The formal group of an elliptic curve, torsion, and reduction

- (1) Let p be a prime and let $E: y^2 = x^3 + Ax + B$ be an elliptic curve, with $A, B \in \mathbb{Z}_p$. Write $z = -\frac{x}{y}$ and $w = -\frac{1}{y}$. Using the relationship $w = f(z, w) = z^3 + Aw^2z + Bw^3$, express w as an element of $\mathbb{Z}[A, B][[z]]$ and show that it is the unique power series satisfying w(z) = f(z, w(z)).
- (2) Let $\mathfrak{m} = p\mathbb{Z}_p$. Write x, y as Laurent series in z and show that if $z \in \mathfrak{m}$, then (x(z), y(z)) converges to a point of $E(\mathbb{Q}_p)$. Conclude that we have an injection $\mathfrak{m} \hookrightarrow E(\mathbb{Q}_p)$. We will let $\widehat{E}(\mathfrak{m})$ denote the image of \mathfrak{m} under the above map.
- (3) Now for $z_1, z_2 \in \mathfrak{m}$, consider the addition $(z_1, w_1) + (z_2, w_2)$. Show that the z-coordinate of $(z_1, w_1) + (z_2, w_2)$ is given by $F(z_1, z_2)$, where

$$F(z_1, z_2) = z_1 + z_2 + (\text{terms of degree } \ge 2) \in \mathbb{Z}[A, B][[z_1, z_2]].$$

 $(F(z_1, z_2)$ is an example of a formal group.)

(4) Let E_p denote the reduction of $E \mod p$. Let $E_{p,ns}(\mathbb{F}_p)$ denote the group of nonsingular points in $E_p(\mathbb{F}_p)$, and let $E_0(\mathbb{Q}_p)$ denote the set

$$E_0(\mathbb{Q}_p) = \{ P \in E(\mathbb{Q}_p) : \widetilde{P} \in E_{p,ns}(\mathbb{F}_p) \}.$$

Prove that the reduction map

$$E_0(\mathbb{Q}_p) \to E_{p,ns}(\mathbb{F}_p)$$
$$P \mapsto \widetilde{P},$$

is a homomorphism.

(5) Let $E_1(\mathbb{Q}_p)$ denote the kernel of the reduction map from $E_0(\mathbb{Q}_p)$ to $E_{p,ns}(\mathbb{F}_p)$; that is,

$$E_1(\mathbb{Q}_p) = \{ P \in E(\mathbb{Q}_p) : \widetilde{P} = \mathcal{O} \}.$$

Show that $E_1(\mathbb{Q}_p) \cong \widehat{E}(\mathfrak{m})$.

- (6) Prove that $E_1(\mathbb{Q}_p)$ has trivial torsion. (Hint: use properties of formal groups¹ for the case of *m*-torsion where gcd(m, p) = 1.)
- (7) Show that when E_p is nonsingular, $E_{tors}(\mathbb{Q}_p)$ is isomorphic to a subgroup of $E_p(\mathbb{F}_p)$. Conclude that when $E: y^2 = x^3 + Ax + B, A, B \in \mathbb{Z}$ is an elliptic curve and p is a prime of good reduction, that $\#E_{tors}(\mathbb{Q})|\#E_p(\mathbb{F}_p)$.

Getting started with Sage and Magma

(1) Create an account on SageMathCloud (SMC).

¹e.g., see Silverman's Arithmetic of Elliptic Curves, Chapter 4

(2) Create a Sage worksheet to carry out the following computation:

Let E/\mathbb{Q} be an elliptic curve, and for all good primes p, consider the reductions E_p of $E \mod p$. Let $N_p = \#E_p(\mathbb{F}_p)$. Use Sage to graph

$$\log\left(\prod_{p\leq X}\frac{N_p}{p}\right)$$

for the following:

- (a) The elliptic curves $y^2 = x^3 + 1$, $y^2 = x^3 x$. (b) The elliptic curves $y^2 = x^3 + 2$, $y^2 = x^3 2x$. (c) The elliptic curves $y^2 = x^3 + 17$, $y^2 = x^3 + 14x$. (d) The elliptic curves $y^2 = x^3 174$, $y^2 = x^3 82x$.
- (3) Add me as a collaborator to your SMC project and send me a link to the worksheet.
- (4) Ask Tim Kohl for an account on linear.bu.edu.
- (5) Use Magma to compute the rank of the elliptic curve

$$y^{2} + xy + y = x^{3} - x^{2} - 1608154463x + 25555312501831.$$

(You may assume GRH.)

(6) Read about why GRH is useful for this computation and write up a short explanation.