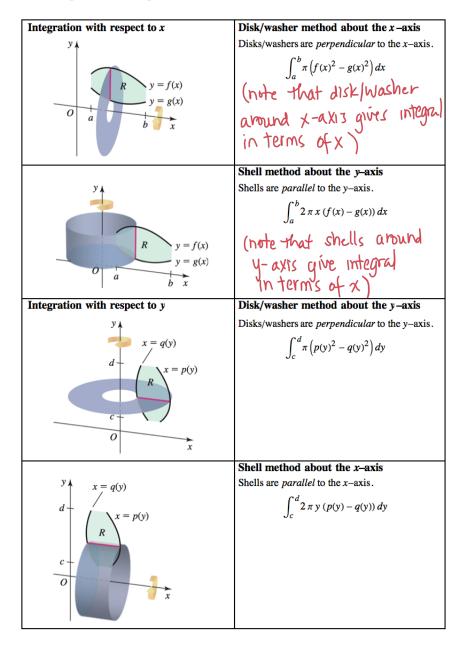
Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Final exam review II

1 Final exam review II

Here are some techniques to compute volumes:



Here is a table of commonly used antiderivatives:

 1. $\int k \, dx = kx + C, k \text{ real}$ 2. $\int x^p \, dx = \frac{x^{p+1}}{p+1} + C, p \neq -1 \text{ real}$ 3. $\int \cos ax \, dx = \frac{1}{a} \sin ax + C$

 4. $\int \sin ax \, dx = -\frac{1}{a} \cos ax + C$ 5. $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C$ 6. $\int \csc^2 ax \, dx = -\frac{1}{a} \cot ax + C$

 7. $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C$ 8. $\int \csc ax \cot ax \, dx = -\frac{1}{a} \csc ax + C$ 9. $\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C$

 10. $\int \frac{dx}{x} = \ln |x| + C$ 11. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$ 12. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C, a > 0$

 13. $\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right| + C, a > 0$ 14. $\int \tan ax \, dx = \frac{1}{a} \ln |\sec ax| + C$ 15. $\int \cot ax \, dx = \frac{1}{a} \ln |\sin ax| + C$

 16. $\int \sec ax \, dx = \frac{1}{a} \ln |\sec ax + \tan ax| + C$ 17. $\int \csc ax \, dx = -\frac{1}{a} \ln |\csc ax + \cot ax| + C$

Example 1 (§8.5.67). Find the area of the region bounded by the curve $y = \frac{10}{x^2 - 2x - 24}$, the x-axis, and the lines x = -2 and x = 2.

$$y = \frac{10}{(x+4)(x-6)} = \frac{10}{(x+4)(x-6)}$$

$$y = \frac{10}{x^{2}-2x-24} = \frac{10}{(x+4)(x-6)}$$

$$y = \frac{10}{x^{2}-2x-24} dx$$

$$= \int_{-2}^{2} - \frac{10}{(x+4)(x-6)} dx$$

Now use partial fractions: $\frac{10}{(x+4)(x-6)} = \frac{A}{x+4} + \frac{B}{x-6}$

$$\Rightarrow 10 = A(x-6) + B(x+4)$$

$$\Rightarrow -6A + 4B = 10$$

$$f = \int_{-2}^{2} + \frac{1}{x+4} + \frac{1}{x-6} dx$$

$$\Rightarrow -6A + 4B = 10$$

$$f = \int_{-2}^{2} + \frac{1}{x+4} - \frac{1}{x-6} dx = \ln |x+44| - \ln |x-6||^{2}$$

$$= \int_{-2}^{2} + \frac{1}{x+4} - \frac{1}{x-6} dx = \ln |x+44| - \ln |x-6||^{2}$$

$$= \ln (6) - \ln(1-47) - (\ln 2 - \ln(1-81))$$

$$= \ln (6) - \ln(1-47) - (\ln 2 - \ln(1-81))$$

$$= \ln (6 - \ln(4 - \ln 2^{2} + \ln 8) = (6\cdot8) - \ln(4\cdot2) = (\ln 6)$$

Here is a table of all convergence tests:

