1

Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Linearly independent sets; bases

1 Linearly independent sets; bases

Lay–Lay–McDonald §4.3 pp. 210 – 215

Today we study the subsets that span a vector space V or a subspace H as "efficiently" as possible. The main idea is that of linear independence.

An indexed set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in V is said to be *linearly independent* if the equation

$$c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p = \mathbf{0} \tag{1}$$

has only the trivial solution $c_1 = \cdots = c_p = 0$. The set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is said to be *linearly* dependent if (1) has a nontrivial solution: that is, if there are weights c_1, \ldots, c_p not all zero such that (1) holds. In this case, there is said to be a *linear dependence relation* among $\mathbf{v}_1, \ldots, \mathbf{v}_p$. All of this should sound familiar – we discussed the analogous definition over $V = \mathbb{R}^n$. In fact, the following theorem we saw over \mathbb{R}^n also holds true:

Theorem 1. An indexed set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors $\mathbf{v}_1, \ldots, \mathbf{v}_j$.

Example 2. Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, $\mathbf{p}_3(t) = 4 - t$. Is the set $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ linearly independent in the vector space of polynomials of degree at most 1?

Definition 3. Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_p\}$ in V is a basis for H if

- 1. \mathcal{B} is a linearly independent set, and
- 2. the subspace spanned by \mathcal{B} coincides with H; that is, $H = \text{Span}\{\mathbf{b}_1, \ldots, \mathbf{b}_p\}$.

Example 4. Let A be an invertible $n \times n$ matrix. Then the columns of A form a basis for \mathbb{R}^n because they are linearly independent and they span \mathbb{R}^n , by the Invertible Matrix Theorem.

Example 5. Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be the columns of the $n \times n$ identity matrix I_n :

$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots, \mathbf{e}_n = \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix}$$

The set $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is called the standard basis of \mathbb{R}^n .

Example 6. Let
$$\mathbf{v}_1 = \begin{bmatrix} 3\\0\\-6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -4\\1\\7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2\\1\\5 \end{bmatrix}$. Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Example 7. Let $S = \{1, t, ..., t^n\}$. Verify that S is a basis for P_n . This is called the standard basis for P_n .

We we'll see, a basis is an "efficient" spanning set that contains no unnecessary vectors. In fact, a basis can be constructed from a spanning set by discarding unneeded vectors.

Example 8. Let
$$\mathbf{v}_1 = \begin{bmatrix} 0\\ 2\\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2\\ 2\\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 6\\ 16\\ -5 \end{bmatrix}$, and $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Note that $\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$ and show that $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Then find a basis for H .

The next theorem generalizes the previous example:

Theorem 9 (Spanning set theorem). Let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_p}$ be a set in V, and let $H = \text{Span}{\mathbf{v}_1, \ldots, \mathbf{v}_p}$.

- 1. If one of the vectors in S say \mathbf{v}_k is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- 2. If $H \neq \{0\}$, some subset of S is a basis for H.

We know how to find vectors that span the null space of a matrix A (compute reduced echelon form, write the basic variables in terms of free variables, and decompose as a linear combination of vectors using the free variables as weights); in fact, the method produces a linearly independent set when Nul A contains nonzero vectors, and in that case, a *basis* for Nul A. Now we describe how to find a basis for the column space, through two examples:

Example 10. Find a basis for Col B, where
$$B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_5] = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
.

	[1	4	0	2	-1	
Example 11. It can be shown that the matrix $A = [\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_5] = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_5 \end{bmatrix}$	3	12	1	5	5	
	2	8	1	3	2	
	5	20	2	8	2	
is row equivalent to the matrix B in the previous example. Find a basis	for	Col	Α.		-	

These two examples illustrate the following useful fact:

Theorem 12. The pivot columns of a matrix A form a basis for Col A.