Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Coordinate systems 1
2 The dimension of a vector space 3

1 Coordinate systems

Lay-Lay-McDonald $\S 4.4$ pp. 218 - 224

An important reason for specifying a basis \mathcal{B} for a vector space V is to impose a "coordinate system" on V. This section will show that if \mathcal{B} contain n vectors, then the coordinate system will make V act like \mathbb{R}^{n}.

Theorem 1 (Unique representation). Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each $\mathbf{x} \in V$, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that $\mathbf{x}=$ $c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$.

Definition 2. Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for V and $\mathbf{x} \in V$. The coordinates of \mathbf{x} relative to \mathcal{B} (" \mathcal{B}-coordinates of \mathbf{x} ") are the weights c_{1}, \ldots, c_{n} such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.

If c_{1}, \ldots, c_{n} are the \mathcal{B}-coordinates of \mathbf{x}, then the vector in \mathbb{R}^{n} given by $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$ is the coordinate vector x relative to \mathcal{B}. The mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the coordinate mapping determined by \mathcal{B}.

Example 3. Consider a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ for \mathbb{R}^{2} where $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Suppose $\mathbf{x} \in \mathbb{R}^{2}$ has the coordinate vector $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$. Find \mathbf{x}. span $\mathbb{R}_{\mathcal{J}}$ and in. indep.

$$
\begin{aligned}
x & =-2 b_{1}+3 b_{2} \\
& =-2\binom{1}{0}+3\binom{1}{2}=\binom{-2}{0}+\binom{3}{6}=\binom{1}{6} .
\end{aligned}
$$

Example 4. The entries in the vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 6\end{array}\right]$ are the coordinates of \mathbf{x} relative to the

Example 5. Let $\mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathbf{x}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find the coordinate

 equation

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\cdots+c_{n} \mathbf{b}_{n}
$$

is equivalent to

$$
\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} .
$$

$$
\begin{gathered}
\text { e.g. } B=\left\{\binom{2}{1},\binom{-1}{1}\right\} \\
P_{B}=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right) \\
\frac{4}{5}=x=\left(\begin{array}{ll}
2 & -1 \\
5
\end{array}\right)[x]_{B}
\end{gathered}
$$

We call $P_{\mathcal{B}}$ the change of coordinates matrix from \mathcal{B} to the standard basis in $\mathbb{R}^{n} . \Rightarrow \overline{\bar{x}]_{\mathcal{B}}}=\left(\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right)^{-1}\binom{1}{5}$
Since the columns of $P_{\mathcal{B}}$ form a basis for \mathbb{R}^{n}, we have that $P_{\mathcal{B}}$ is invertible, and we have

$$
P_{\mathcal{B}}^{-1} \mathrm{x}=[\mathrm{x}]_{\mathcal{B}},
$$

which tells us that $P_{\mathcal{B}}^{-1}$ gives the coordinate mapping $\mathrm{x} \mapsto[\mathrm{x}]_{\mathcal{B}}$!
Theorem 6. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \cdots \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^{n}.

The above coordinate mapping is an important example of an isomorphism from V to \mathbb{R}^{n}. In general, a one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from V onto W.
Example 7. Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ be the standard basis of the space P_{3} of polynomials. A
typical element \mathbf{p} of P_{3} has the form $\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$. We have that $[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$.
The coordinate mapping $\mathbf{p} \mapsto[\mathbf{p}]_{\mathcal{B}}$ is an isomorphism from P_{3} to \mathbb{R}^{4}, and all vector space operations in P_{3} correspond to operations in \mathbb{R}^{4}.
Example 8. Let $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \mathbf{x}=\left[\begin{array}{c}3 \\ 12 \\ 7\end{array}\right]$ and $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Then \mathcal{B} is a basis for $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Determine if $\mathbf{x} \in H$ and if it is, find the coordinate vector of \mathbf{x} relative to \mathcal{B}.

Are there c_{1}, c_{2} s.t. $c_{1} v_{1}+c_{2} v_{2}=x$?

$$
c_{1}\left(\begin{array}{l}
3 \\
6 \\
2
\end{array}\right)+c_{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
7
\end{array}\right)
$$

