- (1) Let E₁ and E₂ be isogenous elliptic curves over a finite field F_q of characteristic p.
 (a) Prove that #E₁(F_q) = #E₂(F_q).
 - (b) Prove that $E_1(\mathbb{F}_q)$ is not necessarily isomorphic to $E_2(\mathbb{F}_q)$ by giving an explicit example.
- (2) Let E be an elliptic curve over \mathbb{Q} . Prove that any elliptic curve E'/\mathbb{Q} that is (rationally) isogenous to E has the same rank.
- (3) Let E_1 and E_2 be isogenous elliptic curves over a field k that is not finite. Suppose $\#E_1(k)$ and $\#E_2(k)$ are finite. Is it true that $\#E_1(k) = \#E_2(k)$?
- (4) Use LMFDB (www.lmfdb.org) to find an example of an elliptic curve over \mathbb{Q} that admits a rational 3-isogeny but that does not have rational 3-torsion.
- (5) Let $a, b \in \mathbb{Z}$. Show that all elliptic curves of the form $y^2 + axy + by = x^3$ have a rational 3-torsion point.
- (6) Read about division polynomials associated to elliptic curves and describe how they can be used to compute torsion.
- (7) Consider $E: y^2 = x^3 + 41x$ over \mathbb{Q} . Compute $E(\mathbb{Q})$.