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1 Eigenvectors and eigenvalues

Lay—Lay-McDonald §5.1 pp. 268 — 273

Although a transformation x — Ax may transform vectors in a number of directions, it often
happens that there are special vectors on which the action of A is simple. Our discussion in
this chapter will be about square matrices.

Example 1. Let A = E’ _02} ,u = [_11} ,V = [ﬂ . Compute Au and Av.
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Today we will study equations of the form Ax = Ax where special vectors are transformed
by A into scalar multiples of themselves.

Definition 2. An eigenvector of an n xn matriz A is a nonzero vector X such that Ax = \x
for some scalar . A scalar X\ is called an eigenvalue of A if there is a nontrivial solution x
of Ax = Ax. Such a x is called an eigenvector corresponding to \.

Example 3. Let A = [1 6] ,

5 9 =[6],V:[3].Ar6uandv eigenvectors of A?
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Example 4. Show that 7 is an eigenvalue of the matriz A in the previous example, and find
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the corresponding ezgenvectors
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Remark 5. Note that while row reduction can be used to find eigenvectors, it cannot be used

to find eigenvalues. An echelon form of a matriz A usually does not display the eigenvalues
of A.

Note that A is an eigenvalue of an n x n matrix A if and only if the equation

(A-M)x=0 £ Ax-2Tx=0 (1)

= PAx=2X
has a nontrivial solution. The set of all solutions of (1) is just the null space of the matrix
A — M. So this is a subspace of R™ and is called the eigenspace of A corresponding to A.
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Example 6. Let A= |2 1 6/|. An eigenvalue of A is 2. Find a basis for the corre-
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Here is one situation where it’s easy to compute eigenvalues:

Theorem 7. The eigenvalues of a triangular matriz are the entries on its main diagonal.
—

Proof. For simplicity, co
form

the 3 x 3 case. If A is upper-triangular, then A — AI has the
W W
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have that A is an eigenvalue of A if and only if the equation (A—AI)x = 0 has a nontrivial

solution, i.e., if and only if the equation has a free variable. We see that (A — AI)x = 0 has
a free variable if and only if at least one of the entries on the diagonal of A — A is zero.
This happens if and only if A is one of the entries a1, ass, ags in A.

We leave the case of lower-triangular matrices as an exercise. O]
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Example 8. Let A = @ 6 | and B = —@2@ 0|. What are the eigenvalues of A?
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What are the eigenvalues of B.@
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What does it mean for a matrix A to have an eigenvalue of 0?7 This happens if and only
if the equation Ax = 0x has a nontrivial solution. But this is equivalent to Ax = 0, which

has a nontrivial solution if and only if A is not invertible. Thus 0 is an eigenvalue
and only if A is not invertible.

Here is an important result about eigenvectors that we will record for later use:

Theorem 9. Ifvy,...,v, are eigenvectors that correspond to distinct eigenvalues \q
of an n x n matriz A, then the set {vy,...,v,} is linearly independent.

2 The characteristic equation

of A if

A

Lay-Lay-McDonald §5.2 pp. 276 — 278

Now we practice finding eigenvalues:

Example 10. Find the eigenvalues of A = B —36} wont 4o Solve for A
(A-2T)x =0 as o
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We have the following important result: a scalar \ is an eigenvalue of an n )Qem
A if and only if X satisfies the characteristic equation

det(A — \I) =0.
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Example 11. Find the characteristic equation of A = 0 0 5 4
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det (A-»I)=0
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It can be shown that if A is an n x n matrix, then det(A — AI) is a polynomial of degree

n called the characteristic polynomial of A.
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Example 12. The characteristic polynomial of a 6 x 6 matriz is N5 — 4\> — 12\*. Find the
eigenvalues and their multiplicities.

Moy o123 =0
* (X\*gp—12) =0
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The next theorem presents one use of the characteristic polynomial and is helpful for
iterative methods that approximate eigenvalues. We begin with some terminology. If A and
B are n x n matrices, then we say that A is similar to B if there is an invertible matrix P
such that

P lAP=B.

Writing @ := P~ !, we also have
Q7 'BQ = A.

So B is also similar to A, and we say that A and B are similar.

Theorem 13. If n xn matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues with the same multiplicities.

Proof. If B = P7'AP then

B—)X)=P 'AP — NP 'P= P~

P—

YAP — \P) = P~

(A= XI)P.

—

We compute

det(B — M) = det(P~'(A — X\I)P)
= det(P" ) det(A — \I) %).

Since det(P~!)det(P) = det(P~'P) = det(I) = 1, we see that det(B — \) = det(A —
A). 0

Remark 14. Note that matrices that have the same eigenvalues might not be similar: for
2

0 2] have the same eigenvalues but are not similar.

instance, the matrices [(2) ;] and [

Remark 15. Similarity is not the same as row equivalence. (If A is row equivalent to B,
then B = EA for some invertible matriz E.) Row operations on a matriz usually change its
eigenvalues.

We can use eigenvalues and eigenvectors to analyze the evolution of a dynamical system.
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Example 16. Let A = [3; 8?] . Analyze the long-term behavior of the dynamical system

defined by x11 = Axy, (k=0,1,2,...) with xg = [ } )(l - A o
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