
MA 242 (Linear Algebra) Lecture 11: March 4, 2021 Section C1

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Cramer’s Rule, Volume, and Linear Transformations 1

2 Vector Spaces and Subspaces 2

1 Cramer’s Rule, Volume, and Linear Transformations

Lay–Lay–McDonald §3.3 pp. 179 – 186

Today we give a geometric interpretation of the determinant.

Theorem 1. If A is a 2×2 matrix, the area of the parallelogram determined by the columns
of A is | detA|. If A is a 3 × 3 matrix, the volume of the parallelepiped determined by the
columns of A is | detA|.

Example 2. Calculate the area of the parallelogram determined by the points (−2,−2), (0, 3), (4,−1),
and (6, 4).

Determinants can be used to describe an important geometric property of linear transfor-
mations in the plane and in R3. If T is a linear transformation and S is a set in the domain
of T , let T (S) denote the set of images of points in S. We are interested in how the area (or
volume) of T (S) compares with the area (or volume) of the original set S.

Theorem 3. Let T : R2 → R2 be the linear transformation determined by a 2× 2 matrix A.
If S is a parallelogram in R2, then

area of T (S) = | detA| · area of S.

If T is determined by a 3× 3 matrix A, and if S is a parallelepiped in R3, then

volume of T (S) = | detA| · volume of S.

It turns out that the conclusions of the above theorem hold whenever S is a region in R2

with finite area or a region in R3 with finite volume.

1



MA 242 (Linear Algebra) Lecture 11: March 4, 2021 Section C1

Example 4. Let a and b be positive numbers. Find the area of the region E bounded by the
ellipse whose equation is

x2
1

a2
+

x2
2

b2
= 1.

2 Vector Spaces and Subspaces

Lay–Lay–McDonald §4.1 pp. 192 – 197

The work we’ve been doing with vectors in Rn can be understood in a more general framework
once we have the notion of a vector space, which will be our object of study today.

Definition 5. A (real) vector space is a nonempty set V of objects, called vectors, on which
are defined two operations, addition and multiplication by scalars (real numbers), subject to
the ten axioms below. The axioms must hold for all vectors u,v,w ∈ V and for all scalars
c, d.

1. u + v ∈ V .

2. u + v = v + u.

3. (u + v) + w = u + (v + w).

4. There is a zero vector 0 ∈ V such that u + 0 = u.

5. For each u ∈ V , there is a vector −u ∈ V such that u + (−u) = 0.

6. cu ∈ V .

7. c(u + v) = cu + cv.

8. (c + d)u = cu + du.

9. c(du) = (cd)u.

10. 1u = u.

Note that the zero vector 0 is unique, and for each u ∈ V , its negative −u is unique.
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Example 6. The spaces Rn for n ≥ 1 are vector spaces.

Example 7. For n ≥ 0, the set Pn of polynomials of degree at most n consists of all
polynomials of the form

p(t) = a0 + a1t + · · ·+ ant
n,

where the coefficients a0, a1, . . . , an are real numbers. If p(t) = a0 6= 0, the degree of p is
zero. If all of the coefficients are zero, p is called the zero polynomial. Show that Pn is a
vector space.

Example 8. Let V be the set of all real-valued functions defined on a set D (where D is R
or some interval on the real line). Show that V is a vector space.

In many problems, a vector space consists of a subset of vectors from some larger vector
space. In this case, only three of the ten vector space axioms need to be checked; the rest
are automatically satisfied.

Definition 9. A subspace of a vector space V is a subset H of V that has three properties:

1. The zero vector of V is in H.

2. H is closed under vector addition: u,v ∈ H ⇒ u + v ∈ H.

3. H is closed under multiplication by scalars: if c is a scalar and u ∈ H, then cu ∈ H.

Example 10. Is the set consisting of the zero vector in a vector space V a subspace of V ?
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Example 11. Let P be the set of all polynomials with real coefficients, with the usual oper-
ations in P . Then P is a subspace of the space of all real-valued functions on R. Also, for
each n ≥ 0, Pn is a subspace of P .

Example 12. The vector space R2 is not a subspace of R3, since R2 is not a subset of R3.

However, the set H =


st

0

 where s, t ∈ R is a subset of R3. Show that H is a subspace

of R3.

Example 13. Consider a plane in R3 not through the origin. Is it a subspace of R3?

Example 14. Let V be a vector space, and let v1,v2 ∈ V . Let H =Span{v1,v2} be the set
of all linear combinations of v1,v2. Show that H is a subspace of V .

The argument in the previous example can be generalized to prove the following:

Theorem 15. If v1, . . . ,vp are in a vector space V , then Span {v1, . . . ,vp} is a subspace of
V .

We call Span{v1, . . . ,vp} the subspace spanned (or generated) by {v1, . . . ,vp}. Given
any subspace H of V , a spanning (or generating) set for H is a set {v1, . . . ,vp} in H such
that H = Span{v1, . . . ,vp}.
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Example 16. Let H be the set of all vectors of the form (a− 3b, b− a, a, b), where a, b are
arbitrary real numbers. Show that H is a subspace of R4.

Example 17. For what values of h will y be in the subspace of R3 spanned by v1,v2,v3 if

v1 =

 1
−1
−2

 ,v2 =

 5
−4
−7

 ,v3 =

−3
1
0

 ,y =

−4
3
h

?

Example 18. Show that the set H of all points of R2 of the form (3a, 2 + 5a) is not a vector
space.
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