Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Eigenvectors and eigenvalues 1
2 The characteristic equation 3

1 Eigenvectors and eigenvalues

Lay-Lay-McDonald $\S 5.1$ pp. 268 - 273

Although a transformation $\mathbf{x} \mapsto A \mathbf{x}$ may transform vectors in a number of directions, it often happens that there are special vectors on which the action of A is simple. Our discussion in this chapter will be about square matrices.

Example 1. Let $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right], \mathbf{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Compute $A \mathbf{u}$ and $A \mathbf{v}$.

$$
A u=\left(\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right)\binom{-1}{1}=\binom{-5}{-1} ; A v=\left(\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right)\binom{2}{1}=\binom{4}{2}=2\binom{2}{1}
$$

Today we will study equations of the form $A \mathbf{x}=\lambda \mathbf{x}$ where special vectors are transformed by A into scalar multiples of themselves.

Definition 2. An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A \mathbf{x}=\lambda \mathbf{x}$. Such $a \mathbf{x}$ is called an eigenvector corresponding to λ.

Example 3. Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right], \mathbf{u}=\left[\begin{array}{c}6 \\ -5\end{array}\right], \mathbf{v}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$. Are \mathbf{u} and \mathbf{v} eigenvectors of A ? $A u=\lambda u$ or $A v=\lambda v$
$A u=\left(\begin{array}{cc}16 \\ 5 & 2\end{array}\right)\binom{6}{-5}=\binom{-24}{20}=-4\binom{6}{-5} \Rightarrow u$ is an eigenvector of A (witheigenvalue - 4) $A V=\binom{16}{52}\binom{3}{-2}=\binom{-9}{11} \neq \lambda V \Rightarrow V$ is not an eigenvector of A.

Example 4. Show that 7 is an eigenvalue of the matrix A in the previous example, and find the corresponding eigenvectors. $A x=7 x$
all Solutions look < $\binom{16}{52}\binom{x_{1}}{x_{2}}=7\binom{x_{1}}{x_{2}} \Rightarrow \begin{array}{r}x_{1}+6 x_{2}=7 x_{1} \\ 5 x_{1}+2 x_{2}=7 x_{2}\end{array} \Rightarrow \begin{array}{r}-6 x_{1}+6 x_{2}=0 \\ 5 x_{1}-5 x_{2}=0\end{array}$ like $\binom{x_{1}}{x_{1}}=x_{1}\binom{1}{1}$

Remark 5. Note that while row reduction can be used to find eigenvectors, it cannot be used to find eigenvalues. An echelon form of a matrix A usually does not display the eigenvalues of A.

Note that λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$
\begin{equation*}
(A-\lambda I) \mathbf{x}=\mathbf{0} \Leftrightarrow A x-\lambda I_{x}=0 \tag{1}
\end{equation*}
$$

has a nontrivial solution. The set of all solutions of (1) is just the null space of the matrix $A-\lambda I$. So this is a subspace of \mathbb{R}^{n} and is called the eigenspace of A corresponding to λ.
Example 6. Let $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$. An eigenvalue of A is 2. Find a basis for the corre-
sponding eigenspace. sponding eigenspace.

$$
\left.\begin{array}{l}
A-2 I=\left(\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right)-\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \Rightarrow\left(\begin{array}{cccc}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
2 & -1 & 6 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\uparrow \\
\text { 个个 }
\end{array}\right] \begin{gathered}
\text { prot } \begin{array}{c}
\text { free } \\
\begin{array}{c}
2 x_{1}-x_{2}+6 x_{3}=0 \\
x_{1}=\frac{x_{2}}{2}-3 x_{3}
\end{array} \Rightarrow\left(\begin{array}{c}
\frac{x_{2}}{2}-3 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{2}\left(\begin{array}{l}
1 / 2 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right) \Rightarrow \begin{array}{c}
\text { basis is } \\
\text { given }
\end{array}\left\{\left(\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
\end{array} .
\end{gathered}
$$

Here is one situation where it's easy to compute eigenvalues:
Theorem 7. The eigenvalues of a triangular matrix are the entries on its main diagonal.
Proof. For simplicity, consider the 3×3 case. If A is upper-triangular, then $A-\lambda I$ has the

