Midterm 1 will cover the following sections in the textbook: $\S\S{1.1} - 1.5, 1.7 - 1.10, 2.1 - 2.3, 2.5, 3.1 - 3.3.$

Here are some topics we have covered:

Chapter 1. Linear Equations

- Solving systems of linear equations.
- Elementary row operations and (Reduced) Row Echelon Form.
- Pivot positions, pivot columns.
- Rewriting a linear system as a matrix equation $A\mathbf{x} = \mathbf{b}$.
- Solutions of homogeneous equations $A\mathbf{x} = \mathbf{0}$.
- Solutions of the nonhomogeneous equation $A\mathbf{x} = \mathbf{b}$ are obtained by taking a particular solution \mathbf{x}_0 and adding all solutions of the homogeneous equation.
- Applications in business and science (§1.10).
- Linear independence of vectors.
- Linear transformations and their associated matrices, including geometric interpretations.
- Linear transformations being one-to-one and onto; some properties are below.

Let A be an $m \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^m$ the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$.

T is one-to-one	T is onto
$T(\mathbf{x}) = \mathbf{b}$ has at most one solution for every \mathbf{b} .	$T(\mathbf{x}) = \mathbf{b}$ has at least one solution for every \mathbf{b} .
The columns of A are linearly independent.	The columns of A span \mathbb{R}^m .
A has a pivot in every column.	A has a pivot in every row.

Chapter 2. Matrix Algebra

- Addition and multiplication of matrices.
- The inverse of a square matrix.
- $A\mathbf{x} = \mathbf{b}$ has a unique solution if A is invertible.
- $A \in M_{n \times n}$ is invertible iff its RREF is I_n . Know the algorithm for computing the inverse of a square matrix.
- The invertible matrix theorem: a square $n \times n$ matrix A is invertible iff A is one-to-one iff A is onto. Be sure you know that A is one-to-one iff the homogenous equation has only the trivial solution iff the columns of A are linearly independent. Also, A is onto iff Ax = b has a solution for all b iff Col(A) is all of \mathbb{R}^n .

- $(AB)^{-1} = B^{-1}A^{-1}$ if A and B are invertible. $(AB)^T = B^T A^T$.
- LU factorization.

Chapter 3. Determinants

- Computing the determinant of an $n \times n$ matrix using cofactors and using elementary row operations.
- A is invertible iff $det(A) \neq 0$.
- $(\det(A))(\det(B)) = \det(AB).$
- Cramer's rule
- Inverse formula for a matrix involving determinant and adjugate
- For linear transformations $T : \mathbb{R}^2 \to \mathbb{R}^2$, we have area of T(S) equals $|\det(A)|$ times the area of S for reasonable sets S; there is a similar result for volumes for transformations on \mathbb{R}^3 .