Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Rank 1
2 Change of basis 2

1 Rank

Lay-Lay-McDonald $\S 4.6$ pp. 235-237

If A is an $m \times n$ matrix, each row of A has n entries and so can be identified with a vector in \mathbb{R}^{n}. The set of all linear combinations of the row vectors is called the row space of A and is denoted Row A. Each row has n entries, so Row A is a subspace of \mathbb{R}^{n}. Since the rows of A are identified with the columns of A^{T}, we could equivalently write $\operatorname{Col} A^{T}$ in place of Row A.

Theorem 1. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Now recall this example from the last class:
Example 2. Find the dimensions of the null space and the column space of

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

We define the rank of a matrix A to be the dimension of the column space of A. The following is a nice result about how the rank and the dimension of the null space are related:

Theorem 3. Let A be an $m \times n$ matrix. We have

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n
$$

To summarize, here is a collection of things we've learned over the last few classes and how they relate to invertibility of a matrix:

Theorem 4 (Invertible Matrix Theorem (continued)). Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix:

1. The columns of A form a basis of \mathbb{R}^{n}.
2. $\operatorname{Col} A=\mathbb{R}^{n}$.
3. $\operatorname{dim} \operatorname{Col} A=n$.
4. $\operatorname{rank} A=n$.
5. $\operatorname{Nul} A=\{\mathbf{0}\}$.
6. $\operatorname{dim} \operatorname{Nul} A=0$.

2 Change of basis

Lay-Lay-McDonald $\S 4.7$ pp. 241 - 244

In some applications, a problem is described initially using a basis \mathcal{B}, but the problem is easier to solve by changing \mathcal{B} to a new basis \mathcal{C}. Each vector is assigned a new \mathcal{C}-coordinate vector. In this section, we study how $[\mathbf{x}]_{\mathcal{C}}$ and $[\mathbf{x}]_{\mathcal{B}}$ are related for each $\mathbf{x} \in V$.

Example 5. Consider two bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ for a vector space V, such that $\mathbf{b}_{1}=4 \mathbf{c}_{1}+\mathbf{c}_{2}$ and $\mathbf{b}_{2}=-6 \mathbf{c}_{1}+\mathbf{c}_{2}$. Suppose $\mathbf{x}=3 \mathbf{b}_{1}+\mathbf{b}_{2}$. That is, suppose $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Find $[\mathbf{x}]_{\mathcal{C}}$.

We can generalize the argument in the example above to produce the following theorem:

Theorem 6. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that

$$
[\mathbf{x}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}} .
$$

The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are the \mathcal{C}-coordinate vectors of the vectors in the basis \mathcal{B}. That is,

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{llll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & {\left[\begin{array}{lll}
\left.\mathbf{b}_{2}\right]_{\mathcal{C}} & \cdots & {\left[\mathbf{b}_{n}\right]_{\mathcal{C}}}
\end{array}\right] .}
\end{array}\right.
$$

The matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}. Multiplication by $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ converts \mathcal{B}-coordinates into \mathcal{C}-coordinates. The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are linearly independent because they are the coordinate vectors of the linearly independent set \mathcal{B}, and since $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is square, it is invertible by the Invertible Matrix Theorem. Indeed, we have

$$
(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P})^{-1}[\mathbf{x}]_{\mathcal{C}}=[\mathbf{x}]_{\mathcal{B}}
$$

Thus $(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P})^{-1}$ is the matrix that converts \mathcal{C}-coordinates to \mathcal{B}-coordinates. That is,

$$
(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P})^{-1}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P} .
$$

Now if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and \mathcal{E} is the standard basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ in \mathbb{R}^{n}, then $\left[\mathbf{b}_{1}\right]_{\mathcal{E}}=\mathbf{b}_{1}$ and likewise for the other vectors in the basis. In this case, $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$ is the same as the change-of-coordinates matrix $P_{\mathcal{B}}$ introduced previously, namely,

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

Example 7. Let $\mathbf{b}_{1}=\left[\begin{array}{c}-9 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-5 \\ -1\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{c}1 \\ -4\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}3 \\ -5\end{array}\right]$, and consider the bases for \mathbb{R}^{2} given by $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.

Example 8. Let $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-2 \\ 4\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{c}-7 \\ 9\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}-5 \\ 7\end{array}\right]$, and consider the bases for \mathbb{R}^{2} given by $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$.

1. Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.
2. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
