Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Inner product, length, and orthogonality 1
2 Orthogonal sets 3

1 Inner product, length, and orthogonality

Lay-Lay-McDonald $\S 6.1$ pp. $332-338$

Today we explore length, distance, and perpendicularity for vectors in \mathbb{R}^{n}. All three ideas are defined in terms of the inner product of two vectors.

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then we can think of them as $n \times 1$ matrices. The transpose \mathbf{u}^{T} is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^{T} \mathbf{v}$ is a 1×1 matrix, which is a scalar. This scalar is called the inner product of \mathbf{u} and \mathbf{v} and is often written as $\mathbf{u} \cdot \mathbf{v}$ and called the dot product. If $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$, then the inner product of \mathbf{u} and \mathbf{v} is

$$
\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

Example 1. Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -5 \\ -1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}3 \\ 2 \\ -3\end{array}\right]$. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{u}$.

Here are properties of the inner product:
Theorem 2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^{n}, and let c be a scalar. Then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

Definition 3. Let \mathbf{v} be a vector in \mathbb{R}^{n} with entries v_{1}, \ldots, v_{n}. The length (or norm) of \mathbf{v} is the nonnegative scalar $\|\mathbf{v}\|$ defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
$$

and $\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}$.
Note that if $\mathbf{v} \in \mathbb{R}^{2}$, then $\|v\|$ coincides with the standard notion of the length of the line segment from the origin to \mathbf{v} by the Pythagorean Theorem.

For any scalar c, we have

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\| .
$$

A vector whose length is 1 is called a unit vector. If we divide a nonzero vector \mathbf{v} by its length, we obtain a unit vector \mathbf{u} because the length of \mathbf{u} is $\left(\frac{1}{\|\mathbf{v}\|}\right)\|\mathbf{v}\|$. The process of creating \mathbf{u} from \mathbf{v} is called normalizing \mathbf{v} and we say that \mathbf{u} is in the same direction as \mathbf{v}.
Example 4. Let $\mathbf{v}=\left[\begin{array}{c}1 \\ -2 \\ 2 \\ 0\end{array}\right]$. Find a unit vector \mathbf{u} in the same direction as \mathbf{v}.

Example 5. Let W be the subspace of \mathbb{R}^{2} spanned by $\mathbf{x}=\left[\begin{array}{l}\frac{2}{3} \\ 1\end{array}\right]$. Find a unit vector \mathbf{z} that is a basis for W.

Recall that if a, b are real numbers, the distance on the number line between a and b is given by the absolute value $|a-b|$. This definition of distance in \mathbb{R} has a direct analogue in \mathbb{R}^{n}.

Definition 6. For \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v}, written as $\operatorname{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u}-\mathbf{v}$. That is, $\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|$.

Example 7. Compute the distance between the vectors $\mathbf{u}=\left[\begin{array}{l}7 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

Definition 8. Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ are orthogonal if $\mathbf{u} \cdot \mathbf{v}=\mathbf{0}$.
Note that the zero vector is orthogonal to every vector in \mathbb{R}^{n}.
Here is a useful result about orthogonality:

Theorem 9 (Pythagorean Theorem). Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, then \mathbf{z} is said to be orthogonal to W. The set of all vectors \mathbf{z} that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}.

Let W be a subspace of \mathbb{R}^{n}. Here are two facts about orthogonal complements.

1. A vector \mathbf{x} is in W^{\perp} iff \mathbf{x} is orthogonal to every vector in a set that spans W.
2. W^{\perp} is a subspace of \mathbb{R}^{n}.

Here is another relationship between the null space and column space of a matrix.
Theorem 10. Let A be an $m \times n$ matrix. The orthogonal complement of the column space of A is the null space of $A^{T}:(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$.

2 Orthogonal sets

Lay-Lay-McDonald $\S 6.2$ pp. $340-342$

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal.
Example 11. Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal set, where $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \mathbf{u}_{3}=$ $\left[\begin{array}{c}-\frac{1}{2} \\ -2 \\ \frac{7}{2}\end{array}\right]$.

Theorem 12. If $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is linearly independent and hence is a basis for the subspace spanned by S.

Proof. If $\mathbf{0}=c_{1} \mathbf{u}_{1}+\cdots c_{p} \mathbf{u}_{p}$ for some scalars c_{1}, \ldots, c_{p}, then

$$
\begin{aligned}
0 & =\mathbf{0} \cdot \mathbf{u}_{1}=\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} \\
& =\left(c_{1} \mathbf{u}_{1}\right) \cdot \mathbf{u}_{1}+\left(c_{2} \mathbf{u}_{2}\right) \cdot \mathbf{u}_{1}+\cdots+\left(c_{p} \mathbf{u}_{p}\right) \cdot \mathbf{u}_{1} \\
& =c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)+c_{2}\left(\mathbf{u}_{2} \cdot \mathbf{u}_{1}\right)+\cdots+c_{p}\left(\mathbf{u}_{p} \cdot \mathbf{u}_{1}\right) \\
& =c_{1}\left(\mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)
\end{aligned}
$$

because \mathbf{u}_{1} is orthogonal to $\mathbf{u}_{2}, \ldots, \mathbf{u}_{p}$. Since \mathbf{u}_{1} is nonzero, $\mathbf{u}_{1} \cdot \mathbf{u}_{1}$ is not zero, and so $c_{1}=0$. Similarly, c_{2}, \ldots, c_{p} must be zero. Thus S is linearly independent.

Definition 13. An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.

The next theorem tells us why an orthogonal basis is nicer than other bases. The weights in a linear combination can be computed easily.

Theorem 14. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each \mathbf{y} in W, the weights in the linear combination

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p}
$$

are given by

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}, \quad j=1, \ldots, p
$$

Example 15. The set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ in the previous example is an orthogonal basis for \mathbb{R}^{3}. Express the vector $\mathbf{y}=\left[\begin{array}{c}6 \\ 1 \\ -8\end{array}\right]$ as a linear combination of the vectors in S.

Given a nonzero vector \mathbf{u} in \mathbb{R}^{n}, we consider the problem of decomposing a vector $\mathbf{y} \in \mathbb{R}^{n}$ into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u}. That is, we want to write

$$
\begin{equation*}
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z} \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{y}}=\alpha \mathbf{u}$ for some scalar α and \mathbf{z} is orthogonal to \mathbf{u}. Equation (1) is satisfied under these constraints if and only if $\alpha=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ and

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}
$$

The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto \mathbf{u} and the vector \mathbf{z} is called the component of \mathbf{y} orthogonal to \mathbf{u}.

Example 16. Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right], \mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u}. Then write \mathbf{y} as the sum of two orthogonal vectors, one in $\operatorname{Span}\{\mathbf{u}\}$ and one orthogonal to \mathbf{u}.

