Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

- 1 The inverse of a matrix 1
- 2 Characterizations of invertible matrices 4

1 The inverse of a matrix

Lay–Lay–McDonald $\S 2.2$ pp. 104-111

Today we discuss what it means to invert a matrix A; that is, to compute a matrix A^{-1} such that

$$\underline{A^{-1}}A = A\underline{A^{-1}} = \underline{I}.$$

An $n \times n$ matrix A is said to be *invertible* if there is an $n \times n$ matrix C such that CA = I and AC = I, where $I = I_n$, the $n \times n$ identity matrix. In this case, C is an inverse of A. The inverse of a matrix A is unique, and we denote it as A^{-1} . A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix is called a nonsingular matrix.

Example 1. Let
$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
, $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$. Compute AC and CA .

$$AC = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad AC = CA = I$$

$$CA = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad C = A^{-1}$$

Below is a formula for the inverse of a 2×2 matrix, along with a test for when a 2×2 matrix is invertible:

Theorem 2. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible, and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad - bc = 0, then A is not invertible.

The quantity above of ad - bc is called the *determinant* of A (in the case of a 2×2 matrix), and we write det A = ad - bc.

Invertible matrices are very useful for solving matrix equations. In fact, we have the following theorem:

Theorem 3. If A is an invertible $n \times n$ matrix, then for each $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof. Let $\mathbf{b} \in \mathbb{R}^n$. Since A is invertible, we may compute $\mathbf{x} = A^{-1}\mathbf{b}$, and we see that

$$A\mathbf{x} = AA^{-1}\mathbf{b} = I\mathbf{b} = \mathbf{b},$$

so **x** is certainly a solution to the equation. To check uniqueness, suppose that we have another solution **u** of the equation; that is $A\mathbf{u} = \mathbf{b}$. Then multiplying both sides of the equation by A^{-1} yields

$$A^{-1}A\mathbf{u} = A^{-1}\mathbf{b} \quad \Rightarrow \quad I\mathbf{u} = A^{-1}\mathbf{b} \quad \Rightarrow \quad \mathbf{u} = A^{-1}\mathbf{b}, \ (= \times)$$

and we see that $\mathbf{u} = \mathbf{x}$.

Example 4. Use an inverse matrix to solve the system

Here are some useful results about invertible matrices:

1. If A is an invertible matrix, then A^{-1} is invertible, and

$$(A^{-1})^{-1} = A.$$

2. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is,

$$(AB)^{-1} = B^{-1}A^{-1}.$$

More generally, the product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.

3. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = (A^{-1})^T.$$

We will soon see that an invertible matrix A is row equivalent to an identity matrix, and we can find A^{-1} by tracking the row reduction of A to I. Before that, we describe how elementary row operations can be expressed in terms of matrices.

An *elementary matrix* is one that is obtained by performing a single elementary row operation (scale, replace, swap) on an identity matrix. The next example illustrates the three kinds of elementary matrices.

Example 5. Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}, A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

Compute E_1A , E_2A , and \overline{E}_3A , and describe how these products can be obtained by elementary row operations on A.

$$E_{1}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ -4a+g & -4b+h & -4c+i \end{pmatrix}$$
 this is -4 first row the third row third row
$$E_{2}A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ d & b & c \\ 0 & 0 & 0 \end{pmatrix}$$
 Swapped first & second rows
$$E_{3}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ d & e & f \\ 0 & 0 & 0 \end{pmatrix}$$
 5 x third row
$$E_{3}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ d & e & f \\ d & e & f \end{pmatrix}$$
 5 x third row

It turns out that each elementary matrix E is invertible. The inverse of E is the elementary matrix that transforms E back to I.

Example 6. Find the inverse of
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$
. We saw E_1 corresponds to $-4 \cdot \text{first row} + \text{third row}$.

So $E^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

The following theorem tells us how to see if a matrix is invertible, and it leads to a method for finding the inverse of a matrix.

Theorem 7. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

If we place A and I side by side to form an augmented matrix $[A \ I]$, then row operations on this matrix produce identical operations on A and on I. By Theorem 7, either there are row operations that transform A to I_n , and I_n to A^{-1} or else A is not invertible.

Algorithm for finding A^{-1}

Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I]$ is row equivalent to $[I \ A^{-1}]$. Otherwise A does not have an inverse.

Example 8. Find the inverse of the matrix
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
, if it exists.
$$\begin{pmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 &$$

In real life, one might need some, but not all of the entries of A^{-1} . In general, it's an expensive computation to produce all of the entries of A^{-1} . Here's how to get a few columns' worth of A^{-1} . Denote the columns of I_n by $\mathbf{e}_1, \dots \mathbf{e}_n$. Then row reduction of $[A \ I]$ to $[I \ A^{-1}]$ can be viewed as the simultaneous solution of the n systems

$$A\mathbf{x} = \mathbf{e}_1, \quad A\mathbf{x} = \mathbf{e}_2, \quad \dots, \quad A\mathbf{x} = \mathbf{e}_n,$$
 (1)

where the "augmented columns" of these systems have all been placed next to A to form

$$[A \quad \mathbf{e}_1 \quad \mathbf{e}_2 \quad \cdots \quad \mathbf{e}_n] = [A \quad I].$$

The equation $AA^{-1} = I$ and the definition of matrix multiplication show that the columns of A^{-1} are precisely the solutions of the systems in (1). Thus if we are just after a few columns of A^{-1} , it is enough to solve the corresponding systems in (1). $\underline{\varrho g}: A = \begin{pmatrix} 2 & 5 \\ -3 & -3 \end{pmatrix}$

2 Characterizations of invertible matrices $A \times = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Example 9 (2.3.2, 2.3.4, 2.3.6, 2.3.8). Determine if the following matrices are invertible: $x_1 = -7$

1.
$$\begin{bmatrix} -4 & 6 \\ 6 & -9 \end{bmatrix}$$
 no $\begin{pmatrix} \text{columns are lin.dep.} \\ \text{or.} \\ \text{det} = 0 \end{pmatrix}$

2.
$$\begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix}$$
 no : columns are not Im. indep. because one column is the zero vector

3.
$$\begin{bmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{bmatrix}$$
 no - has nontrivial sol. to $Ax=0$ (i.e. has free vor.) - not row equivalent to \mathbb{I}_3

4.
$$\begin{bmatrix} 1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$
 yes - there's a proof position in every column

Here is the main result:

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent:

- 1. A is an invertible matrix.
- 2. A is row equivalent to the $n \times n$ identity matrix.
- 3. A has n pivot positions.
- 4. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of A form a linearly independent set.
- 6. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- 8. The columns of A span \mathbb{R}^n .
- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an $n \times n$ matrix C such that CA = I.
- 11. There is an $n \times n$ matrix D such that AD = I.
- 12. A^T is an invertible matrix.

Example 10. Use the Invertible Matrix Theorem to decide if $A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$ is invertible.

$$\begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$