Defining and Plotting a Parametric Curve in 3D $\alpha(t) = (x(t), y(t), z(t))$

Clear["Global`*"] (* clears all previous assignments so we can reuse them *)

(* Define vector functions in 3D of one variable t, i.e. a curve in 3D *)
(* to typeset the alpha, beta, and sigma using esc alpha esc, ditto beta, ditto sigma *)
$\alpha[t_] = \{\text{Cos}[t], \text{Sin}[t], t\}$
$\beta[t_] = \{t, 2*t, 3*t\}$
$\sigma[t_] = \{\text{Cos}[t], \text{Sin}[t], 0\}$

(* Plot the curves α, β, σ with no plotting options defined *)
(* Give the plot an assigned name and use this name in the GraphicsGrid command to plot *)
$\alpha\text{plot1} = \text{ParametricPlot3D}[\alpha[t], \{t, 0, 2*Pi\}];$
$\beta\text{plot1} = \text{ParametricPlot3D}[\beta[t], \{t, 0, 2*Pi\}];$
$\sigma\text{plot1} = \text{ParametricPlot3D}[\sigma[t], \{t, 0, 2*Pi\}];$

(* Plot the curve with some plotting options defined *)
$\alpha\text{plot2} = \text{ParametricPlot3D}[\alpha[t], \{t, 0, 2*Pi\},$
\hspace{1em} PlotStyle $\rightarrow \text{Directive[Red, Thickness[0.015]]}$,
\hspace{1em} AxesLabel $\rightarrow \{x, y, z\}$,
\hspace{1em} LabelStyle $\rightarrow \text{Directive[Black, 15]}];$

$\beta\text{plot2} = \text{ParametricPlot3D}[\beta[t], \{t, 0, 2*Pi\},$
\hspace{1em} PlotStyle $\rightarrow \text{Directive[Red, Thickness[0.015], Dashed]}$,
\hspace{1em} AxesLabel $\rightarrow \{x, y, z\}$,
\hspace{1em} LabelStyle $\rightarrow \text{Directive[Black, 15]}];$

$\sigma\text{plot2} = \text{ParametricPlot3D}[\sigma[t], \{t, 0, 2*Pi\},$
\hspace{1em} PlotStyle $\rightarrow \text{Directive[Red, Thickness[0.015], DotDashed]}$,
\hspace{1em} AxesLabel $\rightarrow \{x, y, z\}$,
\hspace{1em} LabelStyle $\rightarrow \text{Directive[Black, 15]}];$

(* Display the two plots side by side *)
GraphicsGrid[}
Display all the plots on one set of axes:

```math
\{\text{aplot1, bplot1, splot1}, \{\text{aplot2, bplot2, splot2}\}\}
```

Now plot the combined plots side by side:

```math
\text{GraphicsGrid}[\{\{\text{plots1, plots2}\}\}]
```
Defining and Plotting Explicit Functions $z=f(x,y)$
Clear["Global`*"] (* clears all previous assingments so we can reuse them *)

(* Define some explicit functions z=f(x,y), z=g(x,y), z=h(x,y), i.e. surfaces in 3D *)
f[x_, y_] = x^2 + y^2
g[x_, y_] = Cos[x] * Sin[y]
h[x_, y_] = 2*x - 3*y + 2

(* Plot surfaces with no plot options *)
R = 5;
plotf1 = Plot3D[f[x, y], {x, -R, R}, {y, -R, R}];
plotg1 = Plot3D[g[x, y], {x, -R, R}, {y, -R, R}];
ploth1 = Plot3D[h[x, y], {x, -R, R}, {y, -R, R}];

(* Plot surfaces with some basic plot options *)
R = 5;
plotf2 = Plot3D[f[x, y], {x, -R, R}, {y, -R, R}, PlotStyle -> Directive[Green]];
plotg2 = Plot3D[g[x, y], {x, -R, R}, {y, -R, R}, PlotStyle -> Directive[Red], Mesh -> False];
ploth2 = Plot3D[h[x, y], {x, -R, R}, {y, -R, R}, PlotStyle -> Directive[Blue, Opacity[0.6]], Mesh -> False];

(* Plot surfaces with some more plot options *)
Plot3D[f[x, y], {x, -R, R}, {y, -R, R},
 ImageSize -> {400, 400},
 ColorFunction -> "SunsetColors", Background -> Black,
 Boxed -> False, Mesh -> 20,
 PlotStyle -> Directive[Opacity[0.8]]]

