Professor Jennifer Balakrishnan, jbala@bu.edu

What is on today

1 The Gram-Schmidt process 1

1 The Gram-Schmidt process

Lay-Lay-McDonald $\S 6.4$ pp. 356 - 360

The Gram-Schmidt algorithm produces an orthogonal basis for any nonzero subspace of \mathbb{R}^{n}.
Theorem 1 (Gram-Schmidt Orthogonalization). Given a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a nonzero subspace W of \mathbb{R}^{n}, define

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& \vdots \\
& \mathbf{v}_{p}=\mathbf{x}_{p}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\cdots-\cdots \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1} .
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. In addition $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ for $1 \leq k \leq p$.

An orthonormal basis is easily constructed from an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$: just normalize (rescale) all of the \mathbf{v}_{k}. When doing these computations, it's easier to normalize the full basis at the end rather than each individual vector as soon as it is found.
Example 2. Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$, where $\mathbf{x}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 0\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$. Construct an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for W.

$$
\begin{aligned}
& v_{1}=x_{1}=\left(\begin{array}{l}
3 \\
6 \\
0
\end{array}\right) \\
& V_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{\underline{V_{1} \cdot v_{1}}} V_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)-\frac{\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)}{\left\|\left(\begin{array}{l}
3 \\
6 \\
0
\end{array}\right)\right\|^{2}}\left(\begin{array}{l}
3 \\
6 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)-\frac{15}{45}\left(\begin{array}{l}
3 \\
6 \\
0
\end{array}\right) \\
&=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)-\frac{1}{3}\left(\begin{array}{l}
3 \\
6 \\
0
\end{array}\right) \\
& \text { So }\left\{\left(\begin{array}{l}
3 \\
6 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)\right\} \text { is an orthogonal }=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right) .
\end{aligned}
$$

Example 3. Let $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$. Then $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is linearly independent and is a basis for a subspace W of \mathbb{R}^{4}. Construct an orthogonal basis for W.

$$
\begin{aligned}
& v_{1}=x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& v_{2}=x_{2}-\frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)-\frac{3}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-3 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right) \underset{\substack{\text { denominators } \\
(\cdot 4)}}{\underset{\sim}{\text { rescale to }} \text { to }} \\
& v_{3}=x_{3}-\underbrace{\frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}}-\frac{x_{3} \cdot v_{2}^{\prime}}{v_{2}^{\prime} \cdot v_{2}^{\prime}} \frac{v_{2}^{\prime}}{1}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)-\frac{2}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)-\frac{2}{12}\left(\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { If an } m \times n \text { matrix } A \text { has linear rescaled } v_{2} \text { indecent columns } \mathbf{x}_{1},=1 / 2, \text {, } \mathbf{x}_{n} \text {, then }{ }^{-1 / 6 p p l y i n g ~ G r a m-~}
\end{aligned}
$$ Schmidt (with normalizations) to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ amounts to factoring A, as described in the next theorem. This factorization is widely used in algorithms for solving equations and finding eigenvalues.

Theorem 4 (QR factorization). If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

* Q comes from
Gram-Schmidt
+ normalization
Then $\quad Q^{\top} Q=I$
since $A=Q R$ * $Q^{\top} A=Q^{\top} Q R$ $=I R=R$.

Now compute norms:
$\left\|V_{1}\right\|=2,\left\|V_{2}\right\|=\sqrt{12}, \quad\left\|V_{3}\right\|=\sqrt{6}$

$$
Q=\left[\frac{v_{1}}{\left\|v_{1}\right\|}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\left\|v_{3}\right\|}\right]
$$

Use $Q^{\top} A=R$ to get

$$
Q=\left(\begin{array}{ccc}
1 / 2 & -3 / \sqrt{12} & 0 \\
1 / 2 & 1 / \sqrt{12} & -2 / \sqrt{6} \\
1 / 2 & 1 / \sqrt{12} & 1 / \sqrt{6} \\
1 / 2 & 1 / \sqrt{12} & 1 / \sqrt{6}
\end{array}\right)
$$

