The final exam will cover the following sections in the textbook:

$$
\S \S 1.1-1.5,1.7-1.10,2.1-2.3,2.5,3.1-3.3,4.1-4.7,5.1-5.3,6.1-6.4 .
$$

Chapter 1. Linear Equations

- Solving systems of linear equations.
- Elementary row operations and (Reduced) Row Echelon Form.
- Pivot positions, pivot columns.
- Rewriting a linear system as a matrix equation $A \mathbf{x}=\mathbf{b}$.
- Solutions of homogeneous equations $A \mathbf{x}=\mathbf{0}$.
- Solutions of the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ are obtained by taking a particular solution \mathbf{x}_{0} and adding all solutions of the homogeneous equation.
- Applications in business and science (§1.10).
- Linear independence of vectors.
- Linear transformations and their associated matrices.
- Linear transformations being one-to-one and onto; some properties are below.

Let A be an $m \times n$ matrix and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$.

T is one-to-one	T is onto
$T(\mathbf{x})=\mathbf{b}$ has at most one solution for every \mathbf{b}.	$T(\mathbf{x})=\mathbf{b}$ has at least one solution for every \mathbf{b}.
The columns of A are linearly independent.	The columns of A span \mathbb{R}^{m}.
A has a pivot in every column.	A has a pivot in every row.

Chapter 2. Matrix Algebra

- Addition and multiplication of matrices.
- The inverse of a square matrix.
- $A \mathbf{x}=\mathbf{b}$ has a unique solution if A is invertible.
- $A \in M_{n \times n}$ is invertible iff its RREF is I_{n}. Know the algorithm for computing the inverse of a square matrix.
- The invertible matrix theorem: A is invertible iff A is one-to-one iff A is onto. Be sure you know that A is one-to-one iff the homogenous equation has only the trivial solution iff the columns of A are linearly independent. Also, A is onto iff $A x=b$ has a solution for all b iff $\operatorname{Col}(A)$ is all of \mathbb{R}^{n}.
- $(A B)^{-1}=B^{-1} A^{-1}$ if A and B are invertible. $(A B)^{T}=B^{T} A^{T}$.
- LU factorization.

Chapter 3. Determinants

- Computing the determinant of an $n \times n$ matrix using cofactors and using elementary row operations.
- A is invertible iff $\operatorname{det}(A) \neq 0$.
- $(\operatorname{det}(A))(\operatorname{det}(B))=\operatorname{det}(A B)$.
- Cramer's Rule.
- For linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, we have area of $T(S)$ equals $|\operatorname{det}(A)|$ times the area of S for reasonable sets S; there is a similar result for volumes for transformations on \mathbb{R}^{3}.

Chapter 4. Vector Spaces

- Definition and basic properties of vector spaces.
- Subspaces of vector spaces.
- The span of a set of vectors $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is always a subspace.
- The null space $\operatorname{Null}(A)$ of a transformation A; it is the set of solutions of the homogeneous equation $A \mathbf{x}=0$. For a general linear transformation $A: V \rightarrow W$ of vector spaces, the null space is called the kernel of A.
- The column space $\operatorname{Col}(A)$ of a matrix; it is the span of the columns of A, and it equals the range of A.
- Remember: if $A \in \mathcal{M}_{m \times n}$, then A determines a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and $\operatorname{Null}(A)$ is a subspace of $\mathbb{R}^{\mathbf{n}}$, while $\operatorname{Col}(A)$ is a subspace of $\mathbb{R}^{\mathbf{m}}$.
- The definition of a basis as a linearly independent set that spans the vector space.
- The pivot columns of A (not the pivot columns of an REF form of A) form a basis of $\operatorname{Col}(A)$.
- A basis of $\operatorname{Null}(A)$ is given by our usual method of finding the solution set of $A x=0$ in vector parametric form.
- Know some examples of vector spaces such as \mathbb{R}^{n}, spaces of polynomials, spaces of functions.
- Coordinate systems: the \mathcal{B}-coordinates $[\mathbf{x}]_{\mathcal{B}}$ of \mathbf{x} with respect to a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ are given by $[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}$, where $P_{\mathcal{B}}=\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}\end{array}\right]$. It is often easier to solve $P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}=\mathbf{x}$.
- The dimension of a vector space equals the number of elements in a basis.
- If a subset \mathcal{B} of a vector space of dimension n has n elements and is linearly independent, then \mathcal{B} is a basis. A set of vectors $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis of \mathbb{R}^{n} iff the matrix $\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}\end{array}\right]$ is invertible.
- For $A \in \mathcal{M}_{m \times n}, \operatorname{dim} \operatorname{Nul}(\mathrm{~A})+\operatorname{dim} \operatorname{Col}(\mathrm{A})=\mathrm{n}$.
- Given a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of a vector space V, the coordinate map $V \rightarrow \mathbb{R}^{n}$ given by $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is an isomorphism.
- For bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, \mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right\}$ of \mathbb{R}^{n}, the relationship between the \mathcal{B} coordinates and the \mathcal{C} coordinates of a vector \mathbf{x} is given by

$$
[\mathbf{x}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}} .
$$

Chapter 5. Eigenvalues and Eigenvectors

- Definition of eigenvalues and eigenvectors.
- Eigenvectors belonging to distinct eigenvalues are linearly independent.
- Be able to use the characteristic equation to find eigenvalues.
- Diagonalization: $A=P D P^{-1}$ (this is possible if A has n distinct eigenvalues). Here the columns of P are the eigenvectors, and the entries of the diagonal matrix D are the eigenvalues. Remember: find the eigenvalues first from the characteristic equation, then find the eigenvectors.
- How to find $A^{k} \mathbf{x}$ for $k \gg 0$ once you know a basis consisting of eigenvectors of A.

Chapter 6. Orthogonality

- Inner product on \mathbb{R}^{n}.
- Lengths of vectors; distance between vectors.
- Orthogonal vectors and orthogonal complements to subspaces.
- Orthogonal and orthonormal bases; properties of matrices with orthonormal columns.
- Orthogonal projections of vectors into subspaces.
- The Best Approximation Theorem: the best approximation to \mathbf{y} in a subspace W is $\hat{\mathbf{y}}=\operatorname{proj}_{W} \mathbf{y}$.
- Gram-Schmidt: constructing orthogonal and orthonormal bases.
- QR factorization.

