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Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 Orthogonal sets 1

2 Orthogonal projections 3

1 Orthogonal sets

Lay—Lay-McDonald §6.2 pp. 344 — 346

A set {uy,...,u,} is an orthonormal set if it is an orthogonal set of unit vectors. If W is
the subspace spanned by such a set, then {uy,...,u,} is an orthonormal basis for W, since
the set is automatically linearly independent, by a theorem we saw in the previous class.

The simplest example of an orthonormal set is the standard basis {ey,...,e,} for R
Here is another example:
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algorithms for matrix computations. Here are some properties of these matrices. OI__ R3

Theorem 2. An m x n matriz U has orthonormal columns if and only if UTU = 1.

Proof. To simplify notation, we suppose that U has 3 columns, each a vector in R™. The
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proof of the general case is essentially the same. Let U = [u; us wus] and compute

[ul m
UTU = UCQF [111 Us 113] é" Ui elR
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[uTu; ulu, uluy
= |ulu; ulu, uluy
ulu; uluy, ulug

The entries in the matrix are inner products. The columns of U are orthogonal iff
wuw=uiu; =0, uluz=ulu; =0, uluz=ulu,=0.

The columns of U all have unit length iff
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Theorem 3. Let U be an m X n matriz with orthonormal columns, and let x and y be in
R™. Then
1 |Ux]] = [Ix]]

2. (Ux)-(Uy)=x-y
3. (Ux) - (Uy)=0iffx-y=0.

The first and third properties say that the linear mapping x — Ux preserves lengths and
orthogonality. Vi Ya,
I\

]

1/vV2 2/3
1/vV2 —2/3
0 1/3

columns and that ||Ux|| = ||x]|.

Example 4. Let U = and X = {ﬂ Verify that U has orthonormal
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The previous two theorems are particularly useful when applied to square matrices. An
orthogonal matriz is a square invertible matrix U such that U~! = UT. (Such a matrix has
orthonormal columns.) It is easy to see that any square matrix with orthonormal columns
is an orthogonal matrix. Such a matrix must have orthonormal rows as well!
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Example 6. Let U be an n x n matriz with orthonormal columns. Show that det U = =£1.
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Lay—Lay-McDonald §6.3 pp. 349 — 353

Example 7. Let {uy,...,us} be an orthogonal basis for R® and let y = ciuy + - -+ + csus.
Consider the subspace W = Span{uy,uz} and write 'y as the sum of a vector zy € W and a
vector zo € W,
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Theorem 8 (Orthogonal Decomposition Theorem). Let W be a subspace of R™. Then each 1174

y € R™ can be written uniquely in the formy =y + z, where y € W and z € W+. In fact,
if {uy,...,u,} is any orthogonal basis of W, then
. ‘u ‘u
y = y 1 ul + oo o _|_ y p up
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andz=y —y.

The vector y in the theorem is called the orthogonal projection of y onto W and often is
written as

Y = pProjy y.

3
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Example 9. Let uy = | 5 |,us = [ 1|, andy = [2|. Show that {uj,us} is an
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Now we study some properties of orthogonal projections. First, note that it {u;, .. i}

is an orthogonal basis of a subspace W and y € W, then proj,;; y = y. This also follows
from the next theorem:

Theorem 10 (Best Approximation Theorem). Let W be a subspace of R", let y be any
vector in R™ and let y be the orthogonal projection of y onto W. Then 'y is the closest point
in W toy, in the sense that ||y — y|| < ||y — v|| for all v.€ W distinct from y.

The vector y is called the best approximation to'y by elements of W.
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Example 11. Letu; = | 5 | ,us= | 1 |,y = |2|, and let W = Span{uy,uy}. Find the
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closest point in W to'y. (This closest point gives us the distance from'y to W.)
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The last theorem today shows how the formula for projy, y is simplified when the basis
for W is an orthonormal set.

Theorem 12. If {uy,...,u,} is an orthonormal basis for a subspace W of R™, then
projyy y = (y - un)ur + (y - wz)ua + - + (y - wp)u,.

IfU=[u wuy --- upl then
projywy = UU"y
for all y € R™.
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