MA 242 (Linear Algebra) Lecture 16: March 30, 2021 Section C1

Professor Jennifer Balakrishnan, jbala@bu.edu
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1 Rank

Lay—Lay-McDonald §4.6 pp. 235 — 237

If A is an m x n matrix, each row of A has n entries and so can be identified with a vector
in R™. The set of all linear combinations of the row vectors is called the row space of A and
is denoted Row A. Each row has n entries, so Row A is a subspace of R". Since the rows

of A are identified with the columns of AT, we could equivalently write Col AT in place of
Row A.

Theorem 1. If two matrices A and B are row equivalent, then their row spaces are the
same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as
well as for that of B.

Now recall this example from the last class:

Example 2. Find the dimensions of the null space and the column space of
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We define the rank of a matrix A to be the dimension of the column space of A. The
following is a nice result about how the rank and the dimension of the null space are related:
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Theorem 3. Let A be an m X n matriz. We have
rank A 4+ dim Nul A = n.

To summarize, here is a collection of things we've learned over the last few classes and
how they relate to invertibility of a matrix:

Theorem 4 (Invertible Matrix Theorem (continued)). Let A be an n x n matriz. Then the
following statements are each equivalent to the statement that A is an invertible matriz:

1. The columns of A form a basis of R".
2. ColA =R".

dim Col A = n.

rank A = n.

Nul A = {0}.

S v e

dim Nul A = 0.

2 Change of basis

Lay-Lay-McDonald §4.7 pp. 241 — 244

In some applications, a problem is described initially using a basis B, but the problem is
easier to solve by changing B to a new basis C. Each vector is assigned a new C-coordinate
vector. In this section, we study howg X]C)and are related for each x € V.

Example 5. Consider two bases B = {by,by} and C = {cy,ca} for a vector space V', such
that by = 4c1 + ¢y and by = —6¢1 + c2. Suppose x = 3by +by. That is, suppose [x|g = E] )

Find [x]c.
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We can generalize the argument in the example above to produce the following theorem:
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Theorem 6. Let B = {by,...,b,} and C = {cy,...,c,} be bases of a vector space V.. Then
there is a unique n X n matric CPB such that
(_

[xle = P [x]s.

The columns of CPB are the C-coordinate vectors of the vectors in the basis B. That is,
“—
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The matrix P is called the change-of-coordinates matrixz from B to C. Multiplication by
P converts B- coordlnates into C-coordinates. The columns of P are linearly independent
because they are the coordinate vectors of the linearly 1ndependent set B, and since P is

square, it is invertible by the Invertible Matrix Theorem. Indeed, we have

(CEB) ) Ixle = [x]s

Thus (cPB) is the matrix that converts C-coordinates to B-coordinates. That is,
%
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Now if B = {by,...,b,} and & is the standard basis {ey,...,e,} in R", then [by]¢ = by
and likewise for the other vectors in the basis. In this case, 5PB is the same as the change-
(—

of-coordinates matrix Pg introduced previously, namely,

Ps=1[b; by --- by,

Example 7. Let by = {_19} ,by = [:ﬂ ,C1 = [ 14} ,Cy = {_35} , and consider the bases

for R? given by B = {by, by} and C = {cy,cs}. Find the change-of-coordinates matriz from
B toC. .\
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37 4 7
for R? given by B = {by,by} and C = {cy,ca}.

Example 8. Let by = [_1 } b, = [_2} ,Cp = [_q ,Cy = [_5} , and consider the bases

1. Find the change-of-coordinates matriz from C to B.
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2. Find the change-of-coordinates matrix from B to C.
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