MA 842: Explicit methods for elliptic and hyperelliptic curves Spring 2017 Problem Set 4 Due: March 3, 2017

- (1) Let C/\mathbb{Q} be a hyperelliptic curve given by $y^2 = f(x)$. Let $P = (a, 0) \in C(\mathbb{Q})$. The usual choice of uniformizer at P is y(t) = t. Write a function in Sage that takes as input C, P and uses this uniformizer to compute the corresponding x(t).
- (2) Let $C: y^2 = x(x-1)(x-2)(x-5)(x-6)$. Compute (x(t), y(t)) at $P_0 = (0,0)$ and at $P_1 = (1,0)$.
- (3) Let C/\mathbb{Q}_p be a hyperelliptic curve given by $y^2 = f(x)$, with $f(x) \in \mathbb{Z}_p[x]$. Consider the mod p reduction $C_p : y^2 = \overline{f}(x)$ over \mathbb{F}_p , where \overline{f} denotes the reduction of f at p. If $Q \in C_p(\mathbb{F}_p)$ is a smooth point, show that there are points $P \in C(\mathbb{Q}_p)$ such that $\overline{P} = Q$.
- (4) For a smooth projective absolutely irreducible curve C of genus g over a finite field F with q elements, we have the Hasse-Weil bound

$$|\#C(F) - (q+1)| \le 2g\sqrt{q}.$$

- (a) Is the upper bound of $\#C(F) \le (q+1) + 2g\sqrt{q}$ ever sharp? If so, give an example.
- (b) Are there improvements to the upper bound? Read and write up what you find.