Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Diagonalization 1

1 Diagonalization

Lay-Lay-McDonald §5.3 pp. 283-288
Diagonal matrices make some computations much easier, as the following example illustrates:
Example 1. Let $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$. What is D^{2} ? What is D^{k} ?

If $A=P D P^{-1}$ for some invertible P and diagonal D, then A^{k} is also easy to compute.
Example 2. Let $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$. Find a formula for A^{k}, given that $A=P D P^{-1}$, where $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right], D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.

A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix: that is, if $A=P D P^{-1}$ for some invertible matrix P and some diagonal matrix D. The next result gives us a characterization of diagonalizable matrices and how to construct a factorization.

Theorem 3 (Diagonalization). An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbb{R}^{n}. We call such a basis an eigenvector basis of \mathbb{R}^{n}.

Example 4. Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$, if possible.

Example 5. Diagonalize the matrix $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$, if possible.

The following theorem provides a sufficient condition for a matrix to be diagonalizable:
Theorem 6. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
However, it is not necessary for an $n \times n$ matrix to have n distinct eigenvalues in order to be diagonalizable!

Here is how we handle matrices whose eigenvalues are not distinct:
Theorem 7. Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{p}$.

1. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
2. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens iff a) the characteristic polynomial factors completely into linear factors and b) the dimension of the eigenspace for each λ_{k} equals the multiplicity of λ_{k}.
3. If A is diagonalizable and \mathcal{B}_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}.

Example 8. Diagonalize the matrix $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$, if possible.

