Professor Jennifer Balakrishnan, *jbala@bu.edu*

What is on today

1	Inner product, length, and orthogonality	1
2	Orthogonal sets	3

Inner product, length, and orthogonality 1

Lay–Lay–McDonald §6.1 pp. 332 – 338

Today we explore length, distance, and perpendicularity for vectors in \mathbb{R}^n . All three ideas are defined in terms of the *inner product* of two vectors.

If **u** and **v** are vectors in \mathbb{R}^n , then we can think of them as $n \times 1$ matrices. The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix, which is a scalar. This scalar is called the *inner product* of \mathbf{u} and \mathbf{v} and is often written as $\mathbf{u} \cdot \mathbf{v}$ and called the *dot*

product. If $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, then the inner product of \mathbf{u} and \mathbf{v} is

$$\begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \underbrace{u_1 v_1 + \cdots + u_n v_n}_{n}.$$

Example 1. Let $\mathbf{u} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{u}$. $\mathbf{u} \cdot \mathbf{v} = (\mathbf{v})(\mathbf{3}) + (-\mathbf{s})(\mathbf{z}) + (-\mathbf{1})(-\mathbf{3}) = (\mathbf{0} - \mathbf{10} + \mathbf{3} = -\mathbf{1})$ $V \cdot u = (3(2) + (2(-5)) + (-3)(-4)) = 6 - 10 + 3 = -1$

Here are properties of the inner product:

Theorem 2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n , and let c be a scalar. Then

1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ $(if u = \hat{0}, then u \cdot u$ 2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ 3. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$ 4. $\mathbf{u} \cdot \mathbf{u} > 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$. $= 0.0 + 0.0 + \dots + 0.0 = 0.$ Suppose u:u = 0 $(u_1, u_2, ..., u_n)$ $u_1^2 + u_2^2 + - - + u_n^2 = 0 \Rightarrow u_1^2 = 0$ for all i)

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}, \qquad \forall = (v_1, \dots, v_n)$$

and $||\mathbf{v}||^2 = \mathbf{v} \cdot \mathbf{v}$.

Note that if $\mathbf{v} \in \mathbb{R}^2$, then ||v|| coincides with the standard notion of the length of the line segment from the origin to \mathbf{v} by the Pythagorean Theorem.

For any scalar c, we have

$$||c\mathbf{v}|| = |c|||\mathbf{v}||.$$

A vector whose length is 1 is called a *unit vector*. If we divide a nonzero vector \mathbf{v} by its length, we obtain a unit vector \mathbf{u} because the length of \mathbf{u} is $\left(\frac{1}{||\mathbf{v}||}\right)||\mathbf{v}||$. The process of creating \mathbf{u} from \mathbf{v} is called *normalizing* \mathbf{v} and we say that \mathbf{u} is in the same direction as \mathbf{v} .

Example 4. Let
$$\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix}$$
. Find a unit vector \mathbf{u} in the same direction as \mathbf{v} .
 $\mathbf{v} = \sqrt{1 + 4 + 4} = 3$

 $u = \frac{\sqrt{\left\|V\right\|}}{\left\|V\right\|} = \frac{1}{3} \cdot \begin{pmatrix}1\\-2\\2\\0\end{pmatrix} = \begin{pmatrix}2/3\\2/3\\2/3\end{pmatrix}$ Example 5. Let W be the subspace of \mathbb{R}^2 spanned by $\mathbf{x} = \begin{bmatrix}\frac{2}{3}\\1\end{bmatrix}$. Find a unit vector \mathbf{z} that is a basis for W.

$$\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\left(\frac{2}{3}\right)^2 + \mathbf{i}^2} = \sqrt{\frac{4}{4} + \mathbf{i}} = \frac{\sqrt{13}}{3}; \quad \mathcal{Z} = \frac{1}{\|\mathbf{x}\|} = \frac{3}{\sqrt{13}} \begin{pmatrix} -\frac{1}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3}\sqrt{15} \\ 3/\sqrt{15} \end{pmatrix}.$$

Recall that if a, b are real numbers, the distance on the number line between a and b is given by the absolute value |a - b|. This definition of distance in \mathbb{R} has a direct analogue in \mathbb{R}^n .

Definition 6. For \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the distance between \mathbf{u} and \mathbf{v} , written as dist (\mathbf{u}, \mathbf{v}) , is the length of the vector $\mathbf{u} - \mathbf{v}$. That is, dist $(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$.

Example 7. Compute the distance between the vectors $\mathbf{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. $\| \mathbf{u} - \mathbf{v} \| = \| \begin{bmatrix} 4 \\ -1 \end{bmatrix} \| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$.

Definition 8. *Two vectors* $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Note that the zero vector is orthogonal to every vector in \mathbb{R}^n .

Here is a useful result about orthogonality:

Theorem 9 (Pythagorean Theorem). Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be orthogonal to W. The set of all vectors \mathbf{z} that are orthogonal to W is called the *orthogonal* complement of W and is denoted by W^{\perp} .

Let W be a subspace of \mathbb{R}^n . Here are two facts about orthogonal complements.

1. A vector **x** is in W^{\perp} iff **x** is orthogonal to every vector in a set that spans W.

2. W^{\perp} is a subspace of \mathbb{R}^n .

Here is another relationship between the null space and column space of a matrix.

