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1 Introduction to Determinants

Lay–Lay–McDonald §3.1 pp. 166 – 169

Recall that we saw that a 2× 2 matrix is invertible if and only if its determinant is nonzero.
To extend this useful fact to larger matrices, we need a definition for the determinant of an
n× n matrix. Let A = [aij] be an n× n matrix.

When n = 1, we define detA = a11.

Recall that when n = 2, that is, A =

[
a11 a12
a21 a22

]
, we have

detA = a11a22 − a12a21.

When n = 3, the determinant detA is defined recursively using determinants of 2 × 2

submatrices. That is, suppose A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

. Then

detA = a11 det

[
a22 a23
a32 a33

]
− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
.

For brevity, we write this as

detA = a11 detA11 − a12 detA12 + a13 detA13,

where A11, A12, and A13 are obtained from A by deleting the first row and one of the three
columns. For any square matrix A, let Aij denote the submatrix formed by deleting the ith
row and jth column of A. Now we can give a recursive definition of determinants. When
n = 4, detA uses determinants of 3× 3 submatrices, and in general, the determinant of an
n× n matrix is computed using determinants of (n− 1)× (n− 1) submatrices.
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Definition 1. For n ≥ 2, the determinant of an n× n matrix A = [aij] is the following:

detA =
n∑

j=1

(−1)1+ja1j detA1j.

Example 2. Compute the determinant of A =

1 5 0
2 4 −1
0 −2 0

 .

To state the next theorem, it is convenient to write the definition of detA in a slightly
different form. Given A = [aij], the (i,j)-cofactor of A is the number Cij given by

Cij = (−1)i+j detAij.

Then the formula we just wrote is

detA = a11C11 + a12C12 + · · ·+ a1nC1n.

This formula is called a cofactor expansion across the first row of A.

Theorem 3. The determinant of an n×n matrix A can be computed by a cofactor expansion
across any row or column. The expansion across the ith row is

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

The expansion down the jth column is

detA = a1jC1j + a2jC2j + · · ·+ anjCnj.

The theorem tells us that we have some flexibility in computing the determinant: by
picking a favorable row or column (e.g., one with many zeros), we can cut down on the
number of computations we have to do.
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Example 4. Compute detA, where A =


3 −7 8 9 −6
0 2 −5 7 3
0 0 1 5 0
0 0 2 4 −1
0 0 0 −2 0

 .

The previous example motivates the following useful result:

Theorem 5. If A is a triangular matrix, then detA is the product of the entries on the
main diagonal of A.

2 Properties of Determinants

Lay–Lay–McDonald §3.2 pp. 171 – 177

The properties of determinants are governed by row operations. Here are some useful results:

Theorem 6. Let A be a square matrix.

1. If a multiple of one row of A is added to another row to produce a matrix B, then
detB = detA.

2. If two rows of A are swapped to produce B, then detB = − detA.

3. If one row of A is multiplied by k to produce B, then detB = k · detA.

Suppose a square matrix A has been reduced to an echelon form U by row replacements
and row swaps. (This is always possible by the row reduction algorithm.) If there are r
swaps, the previous theorem tells us that

detA = (−1)r detU.

Moreover, since U is in echelon form, it is triangular, and so detU is the product of the
diagonal entries uii. If A is invertible, the entries uii are all pivots (because A ∼ In and
the uii have not been scaled to 1s). Otherwise, at least unn will be zero, and the product of
diagonal entries will be 0. This gives us

detA =

{
(−1)r · (product of pivots in U) when A is invertible

0 when A is not invertible.

The formula above proves the following theorem:
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Theorem 7. A square matrix A is invertible if and only if detA 6= 0.

Example 8. Compute detA, where A =


3 −1 2 −5
0 5 −3 −6
−6 7 −7 4
−5 −8 0 9

 .

Here are some further useful properties of determinants:

Theorem 9. If A is an n× n matrix, then detAT = detA.

Theorem 10. If A and B are n× n matrices, then detAB = (detA)(detB).

3 Cramer’s Rule, Volume, and Linear Transformations

Lay–Lay–McDonald §3.3 pp. 179 – 186

Today we give some formulas for using the determinant in various calculations.

Cramer’s Rule can be used to study how the solution of Ax = b changes as the entries
of b change. To give the rule, we first define some notation:

For any n × n matrix A and any vector b ∈ Rn, let Ai(b) be the matrix obtained from
A by replacing column i by the vector b:

Ai(b) = [a1 · · ·b · · · an],

where b takes the place of ai.

Theorem 11 (Cramer’s rule). Let A be an invertible n × n matrix. For any b ∈ Rn, the
unique solution x of Ax = b has entries given by

xi =
detAi(b)

detA
, i = 1, 2, . . . n.
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Example 12. Use Cramer’s rule to solve the system

3x1 − 2x2 = 6

−5x1 + 4x2 = 8.

Cramer’s rule also gives us a formula for the inverse of an n × n matrix A−1. The jth
column of A−1 is a vector x that satisfies Ax = ej, where ej is the jth column of the identity
matrix, and the ith entry of x is the (i, j)th entry of A−1. By Cramer’s rule, we have

(i, j)th entry of A−1 = xi =
detAi(ej)

detA
.

Recall that Aji denotes the submatrix of A formed by deleting row j and column i. A
cofactor expansion down column i of Ai(ej) shows that

detAi(ej) = (−1)i+j detAji = Cji,

where Cji is a cofactor of A. Thus we have the following formula:

A−1 =
1

detA


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn

 . (1)

The matrix of cofactors on the right side of (1) is the adjugate of A, denoted by adjA.

Theorem 13. Let A be an invertible n× n matrix. Then

A−1 =
1

detA
adjA.

Example 14. Find the inverse of the matrix A =

2 1 3
1 −1 1
1 4 −2

 .
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