Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 The inverse of a matrix 1
2 Characterizations of invertible matrices 4

1 The inverse of a matrix

Lay-Lay-McDonald $\S 2.2$ pp. 104 - 111

Today we discuss what it means to invert a matrix A; that is, to compute a matrix A^{-1} such that

$$
A^{-1} A=A A^{-1}=I
$$

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that $C A=I$ and $A C=I$, where $I=I_{n}$, the $n \times n$ identity matrix. In this case, C is an inverse of A. The inverse of a matrix A is unique, and we denote it as A^{-1}. A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.
Example 1. Let $A=\left[\begin{array}{cc}2 & 5 \\ -3 & -7\end{array}\right], C=\left[\begin{array}{cc}-7 & -5 \\ 3 & 2\end{array}\right]$. Compute $A C$ and $C A$.

Below is a formula for the inverse of a 2×2 matrix, along with a test for when a 2×2 matrix is invertible:

Theorem 2. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible, and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is not invertible.
The quantity above of $a d-b c$ is called the determinant of A (in the case of a 2×2 matrix), and we write $\operatorname{det} A=a d-b c$.

Invertible matrices are very useful for solving matrix equations. In fact, we have the following theorem:

Theorem 3. If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.
Proof. Let $\mathbf{b} \in \mathbb{R}^{n}$. Since A is invertible, we may compute $\mathbf{x}=A^{-1} \mathbf{b}$, and we see that

$$
A \mathbf{x}=A A^{-1} \mathbf{b}=I \mathbf{b}=\mathbf{b}
$$

so \mathbf{x} is certainly a solution to the equation. To check uniqueness, suppose that we have another solution \mathbf{u} of the equation; that is $A \mathbf{u}=\mathbf{b}$. Then multiplying both sides of the equation by A^{-1} yields

$$
A^{-1} A \mathbf{u}=A^{-1} \mathbf{b} \quad \Rightarrow \quad I \mathbf{u}=A^{-1} \mathbf{b} \quad \Rightarrow \quad \mathbf{u}=A^{-1} \mathbf{b}
$$

and we see that $\mathbf{u}=\mathbf{x}$.
Example 4. Use an inverse matrix to solve the system

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}=3 \\
& 5 x_{1}+6 x_{2}=7 .
\end{aligned}
$$

Here are some useful results about invertible matrices:

1. If A is an invertible matrix, then A^{-1} is invertible, and

$$
\left(A^{-1}\right)^{-1}=A .
$$

2. If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is the product of the inverses of A and B in the reverse order. That is,

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

More generally, the product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.
3. If A is an invertible matrix, then so is A^{T}, and the inverse of A^{T} is the transpose of A^{-1}. That is,

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

We will soon see that an invertible matrix A is row equivalent to an identity matrix, and we can find A^{-1} by tracking the row reduction of A to I. Before that, we describe how elementary row operations can be expressed in terms of matrices.

An elementary matrix is one that is obtained by performing a single elementary row operation (scale, replace, swap) on an identity matrix. The next example illustrates the three kinds of elementary matrices.

Example 5. Let $E_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], E_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right], A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$. Compute $E_{1} A, E_{2} A$, and $E_{3} A$, and describe how these products can be obtained by elementary row operations on A.

It turns out that each elementary matrix E is invertible. The inverse of E is the elementary matrix that transforms E back to I.

Example 6. Find the inverse of $E_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right]$.

The following theorem tells us how to see if a matrix is invertible, and it leads to a method for finding the inverse of a matrix.

Theorem 7. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.

If we place A and I side by side to form an augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$, then row operations on this matrix produce identical operations on A and on I. By Theorem 7, either there are row operations that transform A to I_{n}, and I_{n} to A^{-1} or else A is not invertible.

Algorithm for finding A^{-1}
Row reduce the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$. If A is row equivalent to I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$. Otherwise A does not have an inverse.

Example 8. Find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$, if it exists.

In real life, one might need some, but not all of the entries of A^{-1}. In general, it's an expensive computation to produce all of the entries of A^{-1}. Here's how to get a few columns' worth of A^{-1}. Denote the columns of I_{n} by $\mathbf{e}_{1}, \ldots \mathbf{e}_{n}$. Then row reduction of $\left[\begin{array}{ll}A & I\end{array}\right]$ to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$ can be viewed as the simultaneous solution of the n systems

$$
\begin{equation*}
A \mathbf{x}=\mathbf{e}_{1}, \quad A \mathbf{x}=\mathbf{e}_{2}, \quad \ldots, \quad A \mathbf{x}=\mathbf{e}_{n} \tag{1}
\end{equation*}
$$

where the "augmented columns" of these systems have all been placed next to A to form

$$
\left[\begin{array}{lllll}
A & \mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n}
\end{array}\right]=\left[\begin{array}{ll}
A & I
\end{array}\right] .
$$

The equation $A A^{-1}=I$ and the definition of matrix multiplication show that the columns of A^{-1} are precisely the solutions of the systems in 1 . Thus if we are just after a few columns of A^{-1}, it is enough to solve the corresponding systems in (1).

2 Characterizations of invertible matrices

Lay-Lay-McDonald §2.3 pp. 113 - 116

Now we look at various ways of deciding if a square matrix is invertible.
Example 9 (2.3.2, 2.3.4, 2.3.6, 2.3.8). Determine if the following matrices are invertible:

1. $\left[\begin{array}{cc}-4 & 6 \\ 6 & -9\end{array}\right]$
2. $\left[\begin{array}{ccc}-7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9\end{array}\right]$
3. $\left[\begin{array}{ccc}1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0\end{array}\right]$
4. $\left[\begin{array}{cccc}1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10\end{array}\right]$

Here is the main result:

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent:

1. A is an invertible matrix.
2. A is row equivalent to the $n \times n$ identity matrix.
3. A has n pivot positions.
4. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
5. The columns of A form a linearly independent set.
6. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
7. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^{n}$.
8. The columns of A span \mathbb{R}^{n}.
9. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
10. There is an $n \times n$ matrix C such that $C A=I$.
11. There is an $n \times n$ matrix D such that $A D=I$.
12. A^{T} is an invertible matrix.

Example 10. Use the Invertible Matrix Theorem to decide if $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9\end{array}\right]$ is invertible.

