Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1	Coordinate systems	1
2	The dimension of a vector space	3

1 Coordinate systems

Lay–Lay–McDonald §4.4 pp. 218 – 224

An important reason for specifying a basis \mathcal{B} for a vector space V is to impose a "coordinate system" on V. This section will show that if \mathcal{B} contain n vectors, then the coordinate system will make V act like \mathbb{R}^n .

Theorem 1 (Unique representation). Let $\mathcal{B} = \{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each $\mathbf{x} \in V$, there exists a unique set of scalars c_1, \ldots, c_n such that $\mathbf{x} = c_1\mathbf{b}_1 + \cdots + c_n\mathbf{b}_n$.

Definition 2. Suppose $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is a basis for V and $\mathbf{x} \in V$. The coordinates of \mathbf{x} relative to \mathcal{B} (" \mathcal{B} -coordinates of \mathbf{x} ") are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

If c_1, \ldots, c_n are the \mathcal{B} -coordinates of \mathbf{x} , then the vector in \mathbb{R}^n given by $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ is

the coordinate vector x relative to \mathcal{B} . The mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the coordinate mapping determined by \mathcal{B} .

Example 3. Consider a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ for \mathbb{R}^2 where $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Suppose $\mathbf{x} \in \mathbb{R}^2$ has the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$. Find \mathbf{x} . Span \mathbb{R}^2 and $[\mathbf{n}]_{\mathcal{A}}$ indep. $\mathbf{x} = -2\mathbf{b}_1 + 3\mathbf{b}_2$ $= -2\begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$.

Example 4. The entries in the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ are the coordinates of \mathbf{x} relative to the standard basis $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$, since $\begin{bmatrix} 1 \\ 6 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 6 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1\mathbf{e}_1 + 6\mathbf{e}_2$. 1 $P(\mathbf{t}) = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{t} + \mathbf{a}_2 \mathbf{t}^2$ $(\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2) \leftarrow \mathbf{t}^2 \mathbf{t}^2 \mathbf{t}^2$

Example 5. Let
$$\mathbf{b}_1 = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -1\\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 4\\ 5 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find the coordinate
vector $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} relative to \mathcal{B} .
 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1\\ c_2 \end{bmatrix} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 = \begin{bmatrix} c_1\\ c_1 \end{bmatrix} + c_2 \begin{pmatrix} -1\\ 1 \end{bmatrix} = \begin{pmatrix} 4\\ 5 \end{bmatrix}$. So want to solve
 $\exists \mathbf{b} \in \mathbf{c}_1, \mathbf{c}_2$.
 $\begin{pmatrix} 2 & -1 & 4\\ 1 & 1 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 15\\ 2 & -14 \end{pmatrix} \sim \begin{bmatrix} 2 & +1 & +22\\ 0 & -3 & -4e \end{pmatrix} \xrightarrow{\leftarrow} \begin{bmatrix} 1 & 15\\ 0 & 1 & 2 \end{bmatrix} \sim \begin{pmatrix} 1 & 0 & 3\\ 0 & 1 & 2 \end{pmatrix}$
 $\Rightarrow c_1 = 3$
 $c_2 = 2$ $\Rightarrow \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3\\ 2 \end{bmatrix}$.
 $\begin{bmatrix} clavin \cdot 3 \begin{pmatrix} 2\\ 1 \end{pmatrix} + 2\begin{pmatrix} -1\\ 1 \end{pmatrix} = 4\begin{pmatrix} 1\\ p \end{pmatrix} + 5\begin{pmatrix} 0\\ 1 \end{pmatrix}$.
Suppose we have a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Let $P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n]$. The vector
equation
 $\mathbf{x} = c_1\mathbf{b}_1 + c_2\mathbf{b}_2 + \cdots + c_n\mathbf{b}_n$
is equivalent to
 $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$.
 $\begin{bmatrix} \mathbf{t}\\ \mathbf$

which tells us that $P_{\mathcal{B}}^{-1}$ gives the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$!

Theorem 6. Let $\mathcal{B} = {\mathbf{b}_1, \cdots, \mathbf{b}_n}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

The above coordinate mapping is an important example of an isomorphism from V to \mathbb{R}^n . In general, a one-to-one linear transformation from a vector space V onto a vector space W is called an isomorphism from V onto W.

Example 7. Let $\mathcal{B} = \{1, t, t^2, t^3\}$ be the standard basis of the space P_3 of polynomials. A typical element \mathbf{p} of P_3 has the form $\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$. We have that $[\mathbf{p}]_{\mathcal{B}} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$.