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right] .
\end{aligned}
$$

We have that λ is an eigenvalue of A if and only if the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution, i.e., if and only if the equation has a free variable. We see that $(A-\lambda I) \mathbf{x}=\mathbf{0}$ has a free variable if and only if at least one of the entries on the diagonal of $A-\lambda I$ is zero. This happens if and only if λ is one of the entries a_{11}, a_{22}, a_{33} in A.
We leave the case of lower-triangular matrices as an exercise.
Example 8. Let $A=\left[\begin{array}{ccc}3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4\end{array}\right]$. What are the eigenvalues of A ? What are the eigenvalues of B ?

$$
\text { eigenvalues of A: } 3,0,2
$$

eigenvalues of $B: 1,4$

What does it mean for a matrix A to have an eigenvalue of 0 ? This happens if and only if the equation $A \mathbf{x}=0 \mathbf{x}$ has a nontrivial solution. But this is equivalent to $A \mathbf{x}=\mathbf{0}$, which has a nontrivial solution if and only if A is not invertible. Thus 0 is an eigenvalue of A if and only if A is not invertible.

Here is an important result about eigenvectors that we will record for later use:
Theorem 9. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent.

2 The characteristic equation

Lay-Lay-McDonald $\S 5.2$ pp. $276-278$	

Now we practice finding eigenvalues:
Example 10. Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$. Want to solve for $\lambda\left[\begin{array}{c}\text { wat- } \\ (A-\lambda I) x=0 \text { has nontrivid }\end{array}\right.$ By Invertible Matrix Tum means that $(A-\lambda I)$ is not invertible $\Rightarrow \operatorname{det}(A-\lambda I)=0$. So $\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}2-\lambda & 3 \\ 3 & -6-\lambda\end{array}\right|=(2-\lambda)(-6-\lambda)-9$

$$
=-12+6 \lambda-2 \lambda+\lambda^{2}-9
$$

$$
=\lambda^{2}+4 \lambda-21=(\lambda-3)(\lambda+7) \Rightarrow \lambda=3 \text { or }-7 .
$$

We have the following important result: a scalar λ is an eigenvalue of an $n \times 2$ eigenvalues matrix A if and only if λ satisfies the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Example 11. Find the characteristic equation of $A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$.
$\operatorname{det}(A-\lambda I)=0$
$=\left|\begin{array}{ccc}5-\lambda & * & \\ 0 & 5-\lambda & 1-\lambda\end{array}\right|=(5-\lambda)^{2}(3-\lambda)(1-\lambda)=0$.
(dec of upper triang wat matrix is product of diagonal entries)
It can be shown that if A is an $n \times n$ matrix, then $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n called the characteristic polynomial of A.

Example 12. The characteristic polynomial of a 6×6 matrix is $\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}$. Find the eigenvalues and their multiplicities.

$$
\begin{aligned}
& \lambda^{6}-4 \lambda^{5}-12 \lambda^{4}=0 \\
& \lambda^{4}\left(\lambda^{2}-4 \lambda-12\right)=0
\end{aligned}
$$

The next theorem presents one use of the characteristic polynomial and is helpful for iterative methods that approximate eigenvalues. We begin with some terminology. If A and B are $n \times n$ matrices, then we say that A is similar to B if there is an invertible matrix P such that

$$
P^{-1} A P=B
$$

Writing $Q:=P^{-1}$, we also have

$$
Q^{-1} B Q=A
$$

So B is also similar to A, and we say that A and B are similar.
Theorem 13. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues with the same multiplicities.

Proof. If $B=P^{-1} A P$ then

$$
\begin{aligned}
& =P^{-1} A P \text { then } \\
& B-\underline{\lambda}(I)=P^{-1} A P-\underline{\lambda P^{-1} P}=P^{-1}(A P-\lambda P)=P^{-1}(A-\lambda I) \underline{P} . \\
& \qquad \begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right) \\
& =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P) .
\end{aligned}
\end{aligned}
$$

Since $\underline{\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)}=\underline{\operatorname{det}\left(P^{-1} P\right)}=\underline{\operatorname{det}(I)}=1$, we see that $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-$ $\lambda I)$.

