Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Orthogonal sets 1
2 Orthogonal projections 3

1 Orthogonal sets

Lay-Lay-McDonald $\S 6.2$ pp. $344-346$

A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent, by a theorem we saw in the previous class.

The simplest example of an orthonormal set is the standard basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ for \mathbb{R}^{n}. Here is another example:
Example 1. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}, where $\mathbf{v}_{1}=\left[\begin{array}{l}3 / \sqrt{11} \\ 1 / \sqrt{11} \\ 1 / \sqrt{11}\end{array}\right], \mathbf{v}_{2}=$ $\left[\begin{array}{c}-1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-1 / \sqrt{66} \\ -4 / \sqrt{66} \\ 7 / \sqrt{66}\end{array}\right]$.

Matrices whose columns form an orthonormal set are important in applications and in algorithms for matrix computations. Here are some properties of these matrices.

Theorem 2. An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$.
Proof. To simplify notation, we suppose that U has 3 columns, each a vector in \mathbb{R}^{m}. The
proof of the general case is essentially the same. Let $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]$ and compute

$$
\begin{aligned}
U^{T} U & =\left[\begin{array}{l}
\mathbf{u}_{1}^{T} \\
\mathbf{u}_{2}^{T} \\
\mathbf{u}_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{u}_{1}^{T} \mathbf{u}_{1} & \mathbf{u}_{1}^{T} \mathbf{u}_{2} & \mathbf{u}_{1}^{T} \mathbf{u}_{3} \\
\mathbf{u}_{2}^{T} \mathbf{u}_{1} & \mathbf{u}_{2}^{T} \mathbf{u}_{2} & \mathbf{u}_{2}^{T} \mathbf{u}_{3} \\
\mathbf{u}_{3}^{T} \mathbf{u}_{1} & \mathbf{u}_{3}^{T} \mathbf{u}_{2} & \mathbf{u}_{3}^{T} \mathbf{u}_{3}
\end{array}\right] .
\end{aligned}
$$

The entries in the matrix are inner products. The columns of U are orthogonal iff

$$
\mathbf{u}_{1}^{T} \mathbf{u}_{2}=\mathbf{u}_{2}^{T} \mathbf{u}_{1}=0, \quad \mathbf{u}_{1}^{T} \mathbf{u}_{3}=\mathbf{u}_{3}^{T} \mathbf{u}_{1}=0, \quad \mathbf{u}_{2}^{T} \mathbf{u}_{3}=\mathbf{u}_{3}^{T} \mathbf{u}_{2}=0
$$

The columns of U all have unit length iff

$$
\mathbf{u}_{1}^{T} \mathbf{u}_{1}=1, \quad \mathbf{u}_{2}^{T} \mathbf{u}_{2}=1, \quad \mathbf{u}_{3}^{T} \mathbf{u}_{3}=1
$$

Theorem 3. Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^{n}. Then

1. $\|U \mathbf{x}\|=\|\mathbf{x}\|$
2. $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$
3. $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ iff $\mathbf{x} \cdot \mathbf{y}=0$.

The first and third properties say that the linear mapping $\mathbf{x} \mapsto U \mathbf{x}$ preserves lengths and orthogonality.

Example 4. Let $U=\left[\begin{array}{cc}1 / \sqrt{2} & 2 / 3 \\ 1 / \sqrt{2} & -2 / 3 \\ 0 & 1 / 3\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{c}\sqrt{2} \\ 3\end{array}\right]$. Verify that U has orthonormal columns and that $\|U \mathbf{x}\|=\|\mathbf{x}\|$.

The previous two theorems are particularly useful when applied to square matrices. An orthogonal matrix is a square invertible matrix U such that $U^{-1}=U^{T}$. (Such a matrix has orthonormal columns.) It is easy to see that any square matrix with orthonormal columns is an orthogonal matrix. Such a matrix must have orthonormal rows as well!

Example 5. Is the matrix $U=\left[\begin{array}{ccc}3 / \sqrt{11} & -1 \sqrt{6} & -1 / \sqrt{66} \\ 1 / \sqrt{11} & 2 / \sqrt{6} & -4 / \sqrt{66} \\ 1 / \sqrt{11} & 1 / \sqrt{6} & 7 / \sqrt{66}\end{array}\right]$ orthogonal?

Example 6. Let U be an $n \times n$ matrix with orthonormal columns. Show that $\operatorname{det} U= \pm 1$.

2 Orthogonal projections

Lay-Lay-McDonald $\S 6.3$ pp. 349 - 353

Example 7. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{5}\right\}$ be an orthogonal basis for \mathbb{R}^{5} and let $\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{5} \mathbf{u}_{5}$. Consider the subspace $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and write \mathbf{y} as the sum of a vector $\mathbf{z}_{1} \in W$ and a vector $\mathbf{z}_{2} \in W^{\perp}$.

The next theorem shows that the decomposition $y=\mathbf{z}_{1}+\mathbf{z}_{2}$ in the previous example can be computed without having an orthogonal basis for \mathbb{R}^{n} : it's enough to have an orthogonal basis for W.

Theorem 8 (Orthogonal Decomposition Theorem). Let W be a subspace of \mathbb{R}^{n}. Then each $\mathbf{y} \in \mathbb{R}^{n}$ can be written uniquely in the form $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$, where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$. In fact, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis of W, then

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}
$$

and $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$.
The vector $\hat{\mathbf{y}}$ in the theorem is called the orthogonal projection of \mathbf{y} onto W and often is written as

$$
\hat{\mathbf{y}}=\operatorname{proj}_{W} \mathbf{y}
$$

Example 9. Let $\mathbf{u}_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

Now we study some properties of orthogonal projections. First, note that if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis of a subspace W and $\mathbf{y} \in W$, then $\operatorname{proj}_{W} \mathbf{y}=\mathbf{y}$. This also follows from the next theorem:

Theorem 10 (Best Approximation Theorem). Let W be a subspace of \mathbb{R}^{n}, let \mathbf{y} be any vector in \mathbb{R}^{n} and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}, in the sense that $\|\mathbf{y}-\hat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\|$ for all $\mathbf{v} \in W$ distinct from $\hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ is called the best approximation to \mathbf{y} by elements of W.
Example 11. Let $\mathbf{u}_{1}=\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Find the closest point in W to \mathbf{y}. (This closest point gives us the distance from \mathbf{y} to W.)

The last theorem today shows how the formula for $\operatorname{proj}_{W} \mathbf{y}$ is simplified when the basis for W is an orthonormal set.
Theorem 12. If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
$$

If $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$ then

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y}
$$

for all $\mathbf{y} \in \mathbb{R}^{n}$.