Check if system is consistent:

$$
\begin{aligned}
& {[x]_{B}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=c_{1} b_{1}+c_{2} b_{2}=c_{1}\binom{2}{1}+c_{2}\binom{-1}{1}=\binom{4}{5} \text {. So want to solve } \text { for } c_{1}, c_{2} \text {. }} \\
& \left(\begin{array}{ccc}
2 & -1 & 4 \\
1 & 1 & 5
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 5 \\
2 & -1 & 4
\end{array}\right) \stackrel{-2 \cdot \# 1+世 2}{\sim}\left(\begin{array}{ccc}
1 & 1 & 5 \\
0 & -3 & -6
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 5 \\
0 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2
\end{array}\right) \\
& \Rightarrow \begin{array}{l}
c_{1}=3 \\
c_{2}=2
\end{array} \Rightarrow[x]_{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] . \quad \text { Cain: } 3\binom{2}{1}+2\binom{-1}{1}=4\binom{1}{0}+5\binom{0}{1} .
\end{aligned}
$$

2 The dimension of a vector space

Lay-Lay-McDonald $\S 4.5$ pp. 227 - 230

Earlier, we saw that a vector space V with a basis \mathcal{B} containing n vectors is isomorphic to \mathbb{R}^{n}. Today we show that this number n is an intrinsic property (the dimension) of the space V that does not depend on the choice of basis.

Theorem 9. If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.

The previous theorem implies that if a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then each linearly independent set in V has no more than n vectors.

Theorem 10. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Proof. Let \mathcal{B}_{1} be a basis of n vectors, and \mathcal{B}_{2} be any other basis of V. Since \mathcal{B}_{1} is a basis and \mathcal{B}_{2} is linearly independent, \mathcal{B}_{2} has no more than n vectors, by the previous theorem. Also, since \mathcal{B}_{2} is a basis and \mathcal{B}_{1} is linearly independent, \mathcal{B}_{2} has at least n vectors. Thus, \mathcal{B}_{2} consists of exactly n vectors.

This leads us to the following definition:
Definition 11. If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Example 12. What is $\operatorname{dim} \mathbb{R}^{n}$? What about $\operatorname{dim} P_{2}$, where P_{2} denotes the vector space of polynomials of degree at most 2?

$$
\begin{aligned}
& \operatorname{dim} \mathbb{R}^{n}=n \\
& \left.\operatorname{dim} P_{2}=3 \quad \text { (recall: basis for } P_{2} \text { is }\left\{1, t, t^{2}\right\}\right)
\end{aligned}
$$

Example 13. Find the dimension of the subspace

$$
\text { at most } 4 \text { : } \begin{aligned}
H=\left\{\left[\begin{array}{c}
a-3 b+6 c \\
5 a+4 d \\
b-2 c-d \\
5 d
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\} & =\left(\begin{array}{c}
a \\
5 a \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
-3 b \\
0 \\
b \\
0
\end{array}\right)+\left(\begin{array}{c}
b c \\
0 \\
-2 c \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
4 d \\
-d \\
5 d
\end{array}\right) \\
& =a\binom{1}{5}
\end{aligned}
$$

Now check if these 3 vectors are lin independent
(they are) $\Rightarrow \operatorname{dim} H=3$.

The next theorem serves as a natural counterpart to the Spanning Set Theorem:
Theorem 14. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finitedimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.

When the dimension of a vector space (or subspace) is known, the search for a basis is simplified by the next theorem. It says that if a set has the right number of elements, then one has only to show that the set is linearly independent or that it spans the space. This is important in a number of applications, where linear independence is easier to check than spanning.

Theorem 15 (The basis theorem). Let V be a p-dimensional vector space, $p \geq 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Now we apply the notion of dimension to two familiar vector subspaces: the null space and column space. We have the following:

Theorem 16. Let A be an $m \times n$ matrix. The dimension of $\operatorname{Nul} A$ is the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$, and the dimension of $\mathrm{Col} A$ is the number of pivot columns in A.

Example 17. Find the dimensions of the null space and the column space of

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

$$
\left(\begin{array}{cccccc}
-3 & 6 & -1 & 1 & -7 & 0 \\
1 & -2 & 2 & 3 & -1 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{array}\right) \sim\left(\begin{array}{cccccc}
1 & -2 & 2 & 3 & -1 & 0 \\
2 & -4 & 5 & 8 & -4 & 0 \\
-3 & 6 & -1 & 1 & -7 & 0
\end{array}\right) \stackrel{-2 \cdot \# 1+42}{\sim}\left(\begin{array}{cccccc}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 5 & 10 & -10 & 0
\end{array}\right)
$$

$$
\leftrightarrow\left(\begin{array}{cccccc}
1 & -2 & 2 & 3 & -1 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\uparrow & x_{2} & \uparrow & x_{4} & x_{5}
\end{array}\right)
$$

$$
2 \text { pivot columns } \rightarrow \operatorname{dim} \operatorname{Col} A=2
$$

$$
3 \text { free vars } \rightarrow \operatorname{dim} N u l A=3
$$

pivot columns

