Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Linearly independent sets; bases

1

Linearly independent sets; bases 1

Lay-Lay-McDonald §4.3 pp. 210 – 215

Today we study the subsets that span a vector space V or a subspace H as "efficiently" as possible. The main idea is that of linear independence.

An indexed set of vectors $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ in V is said to be linearly independent if the equation

$$c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p = \mathbf{0} \tag{1}$$

has only the trivial solution $c_1 = \cdots = c_p = 0$. The set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is said to be linearly dependent if (1) has a nontrivial solution: that is, if there are weights c_1, \ldots, c_p not all zero such that (1) holds. In this case, there is said to be a linear dependence relation among $\mathbf{v}_1, \dots, \mathbf{v}_n$. All of this should sound familiar – we discussed the analogous definition over $V=\mathbb{R}^n$. In fact, the following theorem we saw over \mathbb{R}^n also holds true:

Theorem 1. An indexed set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_i (with i > 1) is a linear combination of the preceding vectors $\mathbf{v}_1,\ldots,\mathbf{v}_j$.

Example 2. Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, $\mathbf{p}_3(t) = 4 - t$. Is the set $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ linearly independent in the vector space of polynomials of degree at most 1?

(an we write
$$p_3$$
 in terms of p_1 and p_2 ?

$$p_3(t) = 4 - t = 4 \cdot p_1(t) - p_2(t) \quad \text{so the set } \{p_1, p_2, p_3\} \text{ is NUT}$$
In linearly independent.

Definition 3. Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} =$ $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ in V is a basis for H if

- 2. the subspace spanned by $\mathcal B$ coincides with H; that is, $H = \operatorname{Span}\{\mathbf b_1, \dots, \mathbf b_p\}$. Written as a lm. comb. of $\mathcal B$

Example 4. Let A be an invertible $n \times n$ matrix. Then the columns of A form a basis for \mathbb{R}^n because they are linearly independent and they span \mathbb{R}^n , by the Invertible Matrix Theorem.

Example 5. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the columns of the $n \times n$ identity matrix I_n :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_n = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}.$$

$$\begin{array}{c} \text{L has det 1,} \\ \text{so it is invertible,} \\ \text{So by Ex 4,} \\ \text{Columns form basis} \\ \text{for ign} \end{array}$$

The set $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is called the standard basis of \mathbb{R}^n .

Example 6. Let $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ -6 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$. Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis

- compute det A, check ifits O or not.

$$\det A: \begin{bmatrix} 3 & -4 & -2 \\ -6 & 7 & 5 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 \\ 7 & 5 \end{bmatrix} - 6 \begin{bmatrix} -4 & -2 \\ 1 & 1 \end{bmatrix}$$

$$= 3(5-7) - 6(-4+2)$$

$$= 3(-2) - (6(-2)) = -(6)$$

 $= 3(-2) - 6(-2) = -6 + 12 = 6 \neq 0$

Example 7. Let $S = \{1, t, ..., t^n\}$. Verify that S is a basis for P_n . This is called the standard basis for P_n . polynomiak of deg < n

basts = linear independence + span.

Suppose

to + c₁t + - + c_nth = 0

If nonzarga

If this is the 0

This will be 0 at this quality polynomial.

most n times artified literally alw

where we are

> we need LHS to be O polynomial as well => all ci=0 >> 'lin' indep.

poly of deg < n looks

Co+cit + ... + cnth = "\sum cit' for t' \in \{\text{l}, \text{l}, \text{---,t'}\}

Afternatively:

translate co+cit + ... + cnth -> (\sum_{\text{co}}, \sum_{\text{c}}, \sum_{\text{c} polynomial.

literally always D $t \rightarrow (1,0,0,...,0)$ $t \rightarrow (0,1,0,...,0)$ 12 → (0,0,1,0,...,0) ···th → (0,...,0,1)

We we'll see, a basis is an "efficient" spanning set that contains no unnecessary vectors. In fact, a basis can be constructed from a spanning set by discarding unneeded vectors.

> e.g. for Pa: polysof deg at most 2 fco+c,++6+2> (co, c, c) $\begin{array}{c} (\mapsto (1,0,0) \\ t \mapsto (0,1,0) \end{array}) \quad \text{is a basiz}$ $\begin{array}{c} (\mapsto (0,0,1) \end{array}) \quad \text{on for } \mathbb{R}^3$

Example 8. Let
$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 6 \\ 16 \\ -5 \end{bmatrix}$, and $H = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Note that

 $\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$ and show that $Span\ \overline{\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}} = \overline{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$. Then find a basis for H.

Why is Span
$$\{v_1, v_2, v_3\} = \text{Span} \{v_1, v_2\}$$
?
Span $\{v_1, v_2, 5v_1 + 3v_2\} = \text{Span} \{v_1, v_2\}$

Span $\{v_1, v_2, 5v_1 + 3v_2\} = Span \{v_1, v_2\}$ What is a basis for H? Check lin. Indep. of $v_1, v_2 = they$ aren't scalar multiples of each other, so lin. Indep. So basts for H is $\{v_1, v_2\}$.

The next theorem generalizes the previous example:

Theorem 9 (Spanning set theorem). Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set in V, and let $H = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ $\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}.$

- 1. If one of the vectors in S say \mathbf{v}_k is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- 2. If $H \neq \{0\}$, some subset of S is a basis for H.

We know how to find vectors that span the null space of a matrix A (compute reduced echelon form, write the basic variables in terms of free variables, and decompose as a linear combination of vectors using the free variables as weights); in fact, the method produces a linearly independent set when Nul A contains nonzero vectors, and in that case, a basis for Nul A. Now we describe how to find a basis for the column space, through two examples:

Example 10. Find a basis for Col B, where
$$B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_5] = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
. See that $b_2 = 4b_1$

$$b_4 = 2 \cdot b_1 - 1 \cdot b_3$$
See that $\{b_1, b_3, b_5\}$ is a lin. indep set $\{b_1, b_3, b_5\}$ is a lin. indep set $\{b_2, b_3, b_5\}$ is a lin. indep set $\{b_3, b_4\}$ basis also $\{b_2, b_3, b_5\}$ is a lin. indep set $\{b_3, b_4\}$ basis

Example 11. It can be shown that the matrix
$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 2 \end{bmatrix}$$

is row equivalent to the matrix B in the previous example. Find a basis for Col A.

B:
$$b_2 = 4b_1$$
 $b_4 = 2b_1 - b_3$

$$a_4 = 2a_1 - a_3$$

$$b_4 = 2a_1 - a_3$$

$$a_4 = 2a_1 - a_3$$

$$a_5 = 4a_1$$

$$a_4 = 2a_1 - a_3$$

$$a_5 = 4a_1$$

$$a_4 = 2a_1 - a_3$$

These two examples illustrate the following useful fact:

Theorem 12. The pivot columns of a matrix A form a basis for Col A.

$$R^{2}$$
: basis is $=\{(1,0),(0,1)\}$

1 another is $=\{(2,0),(0,2)\}$ (302)

 $=\{(1,1),(0,1)\}$ (10)

 $=\frac{x}{a}(2,0)+\frac{y}{2}(0,2)$ but $=\frac{x}{a}(2,0)+\frac{y}{2}(0,2)$ not abasts for R^{2}