What is on today

1 Cramer's Rule, Volume, and Linear Transformations 1
2 Vector Spaces and Subspaces 2

1 Cramer's Rule, Volume, and Linear Transformations

Lay-Lay-McDonald §3.3 pp. 179-186

Today we give a geometric interpretation of the determinant.
Theorem 1. If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det} A|$.

Example 2. Calculate the area of the parallelogram determined by the points $(-2,-2),(0,3),(4,-1)$, and (6,4).

Determinants can be used to describe an important geometric property of linear transformations in the plane and in \mathbb{R}^{3}. If T is a linear transformation and S is a set in the domain of T, let $T(S)$ denote the set of images of points in S. We are interested in how the area (or volume) of $T(S)$ compares with the area (or volume) of the original set S.

Theorem 3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2}, then

$$
\text { area of } T(S)=|\operatorname{det} A| \cdot \text { area of } S \text {. }
$$

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^{3}, then

$$
\text { volume of } T(S)=|\operatorname{det} A| \cdot \text { volume of } S \text {. }
$$

It turns out that the conclusions of the above theorem hold whenever S is a region in \mathbb{R}^{2} with finite area or a region in \mathbb{R}^{3} with finite volume.

Example 4. Let a and b be positive numbers. Find the area of the region E bounded by the ellipse whose equation is

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}=1
$$

2 Vector Spaces and Subspaces

Lay-Lay-McDonald $\S 4.1$ pp. 192 - 197

The work we've been doing with vectors in \mathbb{R}^{n} can be understood in a more general framework once we have the notion of a vector space, which will be our object of study today.

Definition 5. A (real) vector space is a nonempty set V of objects, called vectors, on which are defined two operations, addition and multiplication by scalars (real numbers), subject to the ten axioms below. The axioms must hold for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and for all scalars c, d.

1. $\mathbf{u}+\mathbf{v} \in V$.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There is a zero vector $\mathbf{0} \in V$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. $c \mathbf{u} \in V$.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=(c d) \mathbf{u}$.
10. $1 \mathbf{u}=\mathbf{u}$.

Note that the zero vector $\mathbf{0}$ is unique, and for each $\mathbf{u} \in V$, its negative $\mathbf{- u}$ is unique.

Example 6. The spaces \mathbb{R}^{n} for $n \geq 1$ are vector spaces.
Example 7. For $n \geq 0$, the set P_{n} of polynomials of degree at most n consists of all polynomials of the form

$$
p(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}
$$

where the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers. If $p(t)=a_{0} \neq 0$, the degree of p is zero. If all of the coefficients are zero, p is called the zero polynomial. Show that P_{n} is a vector space.

Example 8. Let V be the set of all real-valued functions defined on a set D (where D is \mathbb{R} or some interval on the real line). Show that V is a vector space.

In many problems, a vector space consists of a subset of vectors from some larger vector space. In this case, only three of the ten vector space axioms need to be checked; the rest are automatically satisfied.

Definition 9. A subspace of a vector space V is a subset H of V that has three properties:

1. The zero vector of V is in H.
2. H is closed under vector addition: $\mathbf{u}, \mathbf{v} \in H \Rightarrow \mathbf{u}+\mathbf{v} \in H$.
3. H is closed under multiplication by scalars: if c is a scalar and $\mathbf{u} \in H$, then $c \mathbf{u} \in H$.

Example 10. Is the set consisting of the zero vector in a vector space V a subspace of V ?

Example 11. Let P be the set of all polynomials with real coefficients, with the usual operations in P. Then P is a subspace of the space of all real-valued functions on \mathbb{R}. Also, for each $n \geq 0, P_{n}$ is a subspace of P.

Example 12. The vector space \mathbb{R}^{2} is not a subspace of \mathbb{R}^{3}, since \mathbb{R}^{2} is not a subset of \mathbb{R}^{3}. However, the set $H=\left\{\left[\begin{array}{l}s \\ t \\ 0\end{array}\right]\right\}$ where $s, t \in \mathbb{R}$ is a subset of \mathbb{R}^{3}. Show that H is a subspace of \mathbb{R}^{3}.

Example 13. Consider a plane in \mathbb{R}^{3} not through the origin. Is it a subspace of \mathbb{R}^{3} ?

Example 14. Let V be a vector space, and let $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. Let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be the set of all linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}$. Show that H is a subspace of V.

The argument in the previous example can be generalized to prove the following:
Theorem 15. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in a vector space V, then Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

We call $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ the subspace spanned (or generated) by $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Given any subspace H of V, a spanning (or generating) set for H is a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in H such that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Example 16. Let H be the set of all vectors of the form $(a-3 b, b-a, a, b)$, where a, b are arbitrary real numbers. Show that H is a subspace of \mathbb{R}^{4}.

Example 17. For what values of h will \mathbf{y} be in the subspace of \mathbb{R}^{3} spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ if $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}5 \\ -4 \\ -7\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right], \mathbf{y}=\left[\begin{array}{c}-4 \\ 3 \\ h\end{array}\right]$?

Example 18. Show that the set H of all points of \mathbb{R}^{2} of the form $(3 a, 2+5 a)$ is not a vector space.

