What is on today

1 Introduction to Determinants 1
2 Properties of Determinants 3
3 Cramer's Rule, Volume, and Linear Transformations 4

1 Introduction to Determinants

Lay-Lay-McDonald $\S 3.1$ pp. 166 - 169

Recall that we saw that a 2×2 matrix is invertible if and only if its determinant is nonzero. To extend this useful fact to larger matrices, we need a definition for the determinant of an $n \times n$ matrix. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix.

When $n=1$, we $\operatorname{define} \operatorname{det} A=a_{11}$.
Recall that when $n=2$, that is, $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, we have

$$
\operatorname{det} A=a_{11} a_{22}-a_{12} a_{21}
$$

When $n=3$, the determinant $\operatorname{det} A$ is defined recursively using determinants of 2×2 submatrices. That is, suppose $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. Then

$$
\operatorname{det} A=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

For brevity, we write this as

$$
\operatorname{det} A=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
$$

where A_{11}, A_{12}, and A_{13} are obtained from A by deleting the first row and one of the three columns. For any square matrix A, let $A_{i j}$ denote the submatrix formed by deleting the i th row and j th column of A. Now we can give a recursive definition of determinants. When $n=4$, $\operatorname{det} A$ uses determinants of 3×3 submatrices, and in general, the determinant of an $n \times n$ matrix is computed using determinants of $(n-1) \times(n-1)$ submatrices.

Definition 1. For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the following:

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j}
$$

Example 2. Compute the determinant of $A=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$.

To state the next theorem, it is convenient to write the definition of $\operatorname{det} A$ in a slightly different form. Given $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}$ given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} .
$$

Then the formula we just wrote is

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

This formula is called a cofactor expansion across the first row of A.
Theorem 3. The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or column. The expansion across the ith row is

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

The expansion down the j th column is

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} .
$$

The theorem tells us that we have some flexibility in computing the determinant: by picking a favorable row or column (e.g., one with many zeros), we can cut down on the number of computations we have to do.

Example 4. Compute det A, where $A=\left[\begin{array}{ccccc}3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0\end{array}\right]$.

The previous example motivates the following useful result:
Theorem 5. If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.

2 Properties of Determinants

Lay-Lay-McDonald $\S 3.2$ pp. 171 - 177
The properties of determinants are governed by row operations. Here are some useful results:
Theorem 6. Let A be a square matrix.

1. If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det} B=\operatorname{det} A$.
2. If two rows of A are swapped to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
3. If one row of A is multiplied by k to produce B, then $\operatorname{det} B=k \cdot \operatorname{det} A$.

Suppose a square matrix A has been reduced to an echelon form U by row replacements and row swaps. (This is always possible by the row reduction algorithm.) If there are r swaps, the previous theorem tells us that

$$
\operatorname{det} A=(-1)^{r} \operatorname{det} U
$$

Moreover, since U is in echelon form, it is triangular, and so $\operatorname{det} U$ is the product of the diagonal entries $u_{i i}$. If A is invertible, the entries $u_{i i}$ are all pivots (because $A \sim I_{n}$ and the $u_{i i}$ have not been scaled to 1 s). Otherwise, at least $u_{n n}$ will be zero, and the product of diagonal entries will be 0 . This gives us

$$
\operatorname{det} A= \begin{cases}(-1)^{r} \cdot(\text { product of pivots in } U) & \text { when } A \text { is invertible } \\ 0 & \text { when } A \text { is not invertible. }\end{cases}
$$

The formula above proves the following theorem:

Theorem 7. A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.
Example 8. Compute det A, where $A=\left[\begin{array}{cccc}3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9\end{array}\right]$.

Here are some further useful properties of determinants:
Theorem 9. If A is an $n \times n$ matrix, then $\operatorname{det} A^{T}=\operatorname{det} A$.
Theorem 10. If A and B are $n \times n$ matrices, then $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.

3 Cramer's Rule, Volume, and Linear Transformations

Lay-Lay-McDonald $\S 3.3$ pp. 179 - 186

Today we give some formulas for using the determinant in various calculations.
Cramer's Rule can be used to study how the solution of $A \mathbf{x}=\mathbf{b}$ changes as the entries of \mathbf{b} change. To give the rule, we first define some notation:

For any $n \times n$ matrix A and any vector $\mathbf{b} \in \mathbb{R}^{n}$, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing column i by the vector \mathbf{b} :

$$
A_{i}(\mathbf{b})=\left[\mathbf{a}_{1} \cdots \mathbf{b} \cdots \mathbf{a}_{n}\right]
$$

where \mathbf{b} takes the place of \mathbf{a}_{i}.
Theorem 11 (Cramer's rule). Let A be an invertible $n \times n$ matrix. For any $\mathbf{b} \in \mathbb{R}^{n}$, the unique solution \mathbf{x} of $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}, \quad i=1,2, \ldots n .
$$

Example 12. Use Cramer's rule to solve the system

$$
\begin{array}{r}
3 x_{1}-2 x_{2}=6 \\
-5 x_{1}+4 x_{2}=8 .
\end{array}
$$

Cramer's rule also gives us a formula for the inverse of an $n \times n$ matrix A^{-1}. The j th column of A^{-1} is a vector \mathbf{x} that satisfies $A \mathbf{x}=\mathbf{e}_{j}$, where \mathbf{e}_{j} is the j th column of the identity matrix, and the i th entry of \mathbf{x} is the (i, j) th entry of A^{-1}. By Cramer's rule, we have

$$
(i, j) \text { th entry of } A^{-1}=x_{i}=\frac{\operatorname{det} A_{i}\left(\mathbf{e}_{j}\right)}{\operatorname{det} A} .
$$

Recall that $A_{j i}$ denotes the submatrix of A formed by deleting row j and column i. A cofactor expansion down column i of $A_{i}\left(\mathbf{e}_{j}\right)$ shows that

$$
\operatorname{det} A_{i}\left(\mathbf{e}_{j}\right)=(-1)^{i+j} \operatorname{det} A_{j i}=C_{j i},
$$

where $C_{j i}$ is a cofactor of A. Thus we have the following formula:

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \tag{1}\\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n} n
\end{array}\right]
$$

The matrix of cofactors on the right side of (1) is the adjugate of A, denoted by adj A.
Theorem 13. Let A be an invertible $n \times n$ matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

Example 14. Find the inverse of the matrix $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2\end{array}\right]$.

