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1 The matrix equation Ax = b

Lay–Lay–McDonald §1.4 pp. 37 – 43

The matrix equation Ax = b leads us to consider variations on the existence question we
looked at earlier. We start with the following useful fact:

The equation Ax = b has a solution if and only if b is a linear combination of the
columns of A.

Earlier we looked at the following existence question: “Is b in Span {a1, . . . , an}?” An
equivalent reformulation is “Is Ax = b consistent?” A more difficult existence problem is to
determine whether the equation Ax = b is consistent for all possible b, as below:

Example 1 (1.4.16). Let A =

 1 −3 −4
−3 2 6
5 −1 −8

 and b =

b1b2
b3

. Is the equation Ax = b

consistent for all possible b1, b2, b3?
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This leads us to the following theorem:

Theorem 2. Let A be an m× n matrix. Then the following statements are logically equiv-
alent. That is, for a particular A, either they are all true or they are all false:

1. For each b ∈ Rm, the equation Ax = b has a solution.

2. Each b ∈ Rm is a linear combination of the columns of A.

3. The columns of A span Rm.

4. A has a pivot position in every row.

Note that Theorem 2 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix [A b] has a pivot position in every row, then the equation Ax = b
may or may not be consistent.

Next we practice computing Ax for various matrices A and vectors x.

Example 3. Compute the following:

1.

[
1 2 −1
0 −5 3

]4
3
7



2.

 2 −3
8 0
−5 2

[4
7

]

3.

1 0 0
0 1 0
0 0 1

ab
c


We summarize the procedure we carried out above in the following rule:

Row-vector rule for computing Ax
If the product Ax is defined, then the ith entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.

We will use the following theorem throughout the course:

Theorem 4. If A is an m× n matrix, u and v are vectors in Rn and c is a scalar, then

1. A(u + v) = Au + Av;

2. A(cu) = c(Au).
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Proof. For simplicity, we prove the case of n = 3 (the general case follows very similarly, but
just involves more notation). Let A = [a1 a2 a3] and let u,v ∈ R3. For i = 1, 2, 3, let
ui, vi be the ith entries in u,v, respectively. To prove the first statement, compute A(u+v)
as a linear combination of the columns of A using the entries in u + v as weights:

A(u + v) = [a1 a2 a3]

u1 + v1
u2 + v2
u3 + v3


= (u1 + v1)a1 + (u2 + v2)a2 + (u3 + v3)a3

= (u1a1 + u2a2 + u3a3) + (v1a1 + v2a2 + v3a3)

= Au + Av.

To prove the second statement, compute A(cu) as a linear combination of the columns of A
using the entries in cu as weights:

A(cu) = [a1 a2 a3]

cu1

cu2

cu3


= (cu1)a1 + (cu2)a2 + (cu3)a3

= c(u1a1) + c(u2a2) + c(u3a3)

= c(u1a1 + u2a2 + u3a3)

= c(Au).

2 Solution sets of linear systems

Lay–Lay–McDonald §1.5 pp. 43 – 49

Solution sets of linear systems are important in the study of linear algebra, and we’ll see them
in various contexts throughout this course. Today we use vector notation to give geometric
descriptions of these solution sets.

A system of linear equations is said to be homogeneous if it can be written in the form

Ax = 0

where A is an m × n matrix and 0 is the zero vector in Rm. Such a system always has at
least one solution, namely x = 0, the zero vector in Rn. This solution is called the trivial
solution. For a given equation Ax = 0, the important question is whether there exists a
nontrivial solution to the system: that is, a nonzero vector x that satisfies the system.
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Example 5 (1.5.3). Determine if the following homogeneous system has a nontrivial solu-
tion:

−3x1 + 5x2 − 7x3 = 0

−6x1 + 7x2 + x3 = 0

Then describe the solution set.

What we just saw in the previous example is a consequence of the Existence and Unique-
ness Theorem we saw in §1.2. That is, the Existence and Uniqueness Theorem leads us to
the following fact:

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation
has at least one free variable.

Example 6. Describe all solutions of x1 − 3x2 − 2x3 = 0.

Examples 5 and 6 illustrate that the solution set of a homogenous equation Ax = 0 can
always be expressed explicitly as Span {v1, . . . ,vp} for suitable vectors v1, . . . ,vp. If the
only solution is the zero vector, then the solution set is Span {0}. If the equation Ax = 0
has only one free variable, the solution set is a line through the origin. A plane through the
origin provides a good mental image for the solution set of Ax = 0 when there are two or
more three variables.

The equation in Example 6 is an implicit description of the plane. The solution to
the “system” (i.e., solving the equation) amounts to giving an explicit description as the set
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spanned by two vectors u and v. The resulting solution is called a parametric vector equation
of the plane. Sometimes such an equation is written as x = su + tv (where s, t ∈ R) to
emphasize that the parameters vary over all real numbers. Whenever a solution is described
explicitly with vectors as in Examples 5 and 6, we say that the solution is in parametric
vector form.

When a nonhomogeneous linear system has many solutions, the general solution can
be written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

Example 7. Describe all solutions of Ax = b where A =

 3 5 −4
−3 −2 4
6 1 −8

 ,b =

 7
−1
−4

 .

To describe the solution set of Ax = b geometrically, we can think of vector addition
as a translation. Given v and p in R2 or R3, the effect of adding p to v is to move v in a
direction parallel to the line through p and 0. We say that v is translated by p to v + p. If
each point on a line L in R2 or R3 is translated by a vector p, the result is a line parallel to
L.

Suppose L is the line through 0 and v described the equation x = tv for t ∈ R. Adding
p to each point on L produces the translated line x = p + tv. We call this the equation of
the line through p parallel to v. Thus the solution set of Ax = b is a line through p parallel
to the solution set of Ax = 0. Below we state the more general result:

Theorem 8. Suppose the equation Ax = b is consistent for some given b, and let p be a
solution. Then the solution set of Ax = b is the set of all vectors of the form w = p + vh,
where vh is any solution of the homogeneous equation Ax = 0.

Put another way, what this theorem says is that if Ax = b has a solution, then the
solution set is obtained by translating the solution set of Ax = 0, using any particular
solution p of Ax = b for the translation.
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