Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Introduction to linear transformations	1
2	The matrix of a linear transformation	3

1 Introduction to linear transformations

Lay–Lay–McDonald §1.8 pp. 63 – 69

Now we'll look at transforming vectors under matrix multiplication, which introduces the idea of *linear transformations*. For example, in the equation

$$\begin{array}{ccc} A & \mathbf{x} &= \mathbf{b} \\ \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

multiplication by the matrix A transforms \mathbf{x} into \mathbf{b} , and in the equation

$$A \qquad \mathbf{u} = \mathbf{0}$$
$$\begin{bmatrix} 4 & -3 & 1 & 3\\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 4\\ -1\\ 3 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

multiplication by A transforms **u** into **0**.

From this new point of view, solving the equation $A\mathbf{x} = \mathbf{b}$ amounts to finding all vectors \mathbf{x} in \mathbb{R}^4 that are transformed into the vector \mathbf{b} in \mathbb{R}^2 under multiplication by A. Here we introduce some new terminology to further this viewpoint.

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector in \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the *domain* of T and \mathbb{R}^m is called the *codomain* of T. The notation

 $T:\mathbb{R}^n\to\mathbb{R}^m$

indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m . For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the *image* of \mathbf{x} . The set of all images $T(\mathbf{x})$ is called the *range* of T.

4.22

Example 2. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ projects points in \mathbb{R}^3 into the x_1x_2 -plane, because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}.$$

Example 3. Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A(\mathbf{x})$ is called a shear transformation. This transformation sends a square to a parallelogram, deforming the square as if the top of the square were pushed to the right while the base is held fixed.

Recall that we saw earlier that the transformation $\mathbf{x} \mapsto A\mathbf{x}$ has the properties

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}, \quad A(c\mathbf{u}) = cA\mathbf{u},$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all scalars c. These key properties lead us to the formal definition of a linear transformation.

Definition 4. A transformation T is linear if

1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T,

2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

Remark 5. Note that every matrix transformation is a linear transformation.

Here are a few more useful facts, both of which can be derived from the above. If T is a linear transformation, then $T(\mathbf{0}) = \mathbf{0}$ and $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d.

Example 6. Given a scalar r, define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$. T is called a contraction when $0 \le r \le 1$ and a dilation when r > 1. Let r = 2 and show that T is a linear transformation.

let
$$T(x) = 2x$$
. We have $T(u+v) = 2(u+v) = 2u + 2v = T(u) + T(v) \vee$
We also have $T(u) = 2 \cdot cu = c \cdot 2u = c \cdot T(u) \vee$
So we conclude that T is linear.

Example 7. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
. Give a geometric description of the transformation $\mathbf{x} \mapsto A\mathbf{x}$.
 $\begin{pmatrix} A & \chi \\ 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$
 $\begin{pmatrix} 0 & \chi_1 + (-1) \cdot \chi_2 \end{pmatrix}$

Example 8 (1.8.30). An affine transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has the form $T(x) = A\mathbf{x} + \mathbf{b}$, with A an $m \times n$ matrix and \mathbf{b} in \mathbb{R}^m . Show that T is not a linear transformation when $\mathbf{b} \neq \mathbf{0}$. (Affine transformations are important in compute graphics.)

If T were a linear transformation:
$$T(u+v) = T(u) + T(v)$$

 $A(u+v) + b = Au+b + Av+b$
 $Au+Av+b = Au+Av+2b$
 $\Rightarrow b=0 \Rightarrow if b\neq 0$, then $T(u+v) \neq T(u) + T(v)$,
hence not linear.

2 The matrix of a linear transformation

Lay–Lay–McDonald §1.9 pp. 71 – 78

Whenever a linear transformation T arises geometrically, it's an interesting problem to compute the corresponding matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$. (Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.) The key to finding A is to observe that T is completely determined by what it does to the columns of the $n \times n$ identity matrix I_n .

Example 9. The columns of
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is a linear $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$

transformation from \mathbb{R}^2 to \mathbb{R}^3 such that $T(\mathbf{e}_1) = \begin{bmatrix} -7\\ 2 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} 8\\ 0 \end{bmatrix}$. Find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2

$$\begin{aligned} x &= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \text{ is an arbitrary elt of } \mathbb{R}^2 \\ &= x_1 e_1 + x_2 e_2 \quad \Rightarrow T(x) = T(x_1 e_1 + x_2 e_2) \\ &= x_1 T(e_1) + x_2 T(e_2) \\ &= x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad = x_1 \begin{pmatrix} 5 \\ -\frac{1}{2} \end{pmatrix} + x_2 \begin{pmatrix} -3 \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 5 x_1 & -3 x_2 \\ -\frac{1}{2} x_1 & +8 x_2 \end{pmatrix} \end{aligned}$$

Theorem 10. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x} \quad for \ all \ \mathbf{x} \in \mathbb{R}^n.$$

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n)]. \tag{1}$$

The matrix A in (1) is called the standard matrix for the linear transformation T.

 $\ell_{\underline{\lambda}} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$

 $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be viewed as a matrix transformation, and vice versa!

We practice with finding the standard matrix for linear transformations in the next two examples:

Example 11. Find the standard matrix A for the dilation $T(\mathbf{x}) = 4\mathbf{x}$ for \mathbf{x} in \mathbb{R}^2 .

$$A = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix}$$

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$T(e_1) = 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$T(e_2) = 4 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

$$\frac{1}{4} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$T(x) = 4x$$

1phi

11

Example 12. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ , with counterclockwise rotation for a positive angle. Such a transformation is linear. Find the standard matrix A of this transformation.

(1,0) Below we reproduce some helpful figures from the textbook (§1.8, Tables 1–4) illustrating various geometric linear transformations (projections, reflections, contractions and cxpansions, and shears, respectively) of \mathbb{R}^2 .

	Transformation	Image of the Unit Square	Standard Matrix	
Varphi	Projection onto the x_1 -axis		$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	
''ee''		$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$		
	Projection onto the x_2 -axis		$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	