Theorem 10. Let A be an $m \times n$ matrix. The orthogonal complement of the column space of A is the null space of A^T : $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$.

2 Orthogonal sets

Lay-Lay-McDonald §6.2 pp. 340 - 342

A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an *orthogonal set* if each pair of distinct vectors from the set is orthogonal.

Example 11. Show that $\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\}$ is an orthogonal set, where $\mathbf{u}_{1} = \begin{bmatrix} 3\\1\\1 \end{bmatrix}$, $\mathbf{u}_{2} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$, $\mathbf{u}_{3} = \begin{bmatrix} -\frac{1}{2}\\-2\\1 \end{bmatrix}$. $\begin{cases} \begin{bmatrix} -\frac{1}{2}\\-2\\1 \end{bmatrix} \\ \cdot \end{bmatrix}$ $\begin{cases} U_{1} \cdot U_{2} = 0 \\ U_{1} \cdot U_{3} = 0 \\ U_{2} \cdot U_{3} = 0 \\ U_{2} \cdot U_{3} = 0 \end{cases}$ $\begin{cases} U_{1} \cdot U_{2} = 3(-1) + 1(2) + 1((1) = -3 + 2 + 1 = 0 \\ U_{2} \cdot U_{3} = \frac{1}{2} - 4 + \frac{1}{2} = 0 \end{cases}$ $\begin{cases} U_{1} \cdot U_{2} = -3 + 2 + \frac{1}{2} = 0 \\ U_{2} \cdot U_{3} = -\frac{1}{2} - 4 + \frac{1}{2} = 0 \end{cases}$

Theorem 12. If $S = {\mathbf{u}_1, \ldots, \mathbf{u}_p}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Proof. If $\mathbf{0} = c_1 \mathbf{u}_1 + \cdots + c_p \mathbf{u}_p$ for some scalars c_1, \ldots, c_p , then

$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$

= $(c_1 \mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2 \mathbf{u}_2) \cdot \mathbf{u}_1 + \dots + (c_p \mathbf{u}_p) \cdot \mathbf{u}_1$
= $c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$
= $c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \ldots, \mathbf{u}_p$. Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero, and so $c_1 = 0$. Repeat Similarly, c_2, \ldots, c_p must be zero. Thus S is linearly independent. **Definition 13.** An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

The next theorem tells us why an orthogonal basis is nicer than other bases. The weights in a linear combination can be computed easily.

Theorem 14. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

 $\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}, \quad j = 1, \dots, p.$$

Example 15. The set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ in the previous example is an orthogonal basis for \mathbb{R}^3 .

Express the vector
$$\mathbf{y} = \begin{bmatrix} 1 \\ -8 \end{bmatrix}$$
 as a linear combination of the vectors in S.
 $u_1 = \begin{pmatrix} 3 \\ 1 \\ \end{pmatrix}, u_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} -1/2 \\ -2 \\ 3/2 \end{pmatrix}, y = \begin{pmatrix} b \\ 1 \\ -8 \end{pmatrix}$
 $G_3 = \underbrace{y \cdot u_3}{u_3 \cdot u_3} = \frac{-3 - 2 - 28}{4 + 4 + \frac{49}{4}} = \frac{-33}{46/4}$
 $c_1 = \underbrace{y \cdot u_1}{u_1 \cdot u_1} = \underbrace{18 + 1 - 8}_{q + 1 + 1} = \underbrace{11}_{(1} = 1 \quad 3 \quad 6_2 = \underbrace{y \cdot u_2}{u_2 \cdot u_2} = \frac{-(e + 2 - 8)}{1 + 4 + 1} = \frac{-12}{6} = -2$
 $u_2 \cdot u_2 = \frac{-12}{1 + 4 + 1}$

Given a nonzero vector \mathbf{u} in \mathbb{R}^n , we consider the problem of decomposing a vector $\mathbf{y} \in \mathbb{R}^n$ into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u} . That is, we want to write

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}, \tag{1}$$

where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is orthogonal to \mathbf{u} . Equation (1) is satisfied under these constraints if and only if $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ and

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

The vector $\hat{\mathbf{y}}$ is called the *orthogonal projection of* \mathbf{y} *onto* \mathbf{u} and the vector \mathbf{z} is called the *component of* \mathbf{y} *orthogonal to* \mathbf{u} .

Example 16. Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in $Span\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} .

$$\hat{y} = \underbrace{4:4}_{U:U} u = \frac{7 \cdot 4 + l_{0} \cdot 2}{l_{0} + 4} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \frac{40}{20} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} \in \text{Span} \{ u \}$$

$$\begin{pmatrix} 7 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} + \frac{2}{2} & \text{by construction} \\ \begin{pmatrix} 7 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} + \frac{2}{2} & \text{by construction} \\ \neq & \text{z is orthog. to } u \\ \begin{pmatrix} 7 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} + \frac{2}{2} & \text{z is orthog. to } u \\ \begin{pmatrix} 7 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \end{pmatrix} \\ \neq & \text{z is this } \perp \neq (\frac{4}{2}) \\ \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 2 & 4 \\ \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 2 & 4 \\ \begin{pmatrix} 7 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \end{pmatrix} \\ \neq & \text{z is this } \perp \neq (\frac{4}{2}) \\ \text{Span} \{ \begin{pmatrix} 4 \\ 2 \end{pmatrix} \} - \frac{4}{4} & 4 \end{pmatrix} = 2$$