(* Plot surfaces side by side *)
GraphicsGrid[
 {{plotf1, plotg1, ploth1}, {plotf2, plotg2, ploth2}}]

(* Group plots on one set of axes then display pairs side by side *)
plot1 = Show[{plotf1, plotg1, ploth1}];
plot2 = Show[{plotf2, plotg2, ploth2}];
GraphicsGrid[{{plot1, plot2}}]
\[x^2 + y^2 \]

\[\cos(x) \sin(y) \]

\[2 + 2x - 3y \]
Defining and Plotting Implicit Functions $f(x,y,z)=c$ where c is some constant

- Recall Implicit Functions $f(x,y)=c$ and their relation to $z=f(x,y)$

```mathematica
Clear["Global`*"] (* clears all previous assignments so we can reuse them *)

(* define an expression in the variables x and y *)
f[x_, y_] = x * Cos[y];

(* ContourPlot is how you plot an implicit function $f(x,y)=c$ *)
plot1 = ContourPlot[{f[x, y] == -1, f[x, y] == 1/2},
{x, -2, 2}, {y, -2, 2}, AxesLabel -> {x, y},
ContourStyle -> Directive[Black, Thickness[0.01]]];

(* In terms of the surface $z=f(x,y)$,
how do we geometrically interpret $f(x,y)=c$? *)
plot2 = Plot3D[{f[x, y], -1, 1/2}, {x, -2, 2}, {y, -2, 2},
PlotStyle -> {Directive[Green, Specularity[White, 20]],
Directive[Black, Opacity[0.6]],
Directive[Black, Opacity[0.4]]},
Lighting -> "Neutral", Mesh -> False,
ImageSize -> {500, 500}, AxesLabel -> {x, y, z}];

(* Plot the ContourPlot and the Surface with z planes side by side *)
GraphicsGrid[{{{plot1, plot2}}}]`

(* Just for fun lets make an animation for various values of the "z-slice" *)
P1 = Manipulate[ContourPlot[f[x, y] == c, {x, -3, 3},
{y, -3, 3}, AxesLabel -> {x, y}, ContourStyle ->
Directive[Black, Thickness[0.01]]], {c, -2, 3, 1}];
P2 = Manipulate[Plot3D[{f[x, y], c}, {x, -3, 3},
{y, -3, 3}, PlotStyle -> {Directive[Green],
Directive[Black, Opacity[0.6]]}, Mesh -> False,
ImageSize -> {500, 500}, AxesLabel -> {x, y, z},
ImageSize -> {200, 200}], {c, -2, 3, 1}];

GraphicsGrid[{{P1, P2}}, ImageSize -> {1200, 1200}];
```
Implicit Functions $f(x,y,z)=c$ and their relation to $w=f(x,y,z)$ (ToDo When Get Faster Machine--ContourPlot3D)

(* Define two expression each depending on three variables *)
F[x_, y_, z_] = x^2 + y^2 + z^2
G[x_, y_, z_] = Cos[x] * Sin[y] * z

(* ContourPlot3D is how to plot $F(x,y,z)=c$ *)
(* ContourPlot3D[{F[x,y,z]==1,F[x,y,z]==4},
 {x,-2,2},{y,-2,2},{z,-2,2},ContourStyle→
 {Directive[Blue], Directive[Green,Opacity[0.5]] }] *)

$x^2 + y^2 + z^2$

$z \cos[x] \sin[y]$
Curve in 2D $\alpha(t)=(x(t),y(t))$, Curve $\beta(t)=f(\alpha(t))$ on Surface $z=f(x,y)$ in 3D
Clear["Global`*"] (* clears all
previous assingments so we can reuse them *)

(* Define a function/surface z=
 f(x,y) on which we will "project" a curve *)
f[x_, y_] = x^2 + y^2*Sin[x*y]

(* Define a 2D curve α(t) in the (x,y)-plane *)
x[t_] = Cos[t]
y[t_] = Sin[t]
α2[t_] = {x[t], y[t]}

(* Trick: Think of the 2D curve α(t)
 as a 3D curve in the (x,y,z=0)-plane *)
α3[t_] = {x[t], y[t], 0}

(* Define a 3D curve β(t)=
 f(α(t)) which is constrained to the surface z=f(x,y) *)
αf[t_] = {x[t], y[t], f[x[t], y[t]]}

