(1) Let $E: y^2 = x^3 + x + 1$ be an elliptic curve over \mathbb{Q} . For each prime p of good reduction, consider

$$a_p = p + 1 - \# E_p(F_p),$$

the trace of Frobenius. Consider the normalized trace a_p/\sqrt{p} . Use Sage to plot the normalized traces for p < N. (You can pick how large you take N. See how far you can go!).

(2) Let $X: y^2 = x^5 - x + 1$ be a hyperelliptic curve over \mathbb{Q} . For each prime p of good reduction, let $L_p(T) = \prod_{i=1}^4 (1 - \alpha_i T)$ denote the numerator of the zeta function of X_p/\mathbb{F}_p , and consider the normalized *L*-polynomial $\overline{L}_p(T) = L_p(T/\sqrt{p})$. The polynomial $\overline{L}_p(T)$ has the form

$$\overline{L}_p(T) = T^4 + a_1 T^3 + a_2 T^2 + a_1 T + 1.$$

- (a) Fix an upper bound N (in the realm of interesting but not unreasonable).
- (b) Use Sage to plot the distribution of a_1 for p < N.
- (c) Use Sage to plot the distribution of a_2 for p < N.
- (3) Do some reading for your final¹ project. Submit the following:
 - (a) a working title,
 - (b) a paragraph describing what you will do, and
 - (c) two citations of sources you have consulted.

¹Final projects will be due at 12pm on May 8.