Remark 14. Note that matrices that have the same eigenvalues might not be similar: for instance, the matrices $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ have the same eigenvalues but are not similar.

Remark 15. Similarity is not the same as row equivalence. (If A is row equivalent to B, then $B=E A$ for some invertible matrix E.) Row operations on a matrix usually change its eigenvalues.

We can use eigenvalues and eigenvectors to analyze the evolution of a dynamical system.

Example 16. Let $A=\left[\begin{array}{ll}.95 & .03 \\ .05 & .97\end{array}\right]$. Analyze the long-term behavior of the dynamical system defined by $\mathbf{x}_{k+1}=A \mathbf{x}_{k}(k=0,1,2, \ldots)$ with $\mathbf{x}_{0}=\left[\begin{array}{l}.6 \\ .4\end{array}\right] \cdot x_{1}=A x_{0}$
First step: compute eigenvalues of A. $x_{2}=A x_{1} \Rightarrow x_{2}=A\left(A x_{0}\right)=A^{2} x_{0}$
Idea! If $A v=\lambda v$, then can calculate

$$
\begin{aligned}
\lim _{k \rightarrow \infty} A^{k} v=\lim _{k \rightarrow \infty} \lambda^{k} v . & x_{k}=A^{k} x_{0} \\
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
0.95-\lambda & 0.03 \\
0.05 & 0.97-\lambda
\end{array}\right| & =(0.95-\lambda)(0.97-\lambda)-0.03(0.05) \\
& =\lambda^{2}-1.92 \lambda+0.92=(\lambda-1)(\lambda-0.92) \Rightarrow \lambda=1,0.92 .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\begin{array}{l}
\text { For each eigenvalue, find eigenvectors }
\end{array} \\
\left.\begin{array}{cc}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right) v_{1}=\mid v_{1}
\end{array} \quad\left(\begin{array}{cc}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right) v_{2}=0.92 v_{2}, \lambda_{2}\right) \quad\left(\begin{array}{cc}
0.03 & 0.03 \\
0.05 & 0.05
\end{array}\right) \Rightarrow v_{2}=\binom{1}{-1}
$$

Now write $x_{0}=a v_{1}+b v_{2}$ (since we understand how A transforms v_{1}, v_{2},

$$
\begin{aligned}
&\binom{0.6}{0.4}=a\binom{3}{5}+b\binom{1}{-1} \text { but } A x_{0} \text { is more difficult to directly analyze) } \\
& \Rightarrow \quad\left(\begin{array}{cc}
3 & 1 \\
5 & -1
\end{array}\right)^{-1} \cdot\binom{0.6}{0.4}=\frac{1}{-8} \cdot\left(\begin{array}{cc}
-1 & -1 \\
-5 & 3
\end{array}\right)\binom{0.6}{0.4}=\frac{-1}{8}\binom{-1}{-1.8} \\
&=\binom{0.125}{0.225}
\end{aligned}
$$

So $\quad x_{0}=0.125 v_{1}+0.225 v_{2}$

$$
\begin{aligned}
& \Rightarrow x_{1}=A x_{0}=A\left(0.125 v_{1}+0.225 v_{2}\right) \\
&=0.125 A \overline{A v_{1}}+0.225 A v_{2} \\
&=0.125 \lambda_{1} v_{1}+0.225 \lambda_{2} v_{2} \\
& \Rightarrow x_{2}=A x_{1}=A\left(0.125 \lambda_{1} v_{1}+0.225 \lambda_{2} v_{2}\right) \\
&=0.125 \lambda_{1} A v_{1}+0.225 \lambda_{2} A v_{2}=0.125 \lambda_{1}^{2} v_{1}+0.225 \lambda_{2}^{2} v_{2} \\
& \vdots x_{k}=0.125 \lambda_{1}^{k} v_{1}+0.225 \lambda_{2}^{k} v_{2} \\
& x_{k}=0.125 v_{1}+0.225(0.92)^{k} v_{2} \\
& \lim _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty}\left(0.125 v_{1}+0.225(0.92)^{k} v_{2}\right)=0.125 v_{1} .
\end{aligned}
$$