(* Plots of the above *)
α2plot = ParametricPlot[α2[t], {t, 0, 2*Pi},
 PlotStyle -> Directive[Black, Thickness[0.01]],
 AxesLabel -> {x, y}, Frame -> True];
α3plot = ParametricPlot3D[α3[t], {t, 0, 2*Pi},
 PlotStyle -> Directive[Black, Thickness[0.01]],
 AxesLabel -> {x, y, z}, Boxed -> True];
αfplot = ParametricPlot3D[αf[t], {t, 0, 2*Pi},
 PlotStyle -> Directive[Black, Thickness[0.015]],
 AxesLabel -> {x, y, z}, Boxed -> True];
fplot = Plot3D[f[x, y], {x, -1, 1}, {y, -1, 1}, PlotStyle ->
 Directive[Red, Opacity[0.8], Specularity[White, 20]],
 Mesh -> False, AxesLabel -> {x, y, z},
 Boxed -> True, ImageSize -> {500, 500}];

(* Bring the 2D and 3D plots together *)
plot1 = Show[{αfplot, fplot, α3plot}];
GraphicsGrid[{{α2plot, α3plot, plot1}}]
Bring All The Above Together: Curve of Intersection Problems

(In Class Problem) Find the curve of intersection of the two surfaces \(f(x, y) = x + 2y - 2 \) and \(g(x, y) = 2x + y + 3 \).

(Hint: Do the algebra work by hand)
(Extra: Come up with plots to check your answer)
(An Answer):

Remember that \(f(x,y) = x + 2y - 2 \) \(g(x,y) = 2x + y + 3 \) are explicit functions of \(x \) and \(y \) which we interpret to mean \(z = x + 2y - 2 \) and \(z = 2x + y + 3 \). To be an intersection curve the \(x \), \(y \) and \(z \)'s must all be equal. Our equations scream for us to focus on the \(z \)'s first (since they are already "solved" for \(z \)).

```mathematica
Clear["Global`*"
(* clears all previous assingments so we can reuse them *)

(* We want to find when the \( z \) values equal, so set them equal OR find when their difference is 0 *)
Solve[x + 2*y - 2 - (2*x + y + 3) == 0, x] (* option 1,
Solve for \( x \) in terms of \( y \), i.e. find \( x(y) \) *)
Solve[x + 2*y - 2 - (2*x + y + 3) == 0, y] (* option 2,
Solve for \( y \) in terms of \( x \), that is find \( y(x) \) *)

(* At this point we can write at least two solutions *)
\( \alpha[y_] = \{-5 + y, y, 2*(-5 + y) + y + 3\}; \)
(* \( y \) is playing the role of the parameter \( t \) *)
\( \beta[x_] = \{x, 5 + x, x + 2*(5 + x) - 2\}; \)
(* \( x \) is playing the role of the parameter \( t \) *)

PossibleAnswer1 = Simplify[\( \alpha[t] \)]
PossibleAnswer2 = Simplify[\( \beta[t] \)]

(* plot these curves *)
SolutionCurve1 = ParametricPlot3D[\( \alpha[y] \), \{y, 0, 5\},
PlotStyle -> Directive[Green, Thickness[0.015]]];
SolutionCurve2 = ParametricPlot3D[\( \beta[x] \), \{x, -1, 0\},
PlotStyle -> Directive[Green, Thickness[0.015]]];

(* plot the two original surfaces *)
SurfacesPlot =
Plot3D[\{x + 2*y - 2, 2*x + y + 3\}, \{x, -5, 5\}, \{y, -5, 5\},
PlotStyle -> \{Directive[Red], Directive[Blue, Opacity[0.8]]\}];

GraphicsGrid[\{\{Show[SolutionCurve1, SurfacesPlot],
Show[SolutionCurve2, SurfacesPlot]\}\} ]
```

\([\{x \to -5 + y\}]\)
PossibleAnswer1 = \{-5 + t, t, -7 + 3t\}

PossibleAnswer2 = \{t, 5 + t, 8 + 3t\}

(HomeWork 1) Find the curve of intersection of the two surfaces \(x + 3y + 4z - 2 = 0\) and \((x - 1) + (2y + 2) - (z - 2) = 0\)

(Hint : Do the algebra work by hand)
(Extra : Come up with plots to check your answer)

(An Answer) : So this problem is like the In Class Problem but both surfaces are Implicit.

