1

3

Professor Jennifer Balakrishnan, *jbala@bu.edu*

What is on today

1 Orthogona	l sets
-------------	--------

2 **Orthogonal projections**

Orthogonal sets 1

Lay–Lay–McDonald §6.2 pp. 344 – 346

A set $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an orthonormal set if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an *orthonormal basis* for W, since the set is automatically linearly independent, by a theorem we saw in the previous class.

The simplest example of an orthonormal set is the standard basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ for \mathbb{R}^n . Here is another example:

Example 1. Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal basis of \mathbb{R}^3 , where $\mathbf{v}_1 = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1/\sqrt{66} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$. Check orthonormal = check pairwise orthogonal & each vector has norm by the pairwise of the p unit vectors? orthogonal? $V_1 \cdot V_2 = \frac{1}{V_{66}} (-3 + 2 + 1) = 0 /$ $\begin{aligned} \|V_1\| &= \sqrt{V_1 \cdot V_1} = \sqrt{\frac{1}{11} \left(3^2 + 1^2 + 1^2 \right)} = \sqrt{1 = 1} \\ \|V_2\| &= \sqrt{V_2 \cdot V_2} = \sqrt{\frac{1}{6} \left(1 + 4 + 1 \right)} = 1 \end{aligned}$ $\begin{aligned} \|V_3\| &= \sqrt{V_6 \cdot V_3} = \sqrt{\frac{1}{66} \left(1 + 16 + 49 \right)} = 1 \end{aligned}$ $V_1 \cdot V_3 = \frac{1}{\sqrt{6}(6)} \cdot \frac{1}{\sqrt{11}} \left(-3 -4 + 7 \right) = 0 \int$ $V_2 \cdot V_3 = \frac{1}{\sqrt{6}} \cdot \frac{1}{\sqrt{6}} (1 - 8 + 7) = 0$ Matrices whose columns form an orthonormal set are important in apprecisions and in basis

Theorem 2. An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

Proof. To simplify notation, we suppose that U has 3 columns, each a vector in \mathbb{R}^m . The

proof of the general case is essentially the same. Let $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$ and compute

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{bmatrix} \longleftarrow \mathbf{U}_{i} \in \mathbb{R}^{m}$$
$$= \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \mathbf{u}_{1}^{T}\mathbf{u}_{2} & \mathbf{u}_{1}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{2}^{T}\mathbf{u}_{1} & \mathbf{u}_{2}^{T}\mathbf{u}_{2} & \mathbf{u}_{2}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{3}^{T}\mathbf{u}_{1} & \mathbf{u}_{3}^{T}\mathbf{u}_{2} & \mathbf{u}_{3}^{T}\mathbf{u}_{3} \end{bmatrix}.$$

The entries in the matrix are inner products. The columns of U are orthogonal iff

$$\mathbf{u}_1^T \mathbf{u}_2 = \mathbf{u}_2^T \mathbf{u}_1 = 0, \quad \mathbf{u}_1^T \mathbf{u}_3 = \mathbf{u}_3^T \mathbf{u}_1 = 0, \quad \mathbf{u}_2^T \mathbf{u}_3 = \mathbf{u}_3^T \mathbf{u}_2 = 0.$$

The columns of U all have unit length iff

$$\mathbf{u}_{1}^{T}\mathbf{u}_{1} = 1, \quad \mathbf{u}_{2}^{T}\mathbf{u}_{2} = 1, \quad \mathbf{u}_{3}^{T}\mathbf{u}_{3} = 1.$$

$$// \qquad // \qquad // \qquad // \qquad // \qquad // \qquad // \qquad U_{1} \cdot \mathbf{u}_{1} \quad \mathbf{u}_{2} \cdot \mathbf{u}_{2} \qquad \square$$

Theorem 3. Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^n . Then

- $1. ||U\mathbf{x}|| = ||\mathbf{x}||$
- 2. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$

3.
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$$
 iff $\mathbf{x} \cdot \mathbf{y} = 0$.

