Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 The Gram-Schmidt process

1

1 The Gram-Schmidt process

The Gram-Schmidt algorithm produces an orthogonal basis for any nonzero subspace of \mathbb{R}^n .

Theorem 1 (Gram-Schmidt Orthogonalization). Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{x}_1 \\ \mathbf{v}_2 &= \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \\ \mathbf{v}_3 &= \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 \\ &\vdots \\ \mathbf{v}_p &= \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_p \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \dots - \dots \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}. \end{aligned}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W. In addition $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\} = \mathrm{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ for $1 \leq k \leq p$.

An orthonormal basis is easily constructed from an orthogonal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$: just normalize (rescale) all of the \mathbf{v}_k . When doing these computations, it's easier to normalize the full basis at the end rather than each individual vector as soon as it is found.

Example 2. Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$$
, where $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for W .

Example 3. Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Then $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is linearly independent and is a basis for a subspace W of \mathbb{R}^4 . Construct an orthogonal basis for W .

If an $m \times n$ matrix A has linearly independent columns $\mathbf{x}_1, \dots, \mathbf{x}_n$, then applying Gram-Schmidt (with normalizations) to $\mathbf{x}_1, \dots, \mathbf{x}_n$ amounts to factoring A, as described in the next theorem. This factorization is widely used in algorithms for solving equations and finding eigenvalues.

Theorem 4 (QR factorization). If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for Col A and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Example 5. Find a QR factorization of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.