The coordinate mapping $\mathbf{p} \mapsto [\mathbf{p}]_{\mathcal{B}}$ is an isomorphism from P_3 to \mathbb{R}^4 , and all vector space operations in P_3 correspond to operations in \mathbb{R}^4 .

Example 8. Let $\mathbf{v}_1 = \begin{bmatrix} 3\\ 6\\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 3\\ 12\\ 7 \end{bmatrix}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Then \mathcal{B} is a basis for $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Determine if $\mathbf{x} \in H$ and if it is, find the coordinate vector of \mathbf{x} relative to \mathcal{B} . Are there $C_{1,2}c_2$ s.t. $C_1V_1 + C_2V_2 = \mathbf{x}$? $C_1(\mathbf{v}_2) + C_2(\mathbf{v}_1) = \begin{bmatrix} 3\\ 2\\ 2\\ 2\\ 3\\ -1 \end{bmatrix}$ Check if system is consistent: $C_1\begin{pmatrix} 3\\ 2\\ 2\\ 2\\ -1 \end{bmatrix} + \mathbf{v} \sim \begin{pmatrix} 3 - 1 & 3\\ 1 & 0 & 2\\ 2 & 1 \end{bmatrix}$ $\mathcal{P}\begin{pmatrix} 1 & 0 & 2\\ 2 & 1 & 1\\ 3 & -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2\\ 0 & 1 & 3\\ 0 & 0 & 0 \end{pmatrix} \Rightarrow C_1 = 2$ $\mathbf{v}_2 = \mathbf{v} + \mathbf{v} + \mathbf{v} + \mathbf{v} = \begin{bmatrix} 2\\ 3\\ 3 \end{bmatrix} \mathbf{v}$

2 The dimension of a vector space

Lay–Lay–McDonald $\S4.5$ pp. 227-230

Earlier, we saw that a vector space V with a basis \mathcal{B} containing n vectors is isomorphic to \mathbb{R}^n . Today we show that this number n is an intrinsic property (the *dimension*) of the space V that does not depend on the choice of basis.

Theorem 9. If a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$, then any set in V containing more than n vectors must be linearly dependent.

The previous theorem implies that if a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$, then each linearly independent set in V has no more than n vectors.

Theorem 10. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

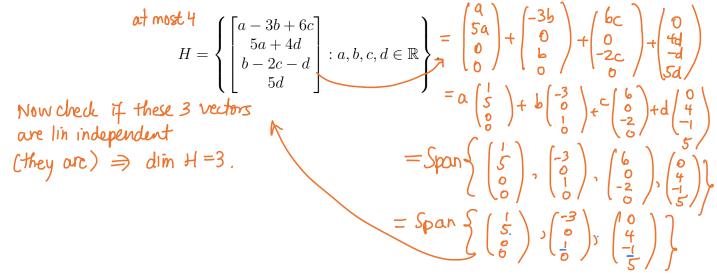
Proof. Let \mathcal{B}_1 be a basis of n vectors, and \mathcal{B}_2 be any other basis of V. Since \mathcal{B}_1 is a basis and \mathcal{B}_2 is linearly independent, \mathcal{B}_2 has no more than n vectors, by the previous theorem. Also, since \mathcal{B}_2 is a basis and \mathcal{B}_1 is linearly independent, \mathcal{B}_2 has at least n vectors. Thus, \mathcal{B}_2 consists of exactly n vectors.

This leads us to the following definition:

Definition 11. If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\dim V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Example 12. What is dim \mathbb{R}^n ? What about dim P_2 , where P_2 denotes the vector space of polynomials of degree at most 2?

Example 13. Find the dimension of the subspace



The next theorem serves as a natural counterpart to the Spanning Set Theorem:

Theorem 14. Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and dim $H \leq \dim V$.

When the dimension of a vector space (or subspace) is known, the search for a basis is simplified by the next theorem. It says that if a set has the right number of elements, then one has only to show that the set is linearly independent or that it spans the space. This is important in a number of applications, where linear independence is easier to check than spanning.

Theorem 15 (The basis theorem). Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Now we apply the notion of dimension to two familiar vector subspaces: the null space and column space. We have the following:

Theorem 16. Let A be an $m \times n$ matrix. The dimension of Nul A is the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$, and the dimension of Col A is the number of pivot columns in A.

Example 17. Find the dimensions of the null space and the column space of