The first and third properties say that the linear mapping $\mathbf{x} \mapsto U\mathbf{x}$ preserves lengths and orthogonality.

Example 4. Let
$$U = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$. Verify that U has orthonormal columns and that $||U\mathbf{x}|| = ||\mathbf{x}||$.
orthonormal columns: $[\nabla_1, \nabla_2] = \frac{1}{\sqrt{2}} \cdot \frac{1}{3} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{3} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_1|| = \sqrt{\frac{2}{5}} \cdot \frac{1}{5} \left(2 - 2 + 0\right) = 0 \checkmark$
 $||\nabla_2|| = \sqrt{\frac{4}{5}} \left(4 + 4 + 1\right) = 1 \checkmark$
 $||\nabla_2|| = \sqrt{\frac{4}{5}} \left(4 + 4 + 1\right) = 1 \checkmark$
 $||\nabla_2|| = \sqrt{\frac{4}{5}} \left(4 + 4 + 1\right) = 1 \checkmark$
 $||\nabla_2|| = \sqrt{\frac{4}{5}} \left(4 + 4 + 1\right) = 1 \checkmark$

The previous two theorems are particularly useful when applied to square matrices. An *orthogonal matrix* is a square invertible matrix U such that $U^{-1} = U^T$. (Such a matrix has orthonormal columns.) It is easy to see that any square matrix with orthonormal columns is an orthogonal matrix. Such a matrix must have orthonormal *rows* as well!

Example 5. Is the matrix
$$U = \begin{bmatrix} 3/\sqrt{11} & -1\sqrt{6} & -1/\sqrt{66} \\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66} \\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}$$
 orthogonal?
any square matrix with orthonormal columns is an orthogonal matrix
 \Rightarrow from Ex. 1, we saw that these vectors formed an orthonormal basis
of \mathbb{R}^3
 \Rightarrow so the matrix is orthogonal.
Example 6. Let U be an $n \times n$ matrix with orthonormal columns. Show that det $U = \pm 1$.
We have $U^T U = I$ since U has orthonormal columns.
det $(U^T U) = det(I) = 1$
det $(U^T U) = 1$
det $(U^T U)$

det (A)

d

Example 7. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_5\}$ be an orthogonal basis for \mathbb{R}^5 and let $\mathbf{y} = c_1\mathbf{u}_1 + \cdots + c_5\mathbf{u}_5$. Consider the subspace $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ and write \mathbf{y} as the sum of a vector $\mathbf{z}_1 \in W$ and a vector $\mathbf{z}_2 \in W^{\perp}$.

$$y = \frac{c_1 u_1 + c_2 u_2}{z_1'} + \frac{c_3 u_3 + c_4 u_4 + c_5 u_5}{z_2'}$$

 $lef = c_1 u_1 + c_2 u_2$ Check that zz EW+? Show zz is I to U, yuz:

Z3 · U1 = (C3U3 + C4U4 + C5U5)·U1 = C3 U3· 44 - C4 U4 + C5 05·41 = 0

 $z_1 \cdot u_2 = (c_3 u_3 + c_4 u_4 + c_4 u_5) \cdot u_2 = c_3 (u_3 + u_4) + c_4 (u_4 + u_5) + c_4 (u_5 + u_2) = 0$ The next theorem shows that the decomposition $y = z_1 + z_2$ in the previous example can So ZI, be computed without having an orthogonal basis for \mathbb{R}^n : it's enough to have an orthogonal Zz how basis for W. the reant

