Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Rank

2 Change of basis 2

1 Rank

Lay-Lay-McDonald §4.6 pp. 235 – 237

If A is an $m \times n$ matrix, each row of A has n entries and so can be identified with a vector in \mathbb{R}^n . The set of all linear combinations of the row vectors is called the row space of A and is denoted Row A. Each row has n entries, so Row A is a subspace of \mathbb{R}^n . Since the rows of A are identified with the columns of A^T , we could equivalently write $\operatorname{Col} A^T$ in place of $\operatorname{Row} A$.

Theorem 1. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Now recall this example from the last class:

Example 2. Find the dimensions of the null space and the column space of

We define the rank of a matrix A to be the dimension of the column space of A. The following is a nice result about how the rank and the dimension of the null space are related:

Theorem 3. Let A be an $m \times n$ matrix. We have

$$\operatorname{rank} A + \dim \operatorname{Nul} A = n.$$

To summarize, here is a collection of things we've learned over the last few classes and how they relate to invertibility of a matrix:

Theorem 4 (Invertible Matrix Theorem (continued)). Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix:

- 1. The columns of A form a basis of \mathbb{R}^n .
- 2. Col $A = \mathbb{R}^n$.
- 3. $\dim \operatorname{Col} A = n$.
- 4. rank A = n.
- 5. Nul $A = \{0\}$.
- 6. $\dim \text{Nul } A = 0$.

2 Change of basis

Lay–Lay–McDonald $\S4.7$ pp. 241-244

In some applications, a problem is described initially using a basis \mathcal{B} , but the problem is easier to solve by changing \mathcal{B} to a new basis \mathcal{C} . Each vector is assigned a new \mathcal{C} -coordinate vector. In this section, we study how $[\mathbf{x}]_{\mathcal{C}}$ and $[\mathbf{x}]_{\mathcal{B}}$ are related for each $\mathbf{x} \in V$.

Example 5. Consider two bases $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ for a vector space V, such that $\mathbf{b}_1 = 4\mathbf{c}_1 + \mathbf{c}_2$ and $\mathbf{b}_2 = -6\mathbf{c}_1 + \mathbf{c}_2$. Suppose $\mathbf{x} = 3\mathbf{b}_1 + \mathbf{b}_2$. That is, suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Find $[\mathbf{x}]_{\mathcal{C}}$.

We can generalize the argument in the example above to produce the following theorem:

Theorem 6. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}}.$$

The columns of $P_{C\leftarrow\mathcal{B}}$ are the C-coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$P_{C \leftarrow \mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \quad [\mathbf{b}_2]_{\mathcal{C}} \quad \cdots \quad [\mathbf{b}_n]_{\mathcal{C}}].$$

The matrix P is called the *change-of-coordinates matrix from* \mathcal{B} *to* \mathcal{C} . Multiplication by P converts \mathcal{B} -coordinates into \mathcal{C} -coordinates. The columns of P are linearly independent because they are the coordinate vectors of the linearly independent set \mathcal{B} , and since P is square, it is invertible by the Invertible Matrix Theorem. Indeed, we have

$$\begin{pmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{pmatrix}^{-1} [\mathbf{x}]_{\mathcal{C}} = [\mathbf{x}]_{\mathcal{B}}.$$

Thus $\left(\begin{array}{c} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{array} \right)^{-1}$ is the matrix that converts \mathcal{C} -coordinates to \mathcal{B} -coordinates. That is,

$$\left(\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \right)^{-1} = \underset{\mathcal{B} \leftarrow \mathcal{C}}{P}.$$

Now if $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and \mathcal{E} is the *standard basis* $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ in \mathbb{R}^n , then $[\mathbf{b}_1]_{\mathcal{E}} = \mathbf{b}_1$ and likewise for the other vectors in the basis. In this case, $P_{\mathcal{B}}$ is the same as the change-of-coordinates matrix $P_{\mathcal{B}}$ introduced previously, namely,

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n].$$

Example 7. Let $\mathbf{b}_1 = \begin{bmatrix} -9\\1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -5\\-1 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} 1\\-4 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 3\\-5 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

Want:
$$p = \begin{bmatrix} b_1 \end{bmatrix}_C \begin{bmatrix} b_2 \end{bmatrix}_C \end{bmatrix}$$

head to compute

$$p^{-1} = \begin{pmatrix} 1 & 3 \\ -4 & -5 \end{pmatrix}^{-1} = \frac{1}{7} \begin{pmatrix} -5 & -3 \\ 4 & 1 \end{pmatrix}$$

Then take
$$p^{-1} \cdot b_1 = \frac{1}{7} \begin{pmatrix} -5 & -3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} -9 \\ 1 & 3 \end{pmatrix} = \begin{bmatrix} b_1 \\ -5 \end{pmatrix}_C \begin{bmatrix} b_2 \\ -1 \\ 3 \end{bmatrix}$$

Want this

$$b_2 = \begin{bmatrix} -5 \\ -1 \\ 3 \end{bmatrix} \begin{bmatrix} b_1 \\ -4 \\ 5 \end{bmatrix} \begin{bmatrix} b_2 \\ -4 \\ 5 \end{bmatrix}$$

Then take
$$p^{-1} \cdot b_1 = \frac{1}{7} \begin{pmatrix} -5 & -3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} -9 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -5 \\ -5 \end{pmatrix} = \begin{bmatrix} b_1 \\ -5 \end{pmatrix}_C \begin{bmatrix} b_2 \\ -5 \end{pmatrix} = \begin{bmatrix} b_1 \\ -5 \end{pmatrix}_C$$

Finally,
$$p^{-1} \cdot b_2 = \frac{1}{7} \begin{pmatrix} -5 & -3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} -5 \\ -1 & 8 \end{pmatrix} = \begin{bmatrix} b_1 \\ -5 \end{pmatrix}_C$$

Finally,
$$p^{-1} \cdot b_2 = \begin{bmatrix} -5 & -3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} -5 & -3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} -5 & -3 \\ 4 & 1 \end{pmatrix} = \begin{bmatrix} b_1 \\ -5 & -3 \end{pmatrix}$$

Example 8. Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, and consider the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$.

1. Find the change-of-coordinates matrix from C to B.

2. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .

Can get this from:
$$\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} \sim \begin{bmatrix} c_4 & c_2 \\ c_4 & c_5 \end{bmatrix} \sim \begin{bmatrix} c_4 & c_4 \\ c_4 & c_5 \end{bmatrix} \sim \begin{bmatrix} c_4 & c_5 \\ c_4 & c_5 \end{bmatrix} = \begin{bmatrix} c_4 & c_5 \\ c_4 & c_5 \end{bmatrix} = \begin{bmatrix} c_4 & c_5 \\ c_4 & c_5 \end{bmatrix} = \begin{bmatrix} c_4 & c_5 \\ c_4 & c_5 \end{bmatrix} = \begin{bmatrix} c_4 & c_5 \\ c_4 & c_5 \end{bmatrix}$$