Midterm 1 will cover the following sections in the textbook:
$\S \S 1.1-1.5,1.7-1.10,2.1-2.3,2.5,3.1-3.3$.
Here are some topics we have covered:

Chapter 1. Linear Equations

- Solving systems of linear equations.
- Elementary row operations and (Reduced) Row Echelon Form.
- Pivot positions, pivot columns.
- Rewriting a linear system as a matrix equation $A \mathbf{x}=\mathbf{b}$.
- Solutions of homogeneous equations $A \mathbf{x}=\mathbf{0}$.
- Solutions of the nonhomogeneous equation $A \mathbf{x}=\mathbf{b}$ are obtained by taking a particular solution \mathbf{x}_{0} and adding all solutions of the homogeneous equation.
- Applications in business and science (§1.10).
- Linear independence of vectors.
- Linear transformations and their associated matrices, including geometric interpretations.
- Linear transformations being one-to-one and onto; some properties are below.

Let A be an $m \times n$ matrix and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$.

T is one-to-one	T is onto
$T(\mathbf{x})=\mathbf{b}$ has at most one solution for every \mathbf{b}.	$T(\mathbf{x})=\mathbf{b}$ has at least one solution for every \mathbf{b}.
The columns of A are linearly independent.	The columns of A span \mathbb{R}^{m}.
A has a pivot in every column.	A has a pivot in every row.

Chapter 2. Matrix Algebra

- Addition and multiplication of matrices.
- The inverse of a square matrix.
- $A \mathbf{x}=\mathbf{b}$ has a unique solution if A is invertible.
- $A \in M_{n \times n}$ is invertible iff its RREF is I_{n}. Know the algorithm for computing the inverse of a square matrix.
- The invertible matrix theorem: a square $n \times n$ matrix A is invertible iff A is one-to-one iff A is onto. Be sure you know that A is one-to-one iff the homogenous equation has only the trivial solution iff the columns of A are linearly independent. Also, A is onto iff $A x=b$ has a solution for all b iff $\operatorname{Col}(A)$ is all of \mathbb{R}^{n}.
- $(A B)^{-1}=B^{-1} A^{-1}$ if A and B are invertible. $(A B)^{T}=B^{T} A^{T}$.
- LU factorization.

Chapter 3. Determinants

- Computing the determinant of an $n \times n$ matrix using cofactors and using elementary row operations.
- A is invertible iff $\operatorname{det}(A) \neq 0$.
- $(\operatorname{det}(A))(\operatorname{det}(B))=\operatorname{det}(A B)$.
- Cramer's rule
- Inverse formula for a matrix involving determinant and adjugate
- For linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, we have area of $T(S)$ equals $|\operatorname{det}(A)|$ times the area of S for reasonable sets S; there is a similar result for volumes for transformations on \mathbb{R}^{3}.