Theorem 8 (Orthogonal Decomposition Theorem). Let W be a subspace of \mathbb{R}^n . Then each $\mathbf{y} \in \mathbb{R}^n$ can be written uniquely in the form $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$. In fact, if $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = rac{\mathbf{y}\cdot\mathbf{u}_1}{\mathbf{u}_1\cdot\mathbf{u}_1}\mathbf{u}_1 + \dots + rac{\mathbf{y}\cdot\mathbf{u}_p}{\mathbf{u}_p\cdot\mathbf{u}_p}\mathbf{u}_p$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ in the theorem is called the *orthogonal projection of* \mathbf{y} *onto* W and often is written as

$$\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}.$$

Example 9. Let
$$\mathbf{u}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W .
(a) $\mathbf{u}_1 \cdot \mathbf{u}_2 = -\mathbf{u} + \mathbf{s} - \mathbf{l} = 0$
(b) $\mathbf{u}_1 \cdot \mathbf{u}_2 = -\mathbf{u} + \mathbf{s} - \mathbf{l} = 0$
(c) $\mathbf{u}_1 \cdot \mathbf{u}_2 = -\mathbf{u} + \mathbf{s} - \mathbf{l} = 0$
(c) $\mathbf{u}_1 \cdot \mathbf{u}_2 = -\mathbf{u} + \mathbf{s} - \mathbf{l} = 0$
(c) $\mathbf{u}_1 \cdot \mathbf{u}_2 = -\mathbf{u} + \mathbf{s} - \mathbf{l} = 0$
(c) $\mathbf{u}_1 \cdot \mathbf{u}_2$ are orthogonal to \mathbf{u}_2 .
(c) $\mathbf{u}_1 \cdot \mathbf{u}_2$ are orthogonal to \mathbf{u}_2 .
(c) $\mathbf{u}_1 \cdot \mathbf{u}_1$ $\mathbf{u}_1 + \frac{\mathbf{u}_2 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}$ \mathbf{u}_2
(c) $\mathbf{u}_1 \cdot \mathbf{u}_1$ $\mathbf{u}_1 + \frac{\mathbf{u}_2 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}$ \mathbf{u}_2
(c) $\mathbf{u}_1 \cdot \mathbf{u}_1$ $\mathbf{u}_1 + \frac{\mathbf{u}_2 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}$ \mathbf{u}_2
(c) $\mathbf{u}_1 \cdot \mathbf{u}_1$ $\mathbf{u}_1 + \frac{\mathbf{u}_2 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}$ \mathbf{u}_2 $\mathbf{u$

Now we study some properties of orthogonal projections. First, note that if $\{\mathbf{u}_1, \ldots, \mathbf{w}_p\}$ is an orthogonal basis of a subspace W and $\mathbf{y} \in W$, then $\operatorname{proj}_W \mathbf{y} = \mathbf{y}$. This also follows from the next theorem:

Theorem 10 (Best Approximation Theorem). Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n and let $\hat{\mathbf{y}}$ be the orthogonal projection of y onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to y, in the sense that $||\mathbf{y} - \hat{\mathbf{y}}|| < ||\mathbf{y} - \mathbf{v}||$ for all $\mathbf{v} \in W$ distinct from $\hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ is called the *best approximation to* \mathbf{y} *by elements of* W.

Example 11. Let $\mathbf{u}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$, and let $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Find the

closest point in W to \mathbf{y} . (This closest point gives us the distance from \mathbf{y} to W.)

The closest point in W to y is given by $\hat{y} = \underbrace{y \cdot u_1}_{u_1 \cdot u_1} \underbrace{u_1 + \underbrace{y \cdot u_2}_{u_2 \cdot u_2} \underbrace{u_2}_{u_2 \cdot u_2}$ This was computed in Example 9: $\hat{y} = \begin{pmatrix} -2/5 \\ \frac{2}{1/5} \end{pmatrix}.$

The last theorem today shows how the formula for $\operatorname{proj}_W \mathbf{y}$ is simplified when the basis for W is an orthonormal set.

Theorem 12. If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2 + \dots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p.$$

If $U = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_p]$ then

 $\operatorname{proj}_W \mathbf{y} = UU^T \mathbf{y}$

for all $\mathbf{y} \in \mathbb{R}^n$.

R