Don’t panic when you see an implicit form of a function. As a start, you can always try to turn it into an explicit form by solving for the “easiest” variable.
Clear["Global`*"]
(* clears all previous assingments so we can reuse them *)

(* So the surfaces are implicit f(x,y,z)=c form, so remedy this "problem" by solving for the explicit form x=f(y,z). *)
foo = Expand[(x - 1) + (2*y + 2) - (z - 2) == 0]
foo1 = Solve[foo, x]
foo2 = Solve[x + 3*y + 4*z - 2 == 0, x]
a[y_, z_] = -3 - 2*y + z;
b[y_, z_] = 2 - 3*y - 4*z;

(* So now we have two explicit functions for x as a function of y and z. Now repeat steps from Homework 1 *)
SurfacesPlot = ContourPlot3D[{x + 3*y + 4*z - 2 == 0,
 (x - 1) + (2*y + 2) - (z - 2) == 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10},
 ContourStyle -> {Directive[Red], Directive[Blue, Opacity[0.8]]},
 AxesLabel -> {x, y, z}};

(* Solve for y as a function of z *)
Solve[a[y, z] - b[y, z] == 0, y]

(* Define a curve with parameter z and show its plot along with the two surfaces *)
Solution[z_] = {-3 - 2*(5 - 5*z) + z, 5 - 5*z, z}
SolutionPlot = ParametricPlot3D[Solution[z], {z, 0, 2},
 PlotStyle -> Directive[Green, Thickness[0.015]], AxesLabel -> {x, y, z}];

foo3 = GraphicsGrid[
 {Show[SolutionPlot, SurfacesPlot]}, ImageSize -> {500, 500}]
3 + x + 2*y - z == 0
{{x -> -3 - 2*y + z}}
{{x -> 2 - 3*y - 4*z}}
{{y -> -5 (-1 + z)}}
{3 - 2 (5 - 5*z) + z, 5 - 5*z, z}
3 + x + 2*y - z == 0

{{x -> -3 - 2*y + z}}

{{x -> 2 - 3*y - 4*z}}

{{y -> -5 (-1 + z)}}

{3 - 2 (5 - 5*z) + z, 5 - 5*z, z}
\[3 + x + 2y - z = 0\]

\[
\{(x \rightarrow -3 - 2y + z)\}
\]

\[
\{(x \rightarrow 2 - 3y - 4z)\}
\]

\[
\{(y \rightarrow -5 (-1 + z))\}
\]

\[
\{-3 - 2 (5 - 5z) + z, 5 - 5z, z\}
\]
(HomeWork 2) Find the curve of intersection of the two surfaces \(f(x,y) = -x + 2y \) and
\(x + (y+2) + 2(z+3) = 0 \).

(Hint: Do the algebra work by hand)
(Extra: Come up with plots to check your answer)

(An Answer):

Am I trying to trick you by giving you one implicit and one explicit function? No. Just follow
the same steps as in previous examples.

```math
SurfacesPlot = Plot3D[
   {-x + 2*y, -1/2*(x + y) - 4}, {x, -5, 5}, {y, -5, 5},
   PlotStyle -> {Directive[Red],
              Directive[Blue, Opacity[0.8]]}];

CurvePlot = ParametricPlot3D[
   {(5*y + 8), y, -(5*y + 8) + 2*y}, {y, -5, 5},
   PlotStyle -> Directive[Green, Thickness[0.015]]];

Show[SurfacesPlot, CurvePlot]
```
(HomeWork, A Little More Challenging) Find the curve of intersection of the two surfaces \(x^2y - z = 5 \) and \(xy - z = 4 \)

(Hint: Do the algebra work by hand)
(Extra: Come up with plots to check your answer)

(An Answer)

```math
SurfacesPlot = ContourPlot3D[
  \{x^2*y - z == 5, x*y - z == 4\}, \{x, -5, 5\}, \{y, -5, 5\}, \{z, -5, 5\},
  ContourStyle -> {Directive[Red],
  Directive[Blue, Opacity[0.8]]}];

\[a[x_] = \{x, 1/(x^2 - x), 1/(x - 1) - 4\}\]

(* Notice from the formula for \(a(x)\) the problem values \(x=0\) and \(x=1\) so take note when plotting *)

CurvePlot1 = ParametricPlot3D[\[a[x]\], \{x, -5, -0.1\},
  PlotStyle -> Directive[Green, Thickness[0.015]]];

CurvePlot2 = ParametricPlot3D[\[a[x]\], \{x, 0.1, 0.9\},
  PlotStyle -> Directive[Green, Thickness[0.015]]];

CurvePlot3 = ParametricPlot3D[\[a[x]\], \{x, 1.01, 5\},
  PlotStyle -> Directive[Green, Thickness[0.015]]];

Show[SurfacesPlot, CurvePlot1, CurvePlot2, CurvePlot3]
```

\(\{x, \frac{1}{-x + x^2}, -4 + \frac{1}{-1 + x}\}\)