Professor Jennifer Balakrishnan, jbala@bu.edu ## What is on today 1 Introduction to linear transformations 1 2 The matrix of a linear transformation 3 ## 1 Introduction to linear transformations Lay-Lay-McDonald §1.8 pp. 63 – 69 Now we'll look at transforming vectors under matrix multiplication, which introduces the idea of *linear transformations*. For example, in the equation $$A \qquad \mathbf{x} = \mathbf{b}$$ $$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$ multiplication by the matrix A transforms \mathbf{x} into \mathbf{b} , and in the equation $$A \qquad \mathbf{u} = \mathbf{0}$$ $$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$ multiplication by A transforms \mathbf{u} into $\mathbf{0}$. From this new point of view, solving the equation $A\mathbf{x} = \mathbf{b}$ amounts to finding all vectors \mathbf{x} in \mathbb{R}^4 that are transformed into the vector \mathbf{b} in \mathbb{R}^2 under multiplication by A. Here we introduce some new terminology to further this viewpoint. A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector in \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the *domain* of T and \mathbb{R}^m is called the *codomain* of T. The notation $$T: \mathbb{R}^n \to \mathbb{R}^m$$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m . For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the *image* of \mathbf{x} . The set of all images $T(\mathbf{x})$ is called the *range* of T. **Example 1.** Let $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ and define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that $$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}.$$ - 1. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T. - 2. Find an \mathbf{x} in \mathbb{R}^2 whose image under T is \mathbf{b} . - 3. Is there more than one \mathbf{x} whose image under T is \mathbf{b} ? - 4. Determine if c is in the range of the transformation T. The next two matrix transformations each have a nice geometric interpretation. **Example 2.** If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ projects points in \mathbb{R}^3 into the x_1x_2 -plane, because $$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}.$$ **Example 3.** Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A(\mathbf{x})$ is called a shear transformation. This transformation sends a square to a parallelogram, deforming the square as if the top of the square were pushed to the right while the base is held fixed. Recall that we saw earlier that the transformation $\mathbf{x} \mapsto A\mathbf{x}$ has the properties $$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}, \quad A(c\mathbf{u}) = cA\mathbf{u},$$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all scalars c. These key properties lead us to the formal definition of a linear transformation. **Definition 4.** A transformation T is linear if - 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T, - 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T. **Remark 5.** Note that every matrix transformation is a linear transformation. Here are a few more useful facts, both of which can be derived from the above. If T is a linear transformation, then $T(\mathbf{0}) = \mathbf{0}$ and $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d. **Example 6.** Given a scalar r, define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$. T is called a contraction when $0 \le r \le 1$ and a dilation when r > 1. Let r = 2 and show that T is a linear transformation. **Example 7.** Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Give a geometric description of the transformation $\mathbf{x} \mapsto A\mathbf{x}$. **Example 8** (1.8.30). An affine transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(x) = A\mathbf{x} + \mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^m . Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in compute graphics.) ## 2 The matrix of a linear transformation Lay-Lay-McDonald $$\S1.9$$ pp. $71-78$ Whenever a linear transformation T arises geometrically, it's an interesting problem to compute the corresponding matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$. (Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.) The key to finding A is to observe that T is completely determined by what it does to the columns of the $n \times n$ identity matrix I_n . **Example 9.** The columns of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that $T(\mathbf{e}_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$. Find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 . **Theorem 10.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that $$T(\mathbf{x}) = A\mathbf{x}$$ for all $\mathbf{x} \in \mathbb{R}^n$. In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n : $$A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)]. \tag{1}$$ The matrix A in (1) is called the standard matrix for the linear transformation T. Every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be viewed as a matrix transformation, and vice versa! We practice with finding the standard matrix for linear transformations in the next two examples: **Example 11.** Find the standard matrix A for the dilation $T(\mathbf{x}) = 4\mathbf{x}$ for \mathbf{x} in \mathbb{R}^2 . **Example 12.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ , with counterclockwise rotation for a positive angle. Such a transformation is linear. Find the standard matrix A of this transformation. Below we reproduce some helpful figures from the textbook (§1.8, Tables 1–4) illustrating various geometric linear transformations (projections, reflections, contractions and expansions, and shears, respectively) of \mathbb{R}^2 . | Transformation | Image of the Unit Square | Standard Matrix | |---------------------------------|--|---| | Projection onto the x_1 -axis | x ₂ | $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ | | | $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | | | Projection onto the x_2 -axis | x ₂ householder | $\left[\begin{smallmatrix} 0 & & 0 \\ 0 & & 1 \end{smallmatrix} \right]$ | | | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | | | Transformation | Image of the Unit Square | Standard Matrix | |--|--|--| | Reflection through the x_1 -axis | X ₂ | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ | | | $ \begin{array}{c} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ -1 \end{bmatrix} \end{array} $ | | | Reflection through the x_2 -axis | x_2 x_1 x_2 x_3 x_4 | $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ | | | | | | Reflection through
the line $x_2 = x_1$ | $x_{2} = x_{1}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ | | Reflection through the line $x_2 = -x_1$ | $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ x_1 $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $x_2 = -x_1$ | $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ | | Reflection through the origin | $\begin{bmatrix} -1 \\ 0 \end{bmatrix} \xrightarrow{x_2} x_1$ | $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ |