What is on today

1 Introduction to linear transformations 1
2 The matrix of a linear transformation 3

1 Introduction to linear transformations

Lay-Lay-McDonald $\S 1.8$ pp. $63-69$

Now we'll look at transforming vectors under matrix multiplication, which introduces the idea of linear transformations. For example, in the equation

$$
\begin{array}{rl}
A & \mathbf{x}
\end{array}=\mathbf{b}, \begin{aligned}
& 1 \\
& {\left[\begin{array}{cccc}
4 & -3 & 1 & 3 \\
2 & 0 & 5 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}
\end{aligned}=\left[\begin{array}{l}
5 \\
8
\end{array}\right]
$$

multiplication by the matrix A transforms \mathbf{x} into \mathbf{b}, and in the equation

$$
\begin{array}{rl}
A & \mathbf{u}
\end{array}=\mathbf{0}, \begin{gathered}
1 \\
{\left[\begin{array}{cccc}
4 & -3 & 1 & 3 \\
2 & 0 & 5 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]}
\end{gathered}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

multiplication by A transforms \mathbf{u} into $\mathbf{0}$.
From this new point of view, solving the equation $A \mathbf{x}=\mathbf{b}$ amounts to finding all vectors \mathbf{x} in \mathbb{R}^{4} that are transformed into the vector \mathbf{b} in \mathbb{R}^{2} under multiplication by A. Here we introduce some new terminology to further this viewpoint.

A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector in \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}. The set \mathbb{R}^{n} is called the domain of T and \mathbb{R}^{m} is called the codomain of T. The notation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

indicates that the domain of T is \mathbb{R}^{n} and the codomain is \mathbb{R}^{m}. For \mathbf{x} in \mathbb{R}^{n}, the vector $T(\mathbf{x})$ in \mathbb{R}^{m} is called the image of \mathbf{x}. The set of all images $T(\mathbf{x})$ is called the range of T.

Example 1. Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right], \mathbf{u}=\left[\begin{array}{c}2 \\ -1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right], \mathbf{c}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ and define a transformotion $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$, so that

$$
\begin{gathered}
\left.T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
v_{2}
\end{array}\right]=\left(\begin{array}{c}
x_{1}-3 x_{2} \\
v_{2} x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right]\right) .
\end{gathered}
$$

1. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T. Span $\left\{v_{1}, v_{2}\right\}$ ave ${ }^{2}$. it

$$
T(u)=A \cdot u=\left(\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right)\binom{2}{-1}=\left(\begin{array}{c}
1 \cdot 2+3 \\
3 \cdot 2+5(-1-1) \\
-1 \cdot 2+7 \cdot(1)
\end{array}\right)=\left(\begin{array}{c}
5 \\
1 \\
-9
\end{array}\right) \begin{aligned}
& \text { range } \\
& =\operatorname{Span}\left\{v_{1}, v_{2}\right\}
\end{aligned} \quad \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} .
$$

2. Find an \mathbf{x} in \mathbb{R}^{2} whose image under T is \mathbf{b}.

$$
\text { want: } T(x)=b>\text { Solve } A x=b \text { for } x
$$

$$
\left(\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 5
\end{array}\right) x=\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right) \leadsto\left(\begin{array}{ccc}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & -5
\end{array}\right) 2 \sim\left(\begin{array}{ccc}
1 & -3 & 3 \\
-1 & 7 & -5 \\
3 & 5 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1+\# 2 & -3 & 3 \\
0 & 4 & -2 \\
3 & 5 & 2
\end{array}\right) \stackrel{-3 \cdot \# 1+3_{3}}{\sim}\left(\begin{array}{ccc}
1 & -3 & 3 \\
0 & 4 & -2 \\
0 & 14 & -7
\end{array}\right),
$$

3. Is there more than one \mathbf{x} whose image under T is \mathbf{b} ? no -ther ers just one x, from the work in 2 (there are no free variables)
4. Determine if \mathbf{c} is in the range of the transformation T.
 : $A x=C \Rightarrow\left(\begin{array}{ccc}1 & -3 & 3 \\ 3 & 5 & 2\end{array}\right) \sim\left(\begin{array}{ccc}1 & -3 & 3 \\ 1 & 7 & 5 \\ 3 & 5\end{array}\right) \sim\left(\begin{array}{lll}1 & -3 & 3 \\ 0 & 4 & 8\end{array}\right] \quad x_{1} x_{2}$

$\prod_{4}^{1}+2\left(\begin{array}{ccc}1 & -3 & 3 \\ 0 & 1 & 2\end{array}\right)-2 \cdots 2+\#_{3}\left(\begin{array}{lll}1 & -3 & 3 \\ 0 & 2\end{array}\right)$ this means $\begin{gathered}-3 \cdot * 1+\#_{3} \\ 0\end{gathered}$

The next two matrix transformations each have a nice geometric interpretation.
Example 2. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, then the transformation $\mathbf{x} \mapsto A \mathbf{x}$ projects points in \mathbb{R}^{3} into the $x_{1} x_{2}$-plane, because

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right] .
$$

Example 3. Let $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$. The transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=A(\mathbf{x})$ is called a shear transformation. This transformation sends a square to a parallelogram, deforming the square as if the top of the square were pushed to the right while the base is held fixed.

Recall that we saw earlier that the transformation $\mathbf{x} \mapsto A \mathbf{x}$ has the properties

$$
A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}, \quad A(c \mathbf{u})=c A \mathbf{u}
$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and all scalars c. These key properties lead us to the formal definition of a linear transformation.

Definition 4. A transformation T is linear if

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T,
2. $T(c \mathbf{u})=c T(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

Remark 5. Note that every matrix transformation is a linear transformation.
Here are a few more useful facts, both of which can be derived from the above. If T is a linear transformation, then $T(\mathbf{0})=\mathbf{0}$ and $T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})$ for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d.

Example 6. Given a scalar r, define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=r \mathbf{x}$. T is called a contraction when $0 \leq r \leq 1$ and a dilation when $r>1$. Let $r=2$ and show that T is a linear transformation.

$$
\begin{aligned}
& \text { let } T(x)=2 x . \text { We have } \frac{T(u+v)}{\text { Information. }}=2(u+v)=2 u+2 v=T(u)+T(v) \\
& \\
& \text { We also have } \underline{T(u)}=2 \cdot c u=c \cdot 2 u=c \cdot T(u) \\
& \\
& \text { So we conclude that } T \text { is linear. }
\end{aligned}
$$

Example 7. Let $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Give a geometric description of the transformation $\mathbf{x} \mapsto A \mathbf{x}$.

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
A & x \\
1 & 0 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}}{-x_{2}} \quad \cdot\left(x_{1}, x_{2}\right) \quad \text { reflection over } x \text {-axis. } \\
& 0 \cdot x_{1}+(-1) \cdot x_{2} \\
& \text { - }\left(x_{1},-x_{2}\right)
\end{aligned}
$$

Example 8 (1.8.30). An affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $T(x)=A \mathbf{x}+\mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^{m}. Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in compute graphics.)
If T were a linear transformation: $T(u+v)=T(u)+T(v)$

$$
\begin{aligned}
& A(u+v)+b=A u+b+A v+b \\
& A u+A v+b=A u+A v+2 b \\
& \Rightarrow \quad b=0 \Rightarrow \text { If } b \neq 0, \text { then } T(u+v) \neq T(u)+T(v), \\
& \text { hence not linear. }
\end{aligned}
$$

2 The matrix of a linear transformation

Lay-Lay-McDonald $\S 1.9$ pp. $71-78$

Whenever a linear transformation T arises geometrically, it's an interesting problem to compute the corresponding matrix transformation $\mathbf{x} \mapsto A \mathbf{x}$. (Every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is actually a matrix transformation $\mathbf{x} \mapsto A \mathbf{x}$.) The key to finding A is to observe that T is completely determined by what it does to the columns of the $n \times n$ identity matrix I_{n}.
Example 9. The columns of $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Suppose T is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} such that $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}5 \\ -7 \\ 2\end{array}\right]$ and $T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}-3 \\ 8 \\ 0\end{array}\right]$. Find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^{2}.

$$
\begin{aligned}
& x=\binom{x_{1}}{x_{2}} \text { is an arbitrany elt. of } \mathbb{R}^{2} \\
&=x_{1} e_{1}+x_{2} e_{2} \Rightarrow T(x)=T\left(x_{1} e_{1}+x_{2} e_{2}\right) \\
&=x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right) \\
&=x_{1}\left(\begin{array}{c}
5 \\
-7 \\
2
\end{array}\right)+x_{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
5 x_{1}-3 x_{2} \\
-7 x_{1}+8 x_{2} \\
0
\end{array}\right)
\end{aligned}
$$

Theorem 10. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then the ere exists a unique matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

In fact, A is the $m \times n$ matrix whose j th column is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the j th column of the identity matrix in \mathbb{R}^{n} :

$$
A=\left[\begin{array}{lll}
T\left(\mathbf{e}_{1}\right) & \cdots & T\left(\mathbf{e}_{n}\right) \tag{1}
\end{array}\right] .
$$

The matrix A in (1) is called the standard matrix for the linear transformation T.

Every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} can be viewed as a matrix transformation, and vice versa!

We practice with finding the standard matrix for linear transformations in the next two examples:
Example 11. Find the standard matrix A for the dilation $T(\mathbf{x})=4 \mathbf{x}$ for \mathbf{x} in \mathbb{R}^{2}.

$$
\begin{aligned}
& A=\left[T\left(e_{1}\right) T\left(e_{2}\right)\right] \\
& =\left[\begin{array}{cc}
4 & 0 \\
0 & 4
\end{array}\right]
\end{aligned}
$$

Example 12. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that rotates each point in \mathbb{R}^{2} about the origin through an angle φ, with counterclockwise rotation for a positive angle. Such a transformation is linear. Find the standard matrix A of this transformation.

$$
\begin{aligned}
& A=\left[T\left(e_{1}\right) T\left(e_{2}\right)\right] \\
& {\left[\begin{array}{ll}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]}
\end{aligned}
$$

Below we reproduce some helpful figures from the textbook (§1.8, Tables 1-4) illustrating various geometric linear transformations (projections, reflections, contractions and cxpansions, and shears, respectively) of \mathbb{R}^{2}.
$\left.\begin{array}{l}\text { Transformation } \\ \begin{array}{l}\text { Image of the Unit Square }\end{array} \\ \begin{array}{l}\text { Projection onto } \\ \text { the } x_{1} \text {-axis }\end{array} \\ \begin{array}{l}\text { Projection onto } \\ \text { the } x_{2} \text {-axis }\end{array} \\ {\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]} \\ 0\end{array}\right]$