Series or Test	Form of Series	Condition for Convergence	Condition for Divergence	Comments
Geometric series	$\sum_{k=0}^{\infty} ar^k, a \neq 0$	r < 1	$ r \ge 1$	If $ r < 1$, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$.
Divergence Test	$\sum_{k=1}^{\infty} a_k$	Does not apply	$\lim_{k \to \infty} a_k \neq 0$	Cannot be used to prove convergence
Integral Test	$\sum_{k=1}^{\infty} a_k$, where $a_k = f(k)$ and f is continuous, positive, and decreasing	$\int_{1}^{\infty} f(x) dx \text{ converges.}$	$\int_{1}^{\infty} f(x) dx \text{ diverges.}$	The value of the integral is not the value of the series. * Remainder result here as well- see book no
<i>p</i> -series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	p > 1	$p \leq 1 \left(\begin{array}{c} p=1 \\ is \text{ harmonial} \end{array} \right)$	Useful for comparison tests
Ratio Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right < 1$	$\lim_{k\to\infty}\left \frac{a_{k+1}}{a_k}\right >1$	Inconclusive if $\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right = 1$
Root Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k\to\infty}\sqrt[k]{ a_k }<1$	$\lim_{k\to\infty}\sqrt[k]{ a_k }>1$	Inconclusive if $\lim_{k \to \infty} \sqrt[k]{ a_k } = 1$
Comparison Test	$\sum_{k=1}^{\infty} a_k$, where $a_k > 0$	$a_k \le b_k$ and $\sum_{k=1}^{\infty} b_k$ converges.	$b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges.	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k > 0, b_k > 0$	$0 \leq \lim_{k \to \infty} \frac{a_k}{b_k} < \infty \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ converges.}$	$\lim_{k \to \infty} \frac{a_k}{b_k} > 0 \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ diverges.}$	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^k a_k, \text{ where } a_k > 0$	$\lim_{k \to \infty} a_k = 0 \text{ and}$ $0 < a_{k+1} \le a_k$	$\lim_{k\to\infty}a_k\neq 0$	Remainder R_n satisfies $ R_n \le a_{n+1}$
Absolute Convergence	$\sum_{k=1}^{\infty} a_k, a_k$ arbitrary	$\sum_{k=1}^{\infty} a_k \text{ converges.}$		Applies to arbitrary series

 Table 10.4 Special Series and Convergence Tests

Example 2 (Midterm 2 #8f, #8h). Do the following converge or diverge?

$$1. \sum_{k=3}^{\infty} \frac{2}{k(2-k)} = \frac{2}{1k-k^{2}} \qquad (idea: Use limit comparison with t_{2:} i unparison w$$

Here is a list of commonly used Taylor series:

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{k} + \dots = \sum_{k=0}^{\infty} x^{k}, \text{ for } |x| < 1$$

$$\frac{1}{1+x} = 1 - x + x^{2} + \dots + (-1)^{k} x^{k} + \dots = \sum_{k=0}^{\infty} (-1)^{k} x^{k}, \text{ for } |x| < 1$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{k}}{k!} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \text{ for } |x| < \infty$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + \frac{(-1)^{k} x^{2k+1}}{(2 k + 1)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+1}}{(2 k + 1)!}, \text{ for } |x| < \infty$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + \frac{(-1)^{k} x^{2k}}{(2 k)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k}}{(2 k)!}, \text{ for } |x| < \infty$$

$$\ln (x + 1) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + \frac{(-1)^{k+1} x^{k}}{k} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}, \text{ for } -1 < x \le 1$$

$$\ln (1 - x) = x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + \frac{x^{k}}{k} + \dots = \sum_{k=1}^{\infty} \frac{x^{k}}{k}, \text{ for } -1 \le x < 1$$

$$\lim_{k \to 0} \ln (x + 1) = x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{k}}{k!} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}, \text{ for } -1 \le x < 1$$

$$\lim_{k \to 0} \ln (1 - x) = x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + \frac{x^{k}}{k} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{2k+1}}{2k+1}, \text{ for } |x| \le 1$$

$$\lim_{k \to 0} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+1}}{2k+1}, \text{ for } |x| \le 1$$

$$\lim_{k \to 0} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!}, \text{ for } |x| < 1$$

$$\lim_{k \to 0} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!}, \text{ for } |x| < \infty$$

$$(1 + x)^{p} = \sum_{k=0}^{\infty} \binom{p}{k} x^{k}, \text{ for } |x| < 1$$
and
$$\binom{p}{k} = \frac{p(p-1)(p-2)\cdots(p-k+1)}{k!}, \binom{p}{0} = 1$$

Example 3 (§11.4 Ex. 33). Consider the differential equation y'(t) - y = 0 with initial condition y(0) = 2. Find a power series for the solution of the differential equation and identify the function represented by the power series. $y(t) = \tilde{\sum} c_k t^k$ (this is a power service) t=0 $C_k = \frac{y^{(k)}(0)}{1}$ Sanity check $2 = y(0) = c_0 + c_1 t + c_2 t^2 + \cdots + t_{t=0}$ y't=yt $\Rightarrow () = 2$ Now use diff. eq: y(t)=y(t) $\frac{dy}{dt} = y$ $(Y_{1}(0) = Y_{1}(0) = 2) = C_{1} = Y_{1}(0)$ $\int \frac{dy}{y} = \int dt$ y'(t) = y(t) differentiate bothsidesy''(t) = y'(t) '' = y''(0)y'''(t) = y''(t) '' = y''(0)y'''(0)y''(0)y''(0)y''(0)y'''(0)y'''(0)y'''(0)y'''(0)y''(0)y''''(0)y'''(0)y'''''(0)y'''(0)y'''(0)y''''(0) y=2. In141 = ++C y = Cet y'"(ð) USE 4(0)=2 $C_{2} = \frac{2}{2!}$, $C_{3} = \frac{2}{3!}$, $C_{4} = \frac{2}{4!}$ --- $\exists y = 2e^{t} = y(t) = 2+2t+2t^{2}+2$ y(K) (D) · Remainders of series polynomial 16ng division X - 1 e.g.: Imeo parallel to axes XH2 3 5