What is on today

1 The Gram-Schmidt process

1 The Gram-Schmidt process

Lay–Lay–McDonald §6.4 pp. 356 – 360

The Gram-Schmidt algorithm produces an orthogonal basis for any nonzero subspace of \mathbb{R}^n.

Theorem 1 (Gram-Schmidt Orthogonalization). Given a basis $\{x_1, \ldots, x_p\}$ for a nonzero subspace W of \mathbb{R}^n, define

\[
\begin{align*}
 v_1 &= x_1 \\
v_2 &= x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 \\
v_3 &= x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2 \\
 &\vdots \\
v_p &= x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} v_2 - \cdots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}.
\end{align*}
\]

Then $\{v_1, \ldots, v_p\}$ is an orthogonal basis for W. In addition $\text{Span}\{v_1, \ldots, v_k\} = \text{Span}\{x_1, \ldots, x_k\}$ for $1 \leq k \leq p$.

An orthonormal basis is easily constructed from an orthogonal basis $\{v_1, \ldots, v_p\}$: just normalize (rescale) all of the v_k. When doing these computations, it’s easier to normalize the full basis at the end rather than each individual vector as soon as it is found.

Example 2. Let $W = \text{Span}\{x_1, x_2\}$, where $x_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{v_1, v_2\}$ for W.

Example 3. Let \(x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \). Then \(\{x_1, x_2, x_3\} \) is linearly independent and is a basis for a subspace \(W \) of \(\mathbb{R}^4 \). Construct an orthogonal basis for \(W \).

If an \(m \times n \) matrix \(A \) has linearly independent columns \(x_1, \ldots, x_n \), then applying Gram-Schmidt (with normalizations) to \(x_1, \ldots, x_n \) amounts to factoring \(A \), as described in the next theorem. This factorization is widely used in algorithms for solving equations and finding eigenvalues.

Theorem 4 (QR factorization). If \(A \) is an \(m \times n \) matrix with linearly independent columns, then \(A \) can be factored as \(A = QR \), where \(Q \) is an \(m \times n \) matrix whose columns form an orthonormal basis for \(\text{Col} \ A \) and \(R \) is an \(n \times n \) upper triangular invertible matrix with positive entries on its diagonal.

Example 5. Find a QR factorization of \(A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \).