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Equivariant vector bundles on the Lubin-Tate
moduli space

M. J. HOPKINS AND B. H. GROSS

Introduction

Lubin and Tate showed that the functor of deformations of a formal group F
of dimension 1 and height n over Z/pZ is representable by the formal scheme
X = 8pfZ,fuy,--- stig_1] over Z,. They also described an action of the étale
group scheme G = Aut{F) over Z, on the moduli space X. Here we will study
this action by a consideration of certain G-equivariant vector bundles on X. In
particular, we show that there is an étale, surjective map:

XeQ —PF e,

of rigid analytic spaces over @, which converts the action of G on X ® @, into
a linear action on projective space.

Following Drinfeld, we will work in the more general setting of format A-
modules, where A is a complete discrete valuation ring with finite residue fieid.
(The case considered by Lubin and Tate is when A = Z,.) Part I is a summary of
the basic results of this theory, which are due to Lazard, Honda, Lubin, Cartier,
Drinfeld, Hazewinkel and many others. In Part II we consider extensions and
deformations of formal A-modules. The main results here are due to Lubin-Tate
and Drinfeld; we have expressed them in the language of rigidified extensions and
the universal additive extension, following Grothendieck and Mazur-Messing,

In Part ITI we introduce the moduli space X = Spf.Afu;, -+ ,un—1] of defor-
mations of a formal A-module F of dimension 1 and height n. This is a formal
scheme over A, with an action of the étale group scheme G = Aut(F). We use
the theory of the universal additive extension E of F to copstruct some natural
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24 M. J. HOPKINS AND B. H. GROSS

(7-equivariant vector bundles on X, and from these bundles construct the tan-
gent bundle of X, the bundle of exterior i-forms, and the canonical line bundle
of X. : )

In Part IV, we restrict equivariant bundles to the general fibre X ® K, which
is a rigid analytic space over the quotient field K of A, isomorphic to the open
unit polydisc of dimension n—1. We show that the G-bundle Lie(E} of rank n is
flat over X @ K. Taking the image of its horizontal sections in the quotient line
bundle Lie(F), we construct an étale, surjective map from X @ K to PP @ K.
As a corollary, we obtain the differentiability of the action of G on X.

After this paper was written, it was pointed out to the authors that in 1978
Lafaille [G.L79] proved, what in this paper are Corollary 23.21 and Corol-
lary 23.26. Our argument differs very little from his. We have nevertheless
decided to include the proof in order to keep this paper as complete as possible.

It is a pleasure to thank Ching-Li Chai and Kevin Keating for pointing out
sOme minor errors in an earlier draft.

Part 1. Formal A-modules
1. Homomorphisms

Let A be a complete, discrete valuation ring with uniformizing parameter
and finite residue field &k = A/xA. Let g be the cardinality of ¥ and K the
quotient field of A. .

Let R be a commutative A-algebra, with structure map i : A —+ R. By
definition, a formal A-module F of dimension n over R is a commutative formal
group of dimension n over R, together with a ring homomorphism 6 : A —
Endg(F) such that the endomorphism 6{a) = ar of F acts by the scalar i(a} on
the tangent space Lie(F), for all a in A.

The formal group structure on F is given by a formal comultiplication on the
algebra R[X,, Xs,... ,X.] = R[X]. Once parameters have been chosen, the
comultiplication is described by n power series in 2n variables:

(1.1)
F(X,Y) =(F1(X1:"' :Xﬂ;Yh"' sYn)1"' |Fn(X1|"' >Xn=1rll"‘ :Yn))

which satisfy the usual associative, commutative, and identity laws:

F(X,0)= X, F(0,Y}=Y
(1.2) F(X,F(Y,Z))=F(F(X.Y), Z)
F{X,Y) = F{Y, X).

The endomorphism ap is given by n series in n variables

(1.3} arp(X) = (a,(Xy,--- s Xn)y o an(Xy, e, Xa)),
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which satisfy

{1.4) FlarX,apY) =ap(F(X,Y)).
The condition on the action of ap on Lie(F) is simply that
(1.5) gi(X)=#a}X; ( mod deg2)

fori=1,2,--- n.

We will usually not distinguish between the formal A-module F over R and the
collection of series { F(X, ¥), ap(X) }, which depend on the choice of parameters
X of the algebra R[X]). The latter are often referred to as “formal group laws”
or “formal A-module laws” in the literature. A different choice of parameters X’
for this algebra would result in a law {F'(X',Y"),ap(X") }isomorphic to the
original one over R. We write X +5 ¥ for F(X, ¥).

If F is a formal A-module over Rand o : R — S is a homomorphism of
A-algebras, then the series {eF(X,Y),0ap(X)} define a formal A-module over
8. We will write this module simply as afF.

A homomorphism f : F — F” of formal A-modules over i is a homomorphism

of formal groups (given by n' power series X' = f{X) in n variables} which
satisfies

(1.6} feap=apof in R[X'].

The set Homgp{F, F'} of all homomorphisms over R is an A-module, with addition
and A-multiplication defined using the operations of F'., We will write this A-
module simply as Hom(F, F*) if the base ring R is fixed, If F = F' we write
End(F) for Hom(F, F): this is an A-algebra under composition.

An example of a formal 4~-module, which is central to the theory, is the module
G, of dimension one. This is defined by the series

(L.7) ag, (X) =i(a) ' X

We have an injection of A-algebras:

R — Endgp(G,)

{1.8)
ar— fo(X})=aX.

2. Invariant differentials

Let F be a formal A-medule over R. The R-module w(F) of “invariant. dif-
ferentials” on F is defined to be the submodule of the differentials w(X) =

:
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F(X)dX = 0 f:(X)dX; of R[X] over R which satisfy:

w(F(X,¥)) = w(X) +w(})
(2.1) wlep(X)) =i(@)w(X) as€A

PROPOSITION 2.2. The R-module w(R) is free of rank n = dim(F), with a
basis wi{X) of differentials which satisfy

wil X} = dX; mod deg 2.
Every invariant differential on F' is closed.

Proor. The n x n matrix of power series over Ji:

(serom) =@ty

is congruent, mod degree 1, to the identity. Hence it is invertible, with inverse

(A,'j(Y)) =7 {mod deg ].).

It is proved in {Hon70, Prop. 1.1] that the differentials
n
wi( X} = Z Ay (X)dX; =dX; (mod deg 2)
i=1

from an R-basis of the space of differentials on X which satisfy w(F(X,Y)) =
w(X) + w(Y¥). In [Hon70, Prop. 1.3] it is shown that each w; is closed.

To complete the proof, we must show that every element in this free R-module
satisfies w(ap(X)) = d(@)w(X). Hw = T, fi( X)dX; is translation invariant, then
by the above w = 3, fi(0)uw;. The differential

wler(X)) = Z_fe(ap(x})dae(X)

is also translation invariant [Hon70, Prop. 1.2, and has linear term
wlap(X))=i(a) Y fi(0)dX;  (mod deg 2)
by our hypothesis on the series ap(X}. Hence it is equal to i(a) - w{X). O

If f: F — F' is a homomorphism of formal A-modules over R, there is an
induced map of free R-modules

f* 2 w(F) — w(F)
$ gl X)L — 3 gl S (X)-

The functor dual to w(F) is the R-module Lie(F) of invariant derivations

(2.3)

DX) =Y K X)5
i=1
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of R[X] over R. This R-module is also free of rank n, with dual basis over |}
Di(X) = ¥ By(X) 7o
7 . 5 BX,» »
where B;;(Y) = B—i—ﬁ‘.—(ﬂ, Y) =6; (mod deg 1). The formula

=Y odXe D=3 hyy)= IPORED
defines a non—t;legenerate pairing of free R-modules:
(2.4) ( , ):w(F)xLie(F) — R.
On the formal A-module G, we have w(F) = RdX and Lie(F)} = R2. The

3F-
pairing (adX, b3/0X) is equal to ab.
If f: F— F' is a homomorphism of formal A-modules over R, there is an

“induced map of R-modules

. (2.5) fo: Lie(F) — Lie(F").

This can be defined as the adjoint of f* using the pairing (2.4):
(f‘wl:D}F = ("‘J’s‘f!'D)F"’

In particular, the endomorphism ey acts on the R-modules w(F) and Lie(F) by
muitiplication by i(a). '

3. Logarithms
Let F be a formal 4-module over B and f 1 F — G, a homomorphism of
formal A-modules over R, Then

W= f Xy = a0 = Y 200 - ax;

=
is an invariant differential on F. This gives a homomorphism of B-modules

a.1) d: Hom(F,G,} — w(F)

) fr— df(X}.

PROPOSITION 3.2. 1) If R is a flat (= torsion-free) A-algebra, then the map
of (1.8) induces an isomorphism B — End(G,) and the map d of (3.1) is an
injection. ’

2) If R is a K-olgebra, then the map d of (3.1) is an isomorphism, so
Hom(F,G,) is a free R-module of rank n = dim (F).
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Proor. 1) Since A is a discrete valuation ring, & is flat if and only if i(a)
is not a zero divisor in R for all a # 0 in 4. Let f{X) = ):kZ]akX"' be an
endomorphism of G = G,, 50 fong = mg o f. But #ng(X) = i(x) - X, so

ar(i(m))* = i(n) - ay forallk > 1.

Hence ay - {{r* — ) = 0. For k > 2 the element 7* —  is a uniformizer in A, s0
by our hypothesis of flatness, i{m* — 7) is not a zero divisor in R. Thus a = 0
for k> 2 and f(X)=a,X. This shows the map of (1.8) is an isomorphism.

To show that d : Hom(F,G,) — w(F) is an injection, we observe that
df{X) = 0 implies that f = 0 (mod deg 2). The identity forp = g, of =i(m) f
then shows that f = 0. Indeed, if a,X* is the leading term of 7(X) we find that
ag-i(rm* —7) =0,

For 2), assume Ris a K-algebra. In particular, R is a flat A-algebra so the map
dof (3.1) is an injection. To show that d is surjective, we break into two cases.
When char(K) = 0, the invariant differentials w on F are all formally exact:
w = df. This follows from the fact that they are closed; we choose the primitive
uniquely by insisting that f{0) = 0. Then f: F — G, is = homomorphism of
formal A-modules by (2.1).

If char(K} = p then pr(X) = 0 and F is isomorphic, as a formal group,
to n copies of G;. We must show there is a unique homomorphism of formal
A-modules f : F — G, with df(X} = £dX; + - - + BdX, in w(F). The
homomerphisms from G7 to G, all have the form

X =Y A(X), with  f(X) =S adkx?

k20

and we claim there is & unique series of this form which satisfies

(3.3)

forp=i(m}-f
a;(0) = &, 1=12---,n

This follows from the fact that when k > 1, i(?r“’i= —7) is a unit in R, so we
may solve for the coefficients of f successively. To show f is a homomorphism
of formal A-modules, we must check that fo(r = i(¢) - fforall ¢ € k {as
A = kfr]). But i(¢)~!- fo (r = g is another series which satisfies (3.3), as
¢(romp =7po{r. Hence g = f as claimed.

From Proposition 3.2 we may conclude the following., Let F be a formal A-
module of dimension 1 over R and let w be a basis of w(F) over R. If R is A-flat,
s0 injects into the K-algebra R ® K, there is a unique isomorphism

(3.4) f:FS G, over R@ K
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with df = w. We call f a logarithm for F,and ifs inverse e = f~1: G, = F
an exponential. We then have

(35) FIX,Y) =e(f(X)+ f(Y))
' ap(X) =elaf(X)), a€ A
4. The beight

In this section, F is a formal 4-module of dimension 1 over £, IfR is a field,
then either i(m) = 0 in R or i(n) is & unit in R. The latter case, when R is a
K-algebra, was considered in the previous section. We now consider the case
when i(r) = 0.

LEMMA 4.1. Assume that R is o field and that ifm} =0 in R. Then either
7 =0 in End(F) or there is an infeger n > 1 such that

mr(X) = FIXT)  with  £(0) #0.

PROOF. Let w be a basis for w(F) over R. Since mp{w) = i(m) w = 0, we have
mr(X} = f1{XP). Let FP be the conjugate formal A-module over the field R,
which has characteristic p- Then we have a commutative diagram of morphisms

F = F

o\
o

If f1(0) # 0, the same argument using differentials shows that fi = f2(XP). It
g # 0, we eventually have

wp(X) = f(X*")  for some h > 1,with f'(0) + 0.

Write ¢ = p/. We must show that h = 0( mod f), so that 7p(X) = F(X7).
Since wpo(F = (ronp for all (g—1)* roots of unity ¢ in A*, we have () = i(g‘Ph).
Hence (g — 1) divides (p" — 1), which implies that fdivides h. O

If the second case occurs in Lemma 4.1, we say the formal A-module F' has
height n over R. More generally, if R is a complete, local, Noetherian ring with
maximal ideal P containing i(r), we say F hag height n over R if its reduction
has height n over the field R/P. We call such rings “local A-algebras" for short.

PROPOSITION 4.2. Assume R is a local A-algebra, end F is ¢ formal A-
module of dimension I and height n over R. If G is a formal A-module of

dimension { over B, then reduction of homomorphisms induces an injection of
A-modules

HomR(F, G) — HOmR/p(F, G}
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PROOF. Assume f : F — @ satisfies f{X) = 0 mod P¥). We will show
that f(X} =6 mod P*. Since R = limR/P*, this will establish the claim

Since f is a homomorphism of A-modules, f o np = 7g o f. Since 7g(X} =
i(r}- X +--- and i(%) is in P, we have xg ¢ f(X) =.0 mod P**!. Hence
forp(X) =0 mod P**!. But fonp(X)= f(aX? +.--) mod P**! where
the substitution is made in the R/P-module P*/P*+! and o # 0. Hence f =10
mod P11 O

COROLLARY 4.3. If R is e local A-clgebra and F has height n over R, then
Hom(F,G;) = 0.

ProoF. By the above proposition, it is encugh to prove that
Homgp(F, G,) = 0. _
Since any homomorphism f : F — G, over B/P must satisfy
forp(X) = faX¥ +-- ) =imf(X)=0
we have f=0. O

5. A-typical modules

When A = k[«]} has characteristic p, we may construct formal A-modules of
dimension 1 over the ring R as follows. Let

FY) =X+Y
(5.1) F(X)  =i0) X, CEE
‘RF(X) = 3(’11'} X+ EkZIaqut, ax € R.

These series uniquely determine a formal A-module ¥ over R, and one can show
that any formal A-module of dimension one over R is isomorphic to one of this
form. If R is a flat A-algebra, the logarithm f : F — G, over R® K with
df = dX has the form

(5.2) X)) =Xx+Y 0X", heRoK

E>1
The. coefficients b, of this series are completely determined by the identity fo
ap = i(m}- f. If R is a local A-algebra, then F has height n over R provided
@1,32,... ,0p—1 He in P, the maximal ideal of R, but a,, # 0( mod P).

When A has characteristic zero, it is more difficult to write down the series
F(X,Y) and ar(X) defining the general formal A-module of dimension 1 over
R. However, it is possible to normalize the choice of coordinate on the algebra
R[XT s0 that the logarithm (when R is A-flat) for the co-multiplication has the
form (5.2). These formal A-modules are called “A4-typical”, and are convenient
for many computations. A detailed description of their properties is given in
Hazewinkel’s book {Haz78]; we review some of the theory in this section.
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Let Afy} b¢.: the flat A-algebra Afuy,vs,vs,.. .} of polynomials in an infinite
number of variables v;. Let f{(X) = f[u](X) be the unique series with coefficients
Alv] ® K = K[vy,v2,v3,...] which satisfies

(5.3) FX) =X+ 257 (x7)
i>1

ve;here _f"' (X) is the series obtained from f{X ) by replacing each variable v; by
v;. This is Hazewinkel's “functional equation” [Haz78, 21.5]. The expansion of
f(X) has the form

k +1
(54) FX)=)"hXt =x 4 Axey "_2+i XT ...
i T T w2 ’

Thfe coefficients by in the expansion of f(X) may be calculated using the
following recursion, which is a consequence of the definition of f:

by =1
(5.5} { ¢ 2 k-l
Thy = bgvk + blv,‘g,_l 4 bzvg_z + -t by 'Ug

From this it follows, by induction on k, that

(5.6) & b, € Ala].

Moreover, we have the congruence
- Vg k
f(X)=X+—W-X‘*‘ mod (vy,-- ,vx—1}, degg® +1
PROPOSITION 5.7 ([Haz78, 21.5]). The series

F(X,Y) = {7 (f(X) + £(Y))
ap(X) = £ af (X)) a€4

have coefficients in Alv), and define o formal A-module F| [v] of dimension I sver
Alv] with logarithm flv]. We have

Trg(X) =uXT mod (m,2, - i), degg® 1.

If F is any formal A-module of dimension one aver R, we say F is “A-typical”
if it is the specialization of Flg] with respect to 2 homomorphism of A-algebras
Aly] — R. Such homomorphisms are given simply by specifying the images
of each variable v; in R. Hazewinkel shows {Haz78, 21.5.6] that any formal
A-module of dimension 1 over R is isomorphic to an A-typical one, so working
with A-typical formal A-modules entails no loss of generality. We will often do
so.

The modules F described by (5.1) are all A-typical, as the series defining the
universal A-typical module Flvj (when A has characteristic p) have this form.
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If R is A-fiat, the module F is A-typical if and mvﬂy if its logarithm over R® K
has the form of (5.2). Finally, A-typical modules have:

(5.8) CRX)=i(()- X

for all (g — 1) roots of unity ¢ in A*.

Part II. Extensions and deformations
6. Symmetric Z-cohomology and extensions

Let R be an A-algebra, and let F' and F' be formal A-modules of dimensions
n and n’ over K.
A 1-cochain on F with values in F' is a set of n' series

FX} = (AX), .. s fue (X))

in n variables X = (X1,---,X,) with no constant terms. The set of all 1-
cochains forms an A-module, with addition (f + g}(X} = f(X}+p g(X) and
A-multiplication ef{X) = ap f(X) coming from F. The coboundary é6f =
{Af(X,Y),8.f(X)a € A} is defined by

Af(X,¥Y)= (Y} —p fIX +rY) +r F(X)
6 f(X) = ap f(X) —p FlarX)
The kerpel of § is a sub A-module of the 1-cochains, which is the 1-cohomeology

HYF,F"). Since Af(X,¥) =0 if and only if f(X +7Y) = f(X}+p F(¥), and
6,f(X) =0 if and only if f(apX) = ap: f(X), we have an identification

(6.1)

(6.2) HY(F,F') = Hom(F, F").

A 2-cochain on F with values in F' is a set { A{X,Y),8.,(X)a € A} where
A(X,Y) is a set of n' series in 2n variables and, for a € A,4,(X) is a set of
series in n variables. These séries have no constant terms, and form an 4-module
via the operations on F'. We say the 2-cochain { A, §,} s a symmetnc 2-cocycle
if the following identities hold [Dri74, §4).

{6.3)
A(X,Y) = A(Y, X}
AV, Z}+p AX,Y +r 2) = A(X +r Y, Z) +p A(X\Y)
8o(X) +pr 85(Y) +m AlarX,apY ) =apA(X, Y} +5 (X +£ Y)
EG(X) + EB(X) + A(GPX, bFX} = 6“4.1,()(}
ap (XY} +p Sa(bpX) = 6as(X)
The symmetric 2-cocycles form a sub A-module of the 2-cochains, which con-

tains the A-module of coboundaries - those cocycles of the form

"Sf = { Af(X, Y):6of(x) }:
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where f is a l-cochain (6.1). The quotient A-module is the symmetric 2-
cohomology H2(F, F'), [ET2, §2; D1, §4].

We now show how classes in H?(F, F'), correspond to extensions of ¥ by F*
in the category of formal A-modules over R, up to the usual equivalence relation.
If E is a formal A-module over R, we say the sequence of homomorphisms

(6.4) 0— g fp g
is exact if the associated sequence of free R-modules
0 — Lie(F') 2= Lie(E) 2% Lie(F) — 0

is exact. An extension of F by F' is, by definition, an exact sequence of for-
mal A-modules as in (6.4); we say two extensions are equivalent if there is an
isemorphism i : E —- B’ of formal A-modules over R which makes the diagram

0 F E y F— 0

A

¢t ——s F — S F — L F — 0

commute. Let Ext(F, F') denote the set of equivalence classes.

PROPOSITION 6.5. Let {A', 84 } be o symmetric 2-cocycle on F with values in
F'. Then the formal A-module E with coordinate ring R[X’, X] and operations

E((X',X),(Y,Y)) = (F(X, Y} +r A(X,Y), F(X,Y))
ep(X', X)={ap X +6:(X},erX)

is an extension of F by F'. The homomorphism o is defined by a{ X') = (X*,0)
and the homomorphism 3 is defined by S( X', X)=X

The equivalence class of E in Ext{F, F') depends only on the cohomology class
of { A6, } in HY(F, F),.

PRroOF. The identities (6.3) satisfied by { A, 8, } show that the multiplica-
tion on F is commutative and associative, that ag is an endomorphism of the
formal group underlying EF, and finatly that the map teking a to ag is a ring
homomorphism from A to the endomorphism ring of the formal group. Thus E
is a formal 4-module, which is easily seen to be an extension of F' by F'.

If{A,8, )Y ={ A, }+6f is cohomelogous to { A, 4, }, the map i(X', X) =
(X' +pm f(X),X) gives an isomorphism from E to B’ which renders the exten-
sions equivalent.

Conversely, every extension of F by F' can be put in the form of Proposi-
tion 6.5. For the formal implicit function theorem shows that we may choose a
section 5 : F' — E, consisting of n + n’ series in n variables X with no constant

5 |
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term, such that o s(X) = X. This gives coordinates {X', X} on E for which
afX') = (X',0), 8(X', X) = X, and &{X)} = (0, X). The series

(X +£Y) =g s(X) =5 3(¥) = (A{X,Y),0)

(6.6) s(arX) —g aps(X) = (6,(X),0)

then define a 2-cocyele { A, 8, } on F with values in F’. The class of this cocycle
in H*(F, F"), is independent of the choice of section s, and the extension E is
equivalent to the one defined in Proposition 6.5. Thus we have established a
bijection of sets

(6.7) HX(F, F"), = Ext(F, F').

The isomorphism (6.7) gives Ext{F, F') the structure of an A-module; it is a
bifunctor, like Hom(F, F'}, which is covariant in F* and contravariant in F. If
E is an extension defined by the data { A(X,Y),6.(X)} and
=g(l): G— F
(68) gf g(l ) 7] 7 i
¢ =g(X): F—G

are homornorphisms of formal A-modules, then g’ Eg is, by definition, the exten-
sion of G by G defined by the data { g’A(gl, V), ¢'8u{gU}}. O

Remark. One can also define the 4-module Ext*(F, F') = H3(F, F'), using
symnmetric 3-cocyeles on F with values in F* modulo coboundaries of symmetric
Z-cochains. This A-module s always trivial (ef. [Mac50, Prop. 4], [Hea59],
[Laz55, Prop. 1]}, a fact which has important consequences for deformation
theory.

7. First order deformations

‘We now specialize to the case when F is a formal A-module of dimension 1 and
F' = G,. Then Ext{F,G,) = H*F,G,), is an R-module, as R is a subring of
End(G,) by (1.8). Following Lubin-Tate and Drinfeld, we give an interpretation
of the K-module

(7.1) Ext{F,G,) ®g Lie(F) = Homg(w(F), Ext(F,G,))}

using deformation theory.

A formal A-module G over the ring R[e]/(€?) is a deformation of F provided
G = F and ag = ap (modulo ). We say two deformations G and G’ are *-
tsomorphic if there is an isomorphism ¢ : G — G over Rle]/(e?) such that g = X
mod . This gives an equivalence relation on the set of all deformations of F, and
the equivalence classes form an R-module {using addition and R-multiplication
of the linear term in the expansion G = F + ¢B, ag = ap + ¢b}.
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- PROPOSITION 7.2. The R-module of x-isomorphism classes of deformations G
of F to the ring Rlc]{(e?) is isomorphic to the R-module Exi(F,G,) ®g Lie(#.
If{4,68,) is a 2-cocycle on F with values in G, and D = h(X)B/8X is an
invariand derivation of F, then the series
73 {G(X, Y) =F(X,Y)+A(X,Y)A(F(X,Y))
ag(X) = ap(X)+eba(X)h(X)

define a deformation of F over Rle]/(€®). The %-isomorphism class of G depends
o!raly on the image of {A,8,} @ D in H*(F,G,), ®x Lie(F) = Ext(F,G,) 25
Lie(F), and every deformation G of F has the form (7.3).

PROOF. This may be checked directly, using the fact that A(X) is a constant
muitiple of the series

a
XFPYY = Ro,X),

(0,X)

]

We may restate Proposition 7.2 in a more invariant manner by introducing
the additive formal A-module G, ® M of dimension n over R, where M is a
free R-module of rank n. This is defined to be the additive formal A-module
with Lie{G, ® M) ~ M (canonically). We then have canonical isomorphisms

of R-modules

(7.4) Hom(F,G, ® M) = Hom(F,G,} @g M
Ext(F, G, ® M) = Ext(F, Ge)@r M

COROLLARY 7.5. Let F be a formal A-module of dimension 1 over R. There
s a natural map of R-modules

d: Hom(F, G, ® Lie(F)) — R,

which is injective when R is A-flai and an isomorphism when R is a K -algebra.
Moreover, the R-module

Ext(F, G, ® Lie(F))
18 isomorphic fo the sel of x-isomorphism classes of deformations of F to the

ring Rle)/(€?).

ProoF. The statements on Hom are simply restatements of Proposition 3.2,
using the isomorphism { , }: Lie(F}®w(F) =R. The statement on Ext is a
restatement of Proposition 7.2. [
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8. Rigidified extensions

We define a rigidified extension of F by G, as an extension of formal A-
modules over R:

(8.1) 0 — G,—E LF —o0

together with a splitting of the sequence of Lie algebras (cf. MM, §2]}

(8.2) 0 — Lie(G4) == Lie(E) (ﬁ__" Lie{F)

a

in the category of free t-modules. Equivalently, a rigidified extension is an
extension together with an invariant differential wg on E such that

(8.3) a’{wp)=dX' in w(G,).

The R-module RigExt(F, G,) of rigidified extension classes fits into a 4 term
exact sequence [Kat78, §5.2):

(8.4) Hom(F,G,)-+uw(F) — RigExt{F,G,) — Ext(F,G,) — 0.
Indeed, two rigidifications of a fixed extension differ by an element in
Hom{Lie(F), Lie{G,)) = w(F?),

and the splittings of a trivial extension form a principal homoegeneous space for
Hom(F,G,).

When R is A-flat, so injects into the K-algebra R ® K, we can give an ex-

plicit description of RigExt(F, G.) following Honda, Fontaine [Fon77)], and Katz
(Kat79, §5.1]. If g(X) is a power series with no constant term and coefficients
in R@® K, we say the 2-cocycle ég = { Ag(X,Y),8,9(X) } is integral if the series
Ag(X,Y)=g(Y) —g(X +r Y) +9(X)
bag9(X) = ifa)g(X) —glarX) a€A

have coefficients in R.

PrOPOSITION B.5. Assume R is A-flef. Then there is an isomorphism of
R-modules

RigExt(F,G,) =
: {g{X)e R® K[ X] | g(0) = 0,69 and dg are integral }
{g(X) € R[X] : g(0) =0} o
ProoF. Let (F,wg) be a class in RigExt(F, G,). Write E in the form of
Proposition 6.5; then

(8.6) wg = dX' + v(X).

EQUIVARIANT VECTOR BUNDLES 37

By Proposition 3.2, there is a unique homomorphism
{8.7) fe:E— G,
over B ® K such that dfg = wg. The map fg is given by a series

(8.8) fe(X', X) = X'+ g(X)

where g{X) € R @ K[X] satisfies g(0) = 0 and dg(X) = v{X). Since fr isa
homomorphism, we have

(8.9) b9 = {4, }

where { A, 8, } is the 2-cocycle over R describing the extension F. Hence both
dg and fg are integral.

The definition of g(X} required a formal splitting of the extension E over R,
to write it in the form of Proposition 6.5. If we change the formal section, and
describe E by the cocycle { A", 8.} = {A,8,) -+ 6h, we find that ¢ = g + A
Since the series k has coefficients in R, the series g is well-defined in the quotient
by integral series.

Conversely given a series g with ég and dg integral, we define an extension E
of F by G, over R using the symmetric 2-cocycle §g = { A,8,}. We define a
differential wg on E by the formula

The class of {E,wg) in RigExt(F,G,) depends only on g, up to the addition of
an integral series. This gives the bijection of Propogition 8.5. 1

We can give a deformation-theoretic interpretation of the R-module:
RigExt(F, G,) g Lie{F') = RigExt(F, G, ® Lie(F)}

similar to the second assertion of Corollary 7.5. Let wy be a basis for the free
R-module w(F) of invariant differentials on F. Then wp gives an isomorphism

* of R-modules:

RigExt(F,G,) ®g Lie(F) = RigBxt(F,G,).

-We claim that the elements in this R-module are in one to one correspondence

with x-isomorphism classes of deformations (G, wg) of the pair {F,wr) to the
ring Rle]/(€).

Indeed, assume (E,wg) defines a rigidified extension of F by G,. Define the
deformation G of F* over Rle}/(e?), using the cocycle { A,6, } arising from a
formal splitting of E and the invariant derivation D = A(X)8/8X dual to wr,
as in Proposition 7.2. Then the differential

{8.11) wolX) =wr{X) + ev(X)



38 M. J. HOPKINS AND B. H. GROSS

is invariant on , where (X} is given by (8.6). If R is A-flat, then F(X)+eg(X)

is a logarithm for the group G over @ K, where f is the logarithm associated
to w 6n F and g(X) is given by (8.8).

PropPOSITION 8.12. Assume F is an A-typical group of dimension I over the
flat A-algebra R, Then
RigExt(F, G,) =
{9(X) = oo me X7 ilm)* -my € R,dg and Eymtegml}
{o(X) = ome X :my € R}

PrROOF. Every *-isomorphism class of deformation of F to R[e]/(e?) is repre-
sented by an A-typical group G. The logarithm f{X) + eg(X) associated to we
is then a series of the form (5.2), so

gX)=3 mX?  with mceR®K
k>0

with dg and 8g integral. We must show that this implies that i(m}* . my les in
R, which we write as 75 . my, for simplicity.

Since dg is integral, my lies in B. Assume that & > 1 and that we have shown
that wf_mj lies in R for all § < k. Consider the coefficient of X «* in the integral
SEries

bxg(X) = i(m)g(X) — g(mr X).
This is equal to
Ty — mk;:qu + terms in 7' *R.
Since k > 1, this shows that 7my lies in 71~*R, sa m*m; Hes in R. [

We call a power series g{X) = kaX‘?i, with dg and 6g integral, a “quasi-
logarithms” for the A-typical group F. In the next section we will calculate the
quasi-logarithms on the universal A-typical group F[y] over the ring

A[g] = A[vl,vg,. - ]

9. Universal quasi-logarithms

We let Fip] be the universal A-typical group over Afy] with logarithm

1X) =Y bu(wx™

b>0

over K|y] defined by (5.3). For ¢ = 1,2,3, -- we let I); be the derivation

(9.1) D.-b(g}=a%b(w of Kl
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© ProposITION 9.2, Fori=1,2,3, .- the series

Xq‘ )
%u(X)=3Y D he(w)X? = 2— 4. mod deg ¢ +1

k>0
is o quasi-logarithm for the group Fu). We have:
1 1 i i
bgi(X,Y) = ;(X" +¥? — (X +Y)?)}

1 L mod deg ¢° + 1
Sa0:(X) = ;(a— a? ) X9

PROOF. Let Gi[v] = o;(Flz]) be the deformation of Flu] to Afu)je]/(c® = 1)
given by the homomorphism
a; : Alp] — Aly]le]/(e*)
v —+ v j#i
v — vt el

Then the logarithm for G;[v| has the form f + eg;, where g;(X) is defined by
Proposition 9.2. Hence g; is a quasi-logarithm for F[_] and the calculation of

. 8g; is immediate. J

COROLLARY 9.3. For any ag, a1, a3,... in Aly], the series

9(X) = aof +oug1 + azga +---
i$ a quasi-logarithm for the group Flu).

We now consider specializations of the universal quasi-logarithms g; to formal
A-modules F' over local A-algebras R. Recall that a “local A-algebra® is com-
plete, local, and Noetherian with maximal ideal P containing i(x). We assume
F is A-typical of dimension 1 and height n over B; then F = a(Fy]} for a unique
homomorphism of A-algebras

;x:A[g]—rR.

By Proposition 5.7 we have: )
'
Trpi(X) = v X? mod (x,v1, - ,0%_1), deg{g®+1)
Since F has height n over R we therefore have
a(v;) e P i=1,2,...,n—1
(9.4) -
alzg) € R

When R is A-flat, so injects into £ ® K, we may define the specialization of
the guasi-logarithms f, g1,... ,g4—y on Fy] via the map e to obtain classes

(95) fU = a(f).-fl = a(gl}v"' lfnﬂl = a(gu—l) € ’Rigﬁxt.(F, Gu).
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For general local A-algebra R, we cannot Specializ-e the quasi-logarithms g;, but
we may define the specialization of their coboundaries §g;, which are symmetric
2-cocycles on Flu] over Afyl. Fori=1,2,... ,n — 1 define the classes

(9.6) §fi = w(fg:) = { AYX,Y),6{X)} in Ext{F,G,).
By Proposition 9.2 we have the congruences
(9.7) Fi(X)=(1-77"1)XY  mod degg +1

ProPOSITION §.8. Let F be a formal A-module of dimension one and height
n over the local A-algebra B. Then the R-module Exi(F,G,) is free of rank
(n—1) with basis {§f1,6f2,... ,6fa—1 } and the R-module RigExt(F,G,) is free
of rank n. When R ts A-flat, the quasi-logarithms { fo, f1, f2,... . fn—1} give @
basis of RigExt{F, G,).

PROOF. The congruence {9.7) and the argument in [LT686, Prop. 2.6] com-
bine to show that the elements {6f;,... ,&fn—1 | give a basis for Ext{F,G,) =
H2(F,G,),. Weshow here that the classes 6 f; are independent over R, and leave
the proof that they span to the reader.

Assume that 3" 0y(6f;) = 0 in H?(F,Ga)s- In particular, there is a series
A{X) in R[X] such that

n—1
(9.9) S b (X) = beh(X) = h{zpX) — i(m)B(X).

i=}

Since i{x) is in P and
(9.10) mrX = g(XT) (mod P)

the coefficients of X¢' on the right hand side of (9.9} arein Pfori=1,2,... ,n—
1. But by (9.7) we have

(9.11) E(X)=XT +---  {mod P).

Hence a; = 0 mod P, which implies az = 0 mod P, etc. Thus a; = 0 mod P
for all 4, and the left hand side of {9.9) is a series with all coeflicients in P. Since
(0} % 0 in (9.10), this implies that h(X) is in P[X].

Now assume, by induction, we have shown that a; = 0 mod P*~! for all {
and that A(X) is in P*~*[X]. Then i(n)}h(X) is in P*[X] and the coefficients of
X7 on the right hand side of (9.9) lie in P¥, for i < n— 1. By (9.11) this shows
that @) = 0 mod PF, hence s =0 mod P*, ete. Similarly a; = ¢ mod P* for
all 7 and the left hand side of (9.9) is a series with all coefficients in P*. Using

-(9.10) and the fact that g'(0) s 0, we see that A{X) € P*[X]. This induction
shows that o; = 0 mod P* for all k > 1. Since (., P* =0in R, o; = 0 for
i=12-,n-1 0O -
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Since Hom(F,G,) = 0 by Corollary 4.3, we have an exact sequence
{9.12) 0 — w(F} — RigExt(F,G,) — Ext(F,G,) — 0

following (8.4). Since w(F) is free of rank 1 and Ext(F, G} is free of rank n —1,
RigExt(F,G,) is a free R-module of rank n. The elements { fg, f1,. .. o1}
give a basis when R is 4-flat, as f; spans the image of w(F) and the images
{8f1,... ,6fa_y1 } give a basis of Ext(F, G,).

CoROLLARY 9.13. If R — R' is a homomorphism of local A-algebras, the
induced maps of free R'-modules

EXtR(F, GaJ ®R — Extp(F, Ga)
RigExtp(F,G,) @ R’ — RigExtp (F,G,)

are isomorphisms.

10. A-divided powers

Let R be a fiat A-algebra. We say an ideal J C R has “A-divided powers”
provided '

(10.1) 9 CaiR  dorallj2> 1.

{We write 77 R for i(7)J R throughout this section.)

As examples, the ideal f = n R has A-divided powers. Another case of impor-
tance is when R is the ring of integers in a finite field extension L of K. Let P be
the maximal ideal of B and e the ramification index of L over K, so (P)* = nrR.
The ideal P has A-divided powers provided

J
(10.2) % >j forallj> 1L

This occurs precisely when e < g. We note, for future reference, that the in-
equality of (10.2) will certainly hold for all > J(e,q), where J(e, g} is an mteger
depending only on € and .

PrOPOSITION 10.3. Let F gnd F' be two A-typical formal A-modules of di-
mension I over R, and let I C R be an idesl with A-divided powers. If ¢ and ¢
are elements of Hom(F, F') with ¢ = mod I, then

p* =" : RigExt(F',G,} — RigExt(F,G,).
PROOF. Let o € RigExt(F’,G,), and represent o by a quasi-logarithm
g{lX) = Zm;;qu with 7*m, € R.

Then *g(X) is represented by the quasi-logarithm g(pX) and ¥ g(X) is rep-
resented by g{1X). Hence we must show that

p=1v¢ mod = g(p)=g(x) mod R
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Write ¢ = 4 + A where A(X) € I[X]. Then
olw) — glw) = 3 mel(p + 8) —%7")

=S (£ (¢

But for ¢ > 1, ("T:)Ai has coefficients in #*R. (This uses the fact that g is in
mR). Since my - ¥ is in R, this establishes the claim. [

11. The universal additive extension

Let R be a local A-algebra and let F be a formal A-module of dimension 1
and height n over R. Combining Corollary 4.3 and Proposition 9.8, we have seen
that

111 {Hom(F, G,)=0

Ext(F,G,) isa free R-module of rank n — 1.

These facts combine to prove the existence of a universal additive extension E

of F aver R.
Let M = Hompg{Ext{F,G,), R}, which is a free R-module of rank n — 1, and
let F' = G, ® M be the associated additive formal A-module of dimension n — 1.

Then
Ext(F, F') = Ext(F,G,) ® M

= Endg{Ext{F, G,)).
" Let
(11.2) 0— g 2LF 0

be an extension corresponding to the identity map in Endg(Ext(F,G.)). If
0 — F' - BE' = F — 0 is another extension in this class, there is & unigue
“isomorphism i : B — E' over R which makes the diagram

0 . F' E F 0
q| Is |
0 . F! E F 0

commute. Indeed, the difference of two isomorphisms would induce a homo-
morphism from F to F', and Hom(F, F'}) = Hom(F,G,} ® M = 0. Hence the
sequence {11.2) is well-defined up to a unique isomorphism over R, and we call
E the universal additive extension of F.

PrROPOSITION 11.3. If0 — G’ — E' — F — 0 i3 ary extension of F by an
additive A-module ', there are unique homemorphisms over R:

i:E—E, ¢d:F -G
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such that the diagram:
0 — F' — E —F o
g I
0 — ¢ —— B — F g
commutes.
PROOF. Write ¢’ = G, ® M’. Then

Hom(F', G’} = Ext(F,G,) ® M’
= Ext(F,&").

This gives the homomerphism g'- The unicity of { follows from
Hom(F, Gy = Hom({F,G,) ® M’ = 0.

(|

Proposition 11.3 states that any additive extension of F arises uniquely by
pu_.sh~out frofn the universal additive extemsion. In particular, any endomor-
Phxsm of F lifts uniquely to an endomorphism of E. We also have a canonical
isgmorphism
(11.4) w(E) = RigExt(F,G,).

Indeed, let Ia be a class in RigExt(F,G,), viewed as an extension E' of F by

G, and a d.lﬁe.rentml wg which pulls back to dX’. The universality of £ gives

a htOfnomorphxsm i:E — E, and i*(wpg) is the associated class in w(E). The

restriction of i to F' is the map ¢ : F' — G, which is the ima i
: a of e in

Ext(F,G,) = Hom(F", G, ). Hence *

(11.5) w(F') = Ext(F, G,)

and the exact sequence (9.12) is given by the cotangent sequence

(11.6) 0 — w(FE w(B) 2 u(F) — 0.

Its dual, in the category of R-modules, is the exact sequence:

(1L.7) 0 — Lie(F') % Lie(E)2 Lie(F) — 0

of Lie algebras, where the terms are free R-modules of rank » ~ 1,n, and 1
respectively. 1 ,

l SO
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Part II1. Equivariant bundles on the moduli space
12. The universal deformation

Henceforth we fix an integer n > 1. Let

(12'1) A[[_]] =Aﬂu1,1£2,“' 1”‘“—1]]

be the local A-algebra of power series in the variables u;. Then AfJu] is a regular
local ring of dimension n, with maximal ideal (7, uy,ug, - ,4n—t) and residue
field

{12.2) Al f{m i, yug—1) = AfrA=k

finite of order q.

Let F = Flu] be the A-typical formal A-module of height n over Afu] which
is obtained from the universal A-typical module Flu] defined in §5 by the spe-
-cialization

F =aF[]
a:Afy]  —  Afd]
{12.3) w1y t=1,2,---n—-1
Un — 1
i — ] izn+1.

It foliows from Proposition 5.7 that we have the congruence
{(12.4) (X} = X9 mod (7,1, ,un_1), degg”+1L

Hence the reduction F ® k of F modulo the maximal ideal of Afu] has height
n. In fact, we have [Haz78, 3.2.4]: '

(12.5) Tree(X)=X% in E[X].

Since the A-module F @ k s defined over the finite field with ¢ elements, the
series

(12.8) (X)) =X?
gives an endomorphism of F ® k, which satisfies
(12.7) "= in End(F®k).

It is not difficult to show that End(F ® k) is the commutative A-algebra Alp] of
integers in the totally ramified extension K(¢) = K(¥/7) of K.

Now lef & be any local A-algebra — recall that this means that R is complete,
local, and Noetherian, with maximal ideal P containing i{z). The R-module

(12.8) Hom(A[u], R}

of all continuous homomorphisms of topological A-algebras is isomorphic to
(Py*~!. Indeed, such a homomorphism 8 : Afu] — R is completely determined
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by the images B(u;), which must lie in P. We say that the formal A-module F'
over R is a deformation of F @ k provided

(12.9) F'=F®k mod P,

Since R/ Plis a field containing %, the field of definition for F®k, this congruence
is meaningful; in particular, F* has height n over B. The key deformation-
theoretic result over local A-algebras is the following theorem of Lubin-Tate
[LT66, §3, for A = Z,] and Drinfeld [DriT4, §4].

PROPOSITION 12.10. Let F' be a deformation of F®k over the local A-algebra
R. Then there is ¢ unique element

8 € Hom{A[u]}, R) = pr-i

such that the specialization BF = F[fu] is x-isomorphic to F' over R. Moreover,
the x-tsomorphism

h:BF 5 F°  overR

is unigue.

Proor. This is exactly as in Lubin-Tate; the key cohomological caleulations
are as follows. First:

(12.11} Ext?(F',G,) = 0.

This insures that deformations from R/ to R exist when 72 = (, and that the
versal deformation space is smooth. Next, since F' has height n

(12.12) Ext'(F',G,) is free of rank n — 1 over R,

This gives the dimension (= n—1) of the tangent space to the versal deformation
space. Finally, since ¥ has finite height

(12.13) Hom(F',G,) = 0.

This shows the generic deformation has no non-trivial automorphisms, and that
the moduli space exists. [

Proposition 12.10 states that the functor of *-isomorphism classes of defor-
mations of F' @ k to local A-algebras is representable by the formal scherne

(12.14) X = Spf Afu].

Indeed, X(R) = P"?, It also shows that F = Flu] is a universal deformation
of F ® k over X. The general fibre

(12.15) XeK

is a rigid analytic space over K, isomorphic to the {n — 1)-dimensional polydisc.
We will study this analytic space, and the K-algebra K{{u}} of rigid analytic
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functions on it, more thoroughly in Part V. Here we simply note that its points
over an algebraic closure K of K are given by

{12.16) (X ® K)(K) = X(4) = ()"},
where A is the integral closure of A in K and m is the maximal ideal
{ee d:ord(a) >0}
If 5 € (M) ! we let Fy be the corresponding specialization of F' = Flu] over

the flat A-algebra R = A[A].

13. The canonical lifting

In this section, we study the specialization Fy of the universal deformation
F = F[u]. This is a formal A-moduie over the local A-algebra R = A, which is
obtained by the homomorphism 2 : Afx] — A with 8(u;) = 0 for all :. Hence
Fy iz an A-typical formal A-module of height v, which is obtained from F[v] via
the specialization

a: Ajy] — A
(13.1} . pt— 0 i#EN

oy — 1.

We call Fj the “canonical lifting” of F ® k.
Since Fy = F ® E mod TA we have

(13.2) TR(X)=XT  ( modwA)
by (12.5). As for the logarithm of Fg, we have the following formula.

LeMMA 13.3. The logarithm fo of Fy it given by the series

an Xq2u
fU(X}=X+ + 3
x T
Yot
= %
k0

Proor. This follows from a combination of {13.1) with the functional equa-
tion {5.3) for the logarithm of Fly]. Together they show that fo(X) satisfies the
functional equation

IolX) = X + 2 folX<")

which gives the expansion recursively. O

Let ¢, be a primitive (g™ — 1) root of unity in K. Then the ring A, = Af¢,] is
the unramified extension of degree n over A, with residue field A, /74, =k, =
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k() the cyclic extension of degree n of k. The automorphism group of A, over
A is cyclic of order n, generated by the Frobenius automorphism o defined by

(13.4) o(Ga) = CX.

This automorphism satisfies the congruence

(13.5) of{a) = o (mod 1A,}
for any element o € A,,.

PROPOSITION 13.6. The series (o{X) = (, - X defines an avtomorphism of
the formal A-module Fg over A,. We have

(13.7) Endg, (Fp) = Apn.
Proor. By Lemma 13.3, we have fu((o + X) = (n - fo(X). Since
Ry(X,Y) = [§ (ol X} + fo(¥))
ap(X) = f5' (@ So(X)),

we find that
FQ(C,,X_. CaY)=Cn- Fg(X, Y)
aFg(CnX) ={n- aFo_(X)-

This shows (, - X is an automorphism of Fj, and that the ring 4, = A[(,] acts
as endomorphisms of Fp over the base R = A,.

Since Fy has height n, the inclusion A, — End 4, (F}) shows that Fp is a group
of Lubin-Tate type [LT65]. (This also follows from the congrience (13.2)). We
may then conclude that A, is the absolute endomorphism ring of F5. O

We now give a description of the free A-module RigExt{Fy, G,) using quasi-
logarithins.

PROPOSITION 13.8. The series

JolX) = Fypg X
fHilX) = 15X i=1,2---,n—1

are quasi-logarithms for the formal A-module Fy, and give o basis for the free
A-module RigExt(Fp, G,). These basis elements are eigenvectors for the action
of A = End g, (Fy). We have

(13.9) o’ (fi) = o'(a)- fi

forallao€ Ay andi=0,1,--- . n—1.
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PRrOOF. The series f; in Proposition 13.8 are exactly the specializations (9.5)
fi = lgi)} of the universal quasi-logarithms en the A-module F[v] via the ho-
momorphism a of 13.1. Hence they give a basis by Proposition 9.8.

Since any a € A acts by multiplication by a on RigExt(Fy, Go) = w(Ep}, it
suffices to show that .

GUY = fi
which is a special case of (13.9). This follows from the fact that for any quasi-
logarithm g(X) on fy we have

Gag{X) = g(Ca X).
O
Finzlly, we may use the canonical lifting Fy of F @ k to determine the ring

Endy_ (F ® k), which is also the absolute endomorphism ring of the reduced
group F' @ k, By Proposition 4.2 we have an injection:

A, =Endg, (Fy) — Endy (F @ k).
The series p{X) = X7 also defines an endomorphism of F' ® k, by (12.6), which
satisfies ™ = m.
PROPOSITION 13.10. We have
Endg, (F® k) = A, @ Anp & A D@ A"t

where pa = o for all o € A,. This ring ts the abselute endomorphism ring
of F @k over k, and is isomorphic to the mazimal order in the division algebra

of invariant % with cenler K.

Proor. This is standard, see [Haz78, §23]. O

14, The group action

We now describe the action of the group scheme G = Aut{F ® k) on the
formal A-scheme X = Spf Afu] of deformations of F ® k to local A-algebras.
The group G is étale over k, with points

{14.1) GEY=ApI" =A@ Ap®-- & Ap" !
G(k‘ﬂ) = G(E} = A"[[p]‘ = A:L ®An¢$ RN An‘P”_l.

It is the twist of the constant group scheme A,[¢]* over & by the one-cocycle
of Gal(kn /k) taking the generator ¢ to the automorphism “conjugation by ¢”.
We view (7 as an étale group scheme over A4, which becomes constant over the
unramified extension A,. The torus T = Aut(F;) is a subgroup scheme of G,
with points

(14.2) {T(A) =4

T(An) = Ay,

EQUIVARIANT VEGTOR BUNDLES 49

and the center Z = Aut(F) of ¢ is the constant group scheme A*.

Let b be an element of G(A4,) = Auty_(F ® k), given by the invertible power
series b(X) with coefficients in k,[X]. Lift the series b~1(X) arbitrarily to an
invertible series A(X) with coefficients in A4,, and define the formal A-module
F' over A, [lu] by

(14.3) {F’(hX, RY) =R{F(X,Y))

ap(hX} = h{apX),

where F = F{u] is the universal deformation over Aflu]. By definition of F*, the
series h defines an isomorphism of formal A-modules

{14.4) h:FS F over  An[u].

Since A reduces modulo (7, uy, . .. , %,—;) to b1, which is an automorphism of
F @k, the group F' is also a deformation of F @ k. Hence, by Proposition 12.10,
there is a unique continuous homomorphism of A-algebras

(14.5) B: Alu] — Adlu]
such that AF is *-isomorphic to F’. Moreover, the *=igomorphism
(14.6) JiBF S F over  An[ul
is unique. .
PROPOSITION 14.7. The homomorphism 3 of {14.5) depends only on
be Aut(F® k)

(and not on the lifting h(X) of b=*(X) to A,[X]). It extends to a continuous
eutomorplism of A, -algebras

B=p0): Anllu] = An[ul.

The composite map

(14.8) k=k(b): pP-L PP

depends only on b, and is the unique isomorphism from AF to F over Ap ]
which reduces to the automorphism b of F® k& mod 7, u.

ProoF. The map f# depends only on the *-isomorphism class of the defor-
mation F, which is clearly independent of the choice of lifting h(X). It clearly
extends to a homomorphism of Ap-algebras; we will soon show (Prop. 14.9) it
is an automorphisim by proving that the composite 3(b) o (™1} is the identity
map.

The isomorphism k clearly reduces to b mod ,u. By Proposition 4.2 it is
the unique map from AF to F with this property, so depends only on b. O

i .
3
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PROPOSITION 14.9. The map b — B{b) defines e repregentation
B G(Ay) ~— Auty, (An[lu]),
30 the group G(Ay,) aets on (the left of) the A,-algebra A, [u].

Proor. Let by, by be elements of G(A,) = Auty (F @ k), and write 3; for
A(b;) and &; for k(h;). We will show that

{ﬁ(blbﬂ =B(by) ¢ Blbz) = fr o fa
k(b1 ba) = &y o By1(k2).

Indeed, the composite k; o 81 (kg) is an isomorphism .

(14.10)

B FEg p g

whichreduces to by by in Aut{F@k). Hence 315 F and F(b1b2)F are *-isomorphic.
By uniqueness, this proves (14.10}. 0O

The left action of G{Ay,) on the Ap-algebra A,[u] gives, by transport of
structure, a right action of the étale group scheme G on the formal scheme
X = Spf Afju] over A. I r is a point of X{R) = Hom(Afu],R) and ¢ is 2
function in Afu] we write

(14.11) {x,p) =zoy inR.
{From the dual point of view, {z, )} is just the value of the function {u) at the
point z.) The element g € & acts on X by the formula:

(14.12) {zg, p) = (z,9¢).

This gives a morphism

XxG—X
(z.9)— =g

in the category of schemes over A, which satisfies all the diagrams for a group
action.
The following result describes the orbits of G on X.

PROPOSITION 14.13. Let £ = (z1,--- ,Zn—1) be a point in X(R) = P71,
corresponding to o deformation F, of F ® k over the local A-algebra R, up to
*-isomorphism. The subgroup scheme Gz of G fizing x is equal to the image of
the injection

Aut{F) — Aut{iF® k) =G

under reduction mod P. The G-orbit of z consisis of those deformations Fy
which are isormorphic to £ over R.
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ProoF. Indeed for b € G(R), the point 2 in X(R) = P"! corresponds to
the deformation Fy» over R which is #-isomorphic to

Fy = W(Fe(h" X, h7Y)).

This is always isomorphic to Fy over R (via 4), and is *-isomorphic to F, iff b
lifts to an automorphism of F; over R. [}

In particular, Proposition 14.13 shows that the center Z of the group scheme
G acts trivially on X, as every lifting F; has endomorphisms by A and hence
automorphisms by A*. It also shows that the torus T is precisely the subgroup
scheme of G which stabilizes the point 2 = 0 = (0,0,--- ,0) of X{A4) = (w4)*~1.

The action of an element b in G(A,) = Aulp]* on Apflull is completely deter-
mined by the images

(14.14) Blbyou; =Y aib),u’,

as A{b] is A,-linear and continucus. The constant coefficient a;(b)g lies in 74,
and the linear coefficients a;(h); give an invertibie Jacobian matrix:

det(a;(B);) € AL

The element & € Aut(A4,/A4) acts by conjugation of coefficients

(14.15) a3 e’} =3 ala)) - u';
this action is A-linear and normalizes the action of G(A,). We have the formula
(14.16) of(ble™" = Blpbp™")

in Aut4(A.[u]). In particular, the compact K-analytic group
(14.17) G = G(4,) » (o)

acts on the A-algebra An[u], where o acts on G{A,) = Anfe]" by the outer
automorphism “conjugation by ¢”.

PROPOSITION 14.18. The invariants A, ul€ of G on the ring Aq[u] consist
of the constant power series in u with coefficients in A.

PROOF. It suffices to show that A,[y]¢4) = A,, as A — A by Galois
theory.

To do this, we observe that G(A4,) has a single orbit on the set X(A;) =
(mA,)" 1. Indeed, any lifting F; of F®k to R = A, has n-series satisfying

e, (X)=1X { mod deg?2)
7F (X) = x4 { mod wA,).

T R T

—
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Hence F is a formal A-module of Lubin-Tate type [LT65] with Enda, (F;) =
A,. Since all Lubin-Tate modules are isomorphic over A,, Proposition 14.13
shows that G(A,) has a single orbit on X{A,), and in fact, that

(14.19) X(Au) = G(An)[T{An) = Anly]" /A3

as T(Ayn) is the stabilizer of Fp.
Consequently, if the series f(u) = Y asu’ in A,[u] is fixed by G{A,.), we
have

_ fa) = 1@ =0
for all z € X(A,)} = (wA,)""!. Hence the series
fu) - £(0) = o(u)

vanishes on {r4,)"!, which implies that g(u} = 0 and f(u) = ap. - Indeed, if
gl(u) # 0, its zero locus is nowhere dense in

Y1) ={ze{RB)" 7 :|z;| <1/g foralli},
50 cannot contain (rA,)""! [BGRS84, 5.14]. O

15. Eguivariant vector bundles: general theory
Let {?x denote the sheaf of functions on the formal scheme X over A, so
(151) HO(X,0x) = Au}.

An equivariant vector bundie M on X is by definition a sheaf of Ox-modules,
which is locally free of finite rank, together with a right action of &

(15.2) MxG— M

which is compatible with the right action of G on X.
Since X is affine, the equivariant bundle M is completely determined by its
space of sections

(15.3) . M=HX @ A, M@ A,),

which is a free A, [iz]] module of rank = ranke, (M). The group G(A,) = Aq[pl*
acts A, -linearly on the left of M, and this action satisfies

{15.4) ] b(r -m) =p(r) - tm

for r € Ayflu]] = R, where 8 = B(b) is defined by (14.5). Since M is defined
over A, the cyclic group {o) = Aut(A4,/A) acts semi-linearty on M, and this
normalizes the action of G(A,}. Hence the group G = G{A,) = {#) acts A-
linearly on M and this action satisfies

(15.5) glrm)=g{r)-g(m) reRmeMgel

sl
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Couversely, an A-linear representation of & on a free R-module M of rank m
determines an equivariant vector hundle M of rank m on X , provided the action
satisfies (15.5) and M(*} is a free Afu]-module of rank m with M) @ 4p,; R =
M. i

The_simplest example of an equivariant bundle M on X is the trivial bundle:
M = Ox, M = R of rank 1. If M and N are two equivariant bundles on
X which afford representations M and N of G, then M &N, M ® N, and
Hom{M, N) are equivariant bundles on X which afford the representations

ManN glm,n) = (gm, gn)
{15.6) M@ N
Hompg(M,N)

glm@n) =gm@gn
af{m) = g(f{g~'m))

respectively. The equivariant vector bundle A = Hom{AM, Ox) is called the
dual of M, and M" = Homg (M, R} the dual representation.

A homomorphism f : M — A of equivariant bundles on X is a homomor-
phism of Ox-modules which commutes with the right actions of G. This gives
tise to a homomorphism f : M — N of free R-modules which satisfies

{15.7) flgm}=g(f(m)} meMgecC.

We say f is an isomorphism iff it is an isomorphism in the category of R-modules,
and that the sequence '

0— M —M—M' —0
of equivariant bundles is exact if the associated sequence of representations of 8]
Qms M — M — M — 0

is exact in the category of R-modules. We have canonical isomorphisms of rep-
resentations

(MT
Hom(M, N).

Lz |2

M

Let Homg (A, M) be the A-module of all G-homomorphisms from N to M.
Then

(15.9) Homg (N, M) = (M &5 N)E.
In particular:
{(15.10) : Home{Ox, M) = ME,
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PROPOSITION 15.11. We have rank o(ME) < rankg(M)}. In porticular, the

A-module
Homg (N, M)
is free of rank < rank(A) - rank{M}.

Proor. Let {mq,---,m:} be a maximal set of R-independent elements in
ME; clearly t < rankg(M). If m € M€ we have m = E;f":lr‘-m,— with g{r;) = r;
for all 4, and g € G. But by Proposition 14.18, RE = A and hence the elements
my give an A-basis for ME. ]

We may also define tﬁe A-modules
(15.12) Exts (N, M)

as derived functors of Homg in the category of Ox-modules with an action of
. In particular, we define the cohomology modules of an equivariant bundle A4
by

(15.13) HE(X, M) = Exth(Ox, M).

These are subtle invariants of the representation M of G.
We say the equivariant bundie A4 has central character x : A* — A* if, for
all m € M and a € A* = Z(A,) we have

(15.14) a{m) = x(a) - m.

For example, the central character of AM = Ox is equal to the trivial character
x =1, as Z acts trivially on X,

Let N : Aq[p]* — A* be the reduced norm homomorphism; the restriction of
N to the center A* is equal to the character x{a) = a®. If k is an integer, let
Ox (k) be the equivariant bundle of rank 1 on X whose representation R(k) is
given by the following twisted action of G on R:

(15.15) gelr) = (NDY . g(r) 9 = bx ot

Then Ox(k) has central character x(a) = a™*. More generally, if M is an
equivariant bundle on X we define the twisted bundle

(15.16) Mik) = M ® Ox (k).
Then rank M{k} = rank M and M(k)(f) = M(k + £). If M has a central
character, so does A{k) and

(15.17) Xmpmy{a) = xamfa) - a™.

Instead of considering all equivariant bundles M on X, we can resirict to
those with trivial central character x. These may be viewed as PG-equivariant
bundles on X, where PG is the projective group.

(15.18) PG = G/Z.

R e e n&d&%
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We may define the A-moduies

(15.19 [ Bxtpa (M, M)
19) Hig(X, M) = Bxthg(Ox, M)

as derived functors of Hompg in the category of (7x-modules with an action of
PG.
16. Equivariant bundles: some exact sequences

We now use the universal deformation ¥ over Afu] to define some natural
G-equivariant bundles on X. Consider for example, the free R = A, Ju] module

(16.1) M = Lie(F) A?I;ll An [u]
of rank 1. This has a natural action of {o) = Aut{A,/A); we now describe an

An-linear action of the group G(4,) = Auty (F® k) on M,
Recall that for each b € G(A,), there is a unique isomerphism

k(b): BF — F

of formal A-modules over R which reduces to b mod (). Here 8 = 8(b) is
the automorphism of A,{u] studied in (14.5)-(14.7). Consider the composition

ML Lie(gF) “
where the first nap is given by the base change 3: R — R. We define
(16.2) b(m) = k(b).(fam) me M.

Since k(b), is R-linear and @.(rm) = f(r) - Bu{m), this action of G{A,,) satisfies
(15.5). Hence there is an equivariant fine bundle (= vector bundle of rank 1)
Lie(F) on X with

{16.3) M =HYX ® A,, Lie{F) ® A,).

The central character of Lie(F) is given by the formula

(16.4) xLie(F}(“') =a.
Indeed, for b =0 in A* we have # =1 and k{b) = ap.

Let E be the universal additive extension of F' over Aflu] and let 7' be the
additive A-module F' = G, @ Hompg (Ext(F, G,), R). We have an exact sequence

of free Afu]-modules:
(16.5) 0 —t Lie(F'} - Lie(F) — Lie(F) — 0.

Stmilar to the above, once we extend sealars to R = A, fu]), there is an action of

G(An) on the free R-modules in this exact sequence, We summarize this result
as follows.

*
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PRrOPOSITION 16.6. There is an ezact sequenc-e of equtvariant vector bundles

on X:
0 — Cie(F') ~— Lie(E) ~= Lie(F) — 0

of ranks n — L,n, and 1, respectively, which gives the sequence (16.5) of free
Aflu]-modules on faking global sections. The central character of these bundles
is giver by: xpio(a) =a. O

Taking the dual of the exact sequence in Proposition 16.6 gives an exact
sequence

0 w(F) + w(E) — w{F} —— 0

|| |

RigExt(F,G,) Ext(F, G,)

of equivariant bundles on X of ranks 1,n, and n — 1, respectively, and central

character ¥m(a} = a~'. We may define the action of G(A,) on the sections over

Ap, using the formula:
(16.7) b(m) = (k(b)~"}"(Bamn).
Indeed, the functors w(F"), RigExt(F, G, ), and Ext(F, G,) are contravariant and
commute with base change.

If M is any equivariant vector bundle on X, the fibre Mg over z = 0 is a
free A-module, and the torus T(A4,) = A} which stabilizes £ = { acts on the

Aq-module My = Mp & A,. We can determine this action on the vector bundles
Lie and w, using Proposition 13.8. . :

PrOPOSITION 16.8. The torus T(A,) acts on Lie(F)y via the identity char-

acter ¢{a) = a of A’, and acts on Lie(E)g wia the direct sum of the n distinet

characters e;(a) = o¥(a) i=0,1,2,...,n~1.
17. The tangent bundle and the canonical line bundle
Let Tx denote the tangent bundle of the {(smooth) formal scheme
X =Spf Afuy,... ,us1]
over A. Then Ty is a vector bundle of rank n ~ 1 on X; the sections
T=HYX® A, Tx ® A,)

are in one {0 one correspondence with the deformations of the universal group F
from R = A,fu] to Rle]/(€?), up to #-isomorphism. We now define an action of
G{A,) on T, which gives Ty the structure of an equivariant bundie on X with
trivial central character.
Forte T, let
{ FX.Y)=FX,Y)+GX,Y)

ap (X} = ap(X) + eg.(X)
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be the corresponding deformation. If b € G{A,), the deformation b(¢) is given
by first conjugating the above series by # = B(b) to obtain a deformation AF,

then using the isomorphism k = k() : #F =+ F to obtain a new deformation of
F:

(17.1) { Fyy (X, ¥} = k(BF(RT'X E7YY) + 8GR X, k1Y)
2Figy (X) = E(Bar(k™ X) + eBoq (k7' X)).
PROPOSITION 17.2. The isomorphism of free R-modules in Proposition 7.2:
¢ : Ext(F, G,) @ Lie(F) — T
induces an isomorphism of equivariant vector bundles on X :
0 : £xi(F, Go) ® Lie(F) I Ty

PROOF. We must check that @ commutes with the action of G(Ayn). Recall
that ¢ takes the class ¢ ® D, where ¢ = {A(X,Y),8,(X)} is a symmetric 2-
cocycle and b = h{X)8/8X is an invariant derivation, to the deformation F;

with
GX,Y)=A{X,Y) h(F(X,¥)}
{ Fa(X} = 8.(X) - R(X)
But we have:
ble) = {BAKTIX, k7Y, 86, (k71 X) },
WD) = k(AR(X)B/BX).
One now checks directly that 8(h(c) ® &(D)) corresponds to the deformation Fuey
of F given by (17.1). 3

COROLLARY 17.3. We have Tx =~ Hom(Lie(F'), Lie(F)) as equivariant vec-
tor bundies on X.

Proor. Hom(Lie(F'), Lie(F)) ~ Cie{ F*Y& Lie(F). But Lie(F'Tis isomorphic
to w(F'T=Ext(F,G,). O

Let 2% = (7x) be the cotangent bundle of X and for i = 0,1,2,... ,n—1 let

(174 o= Ask=Azr

be the bundle of i-forms on X. Then rank (¥ = ("7}. We have % = Ox and
the line bundle

(17.5) 2 = Ky

is called the canonical bundle of X.
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PROPOSITION 17.6. Fori=0,1,--- ,n—1 we have an isomorphism of equin-
arignt bundles on X :
i
% = N\ LielF') @ m(F)®'.

Moreover,
Kx =~ w=(F1®(1).

The first claim follows immediately from Corollary 17.3 and the definition of
i Indeed

(17.7) Q% = Lie(F) @ w(F)

and we have the general formuia:

/\(M ®L)= /\M ® L% when rank(£)=1.

The exact sequence of Proposition 16.6 gives, after taking top extertor powers,
an isomorphism of equivariant line bundles.

n—1 ”

- N\ Lie(F) @ Lie(F) = A\ Cie(E).

In §22 we will show that there is an isamorphism {Proposition 22.4):

n
(17.8) N\ Lie(E) ~ 0x(1}.
This gives the final formula for Xy

COROLLARY 17.9. There is an ezact sequence of egquivariant bundles on X
with trivial central character:

00— Y — Lie(F) @ w(F) — Ox — 0.

ProoF. This is the tensor product of the sequence in Proposition 16.6 with
the line bundle w(F). O

The exact sequence of Corolary 17.9 gives a class
{17.10} e=6(1} in Hpg(X,0%) = Extha{Ox,0%).
The wedge product of differential forms gives a G-homomorphism
(17.11) L ® 0 — 0,
which induces a cup-product in cohomology:
(17.12) Hbo(X, 0 ) @ HEg(X, ) — HEEHX, Q7).

Using this map, we may define the class

(17.13) e in Hba(X,0%) i=0,1,...,n—-1
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Part IV. Rigid analytic bundles
18. Rigid ansalytic spaces

The general fibre X ® K of the formal scheme X over A has the structure of
a rigid analytic space over K. If K is a flat, local A-algebra we have
(18.1) (X®@KNRa@K)=X(R)= P,
Applying this to R = A, the integral closure of A4 in an algebraie closure K of
K,wehave P = = {z € K :|z| < 1}. Here |z| = ¢~ *4=[=) i5 the normalized
valuation of K, extended uniquely to K. Hence X ® K is the (n—1)-dimensional
open unit polydisc:
(18.2) (X ®K)K)={z= (51, Ta_1) € K" F: g <1 alli}.

The K-algebra of iigid analytie functions on X ® K consists of those power
Series: ’

(18.3) olu) = Y aj g, wl e cudr =Y ey’
with coefficients a; € K which converge on the open unit polydisc. The condition
on the coeflicients a; of ¢ which is equivalent to convergence is:
18.4 i TRTIN s LR L Y |
(18.9) j:+j:+'!-'l'¥;n—l—'00 [CRPNEI IS 1 n—1
whenever r; are fixed real numbers with 0 < r; < 1 for all 4.
We denote the K-algebra of rigid analytie functions on X @ K by

V= K{{u}}.

This contains the A-algebra M = Afu] of integral power series, which are the
formal functions on X. It also contains the K-algebra M @ K of power series
whose coefficients a; are bounded in absolute value, and

(18.5) lell = sgp{ last}

defines a norm on the vector space M ® K. The larger space V has the structure
of a topological K-algebra, which we will describe below.

If the series p(u) Lies in ¥V, we may evaluate ¢ on points z € (R)"7 in the
open polydisc. Fix such a point z = (z1,... ,%,—;) with |5;] < 1 for all i. The
resulting homomorphism

plz):V ~ L =K(z)
w— p(z)

is surjective; its kernel J{z) is a maximal ideal of V (which depends only on the
orbit of  under Autg(K)). We now show how the maximal ideals I{z) can
be used to determine membership in M or M ® K, as well as the units in the
K.algebra V.
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PROPOSITION 18.6. Assume y is in V = K{{u}}. Then
i) wisin M = Alu] iff l(z)| €1 for all z € (M)*L.

i) pisin M@K iff plz)l < oV for all z € ()", where N is an integer
depending only on .

PrOOF. One has the identity

sgp{|a1|}= Sgp{tp(z)} in RU{co},

where () = T ayu’. For a proof, see [BGR84, 5.1.4]. [

PROPOSITION 18.7. Assume (u) = Y asu’ is a non-zero function in V =
K{{u}}. Then the following conditions are all equivalent:

i) We have ordq(ag) < ord,(as) for all J.
ti) The function @ -7~V is a unit in M = Afx] for some integer N.

iti) We have |@{z)| = ¢V for all z € (m)*™', where N is ar integer which
depends only on .

in) The function ¢ is o unit in M ® K.
v) The function ¢ is a unit in V.
vi) We have ¢(z) #0 forallz € (ﬁl)“-_]-

PROOF. Tf ord(ag) = N < ord{a;) for all J, then ¢/7" is a unit in Afu] by
the formal inverse function theorem. This, in turn, implies that |(g}/m™] =1
for-all z, so J(z)| = ¢" for all z. By Proposition 18.6, this shows ¢ is a unit
in M ® K, so it is certainly & unit in V and hence p(z) # 0 for all z. But if
ord{ag) > ord{a;) for any J, the theory of Newton polygons shows that  has a
zero in (M) ~L. This completes the proof. I

COROLLARY 18.8. i) Ewvery unit p of the K-algebra V' = K {{u}} has the
Jorm w% . ppr, where oy is a unil in M = Aflu]], and k = ord, ap = ord,y p(0).

it} V = K{{u}} is a foithfully flat M ® K = Alu] @ K algebra.

Remark. Although the maximal ideals I{z} defined in (18) are sufficient to
detect membership in M and M @ K, as well as the units in V, they do not
exhaust the set of all maximal ideals of ¥. For example, take n = 280 V =
K{u}}. Let § = {z;,39,...} be an infinite sequence of points in m with
lim; .o |;| = 1, and assume § is stable under Auty(K). Let T be the ideal of
V consisting of functions ¢ which vanish at all but a finite number of points of
5. Then [ is non-zero, but is not contained in any maximal ideal f(z) of the
type (18).
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We now give V' the structure of a Fréchet algebra (= inverse limit of Banach
algebras) over K. To do this, we introduce the affinoid subsets of X ® K:

Y{e)={z e (K)"" :|n| S 47V}
(18.9) _ 1
= {z & (K)"" rorde(z:) 2 pa g
Here € > 1 is an integer; we have obvious inclusions
Y1) =¥ =Y@) -

and
X@K=lm¥Y(e) = | ] ¥{e).
€ e>l
The K-algebra V{e) of rigid analytic functions on the closed polydisc ¥(e)
consists of those series @(u) = ¥ ayu’ which satisfy

SrtiatFina

{18.10} . !i}nla;|/q+ =1.
This is a Banach algebra over K, with norm [BGRB4, §5.1].
fitfettinoy
lelle = sup{last/a™= }

(18.11) .
= sup {|w(zl}

2EY (e}
We let M{e) = {¢ € V(e) : ||glle <1} be the unit ball in this Banach space;
then M(e) is an algebra over A.

Let e > €', s0 Y{e') — ¥(e). The restriction of rigid analytic functions gives
a homomorphism

Vie) — V(e'}

of K-algebras, which is injective and completely continucus with respect to the
norms [j¢l|. and |jpfl. [Ser62, p. 185). Since

V=HmV(e) = ﬂ Vie)

(18.12) ¢ ezl
M =lim M(e) = [| M(e)

e e>l
we obtain on V the structure of a Fréchet algebra. Specifically, a sequence {, }
of functions in V' converges to the function  in V if and only if ¢, — ¢ in each
V{e). Bince the metric topology on V{e) is defined by the sup norm (18.11), this
notion of convergence is the usual one of “uniform convergence on compacta”.
Thus ¢, —+ ¢ in V iff

Ye > 0,¥e > 13N(e,e) : ¥n = N(c,e) and z € Y{e)
lien(z) — (2} <€

(18.13) {
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Bemark. Although V is a complete metric space, the topology of V' is not
given by & norm. In particular, M is not the unit ball in V. It is the unit ball
in the Banach space M ® K, which is the continuous linear dual of the space of
rigid analytic functions on the closed unit polydisc [Ser62, p. 172}.

19. The group action: continuity

The action of the group scheme G on the formal scheme X extends to an
action on its general fibre X ® K. If p = @(u) is a rigid function in the space
Ve =V @ K, and b an element of G(A,), we have the formula

{19.1) biolu) = (b, buz, ... bita—1).

The group (¢) = Gal{K,,/K) also acts on V ® K, by conjugation, and, as before,
this normalizes the action of G{A4,). Hence the group G = G(A,) = {5} acts
K-linearly on the left of the K, -algebra V,,.

Recall that G(4,) is the group of units in the order

Bo= A, ®App®--- @ App™ ' = Endy (F® k)

For N > 1 the subgroups 1+@™ B,, are normal of finite index in G, and [} w1 (it
" B,) = 1. Taking these subgroups as a basis for the open neighborhoods of
the identity gives G the structure of a profinite topological group.

PRrROPOSITION 19.2. The action of the topological group G on the rigid analytic

space X ® K, over K i3 continuous.
ProoF. This is equivaient to the claim that the map

GxV, =V, .
{g.) ¥ 99

of topological spaces is continuous. Since the series bu; in {19.1) have coefficients
in An, the action of G on X ® K stabilizes the affinoid subdomains ¥'(e} of (18.9},
for all e > 1. But V is topologized as the inverse limit of the spaces V(e), s0 we
must show the map

G x Vp(e) — Vyle}

is continuous for all e, where V (e}, = V{e) @x K,. This follows from the
following more precise resuit. [

LEMMA 19.3. Letz = (21,... ,za_y)} be a point in Y(e)(K), so ord,(z;) >
Jor all i. Assume b lies in the subgroup 14 n¥ B, of G, and write y = gz
(yll"' ,yn—l)- Then R

o=

(N +1)

ord. (2 — 1) > for all i,
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ProoF. We use induction on N. The result is true for N = 0, where 1 4
1™ B, = Bh = G(A4y), as zb lies in ¥(e)(K). Next assume N > 1. Let o be
an element in K with ord(a) = 1 and consider the deformations F; and F,
of F @k over the local A-algebra R = A/(a)¥+*A. We must show they are
*-isomorphic, so £ = y mod(a™ ! 4). This is equivalent, by Proposition 14.13,
to showing that Endg(F:) contains the subring A+7N B, of B, = End(F @ k).

Let I be the ideal o™ 4/()¥*+'A of R. By induction Endg;;(F;) contains
the subring A + m¥~'B, of B,. But I? = (, so [LT66, Prop. 2.4] shows that
the obstruction to lifling an element f{X) in Endg/;(F;) to Endg(Fy) lies in:

(19.4) HYF,®R,G,®Ne=HF, @R/,G. ®I),.

Sifce 7 = 0, the A-module of symmetric 2-cohomology with coefficients in 7 s
annihilated by 7. Hence the endomorphisms in 7 - (¥ ~!B,} = ¥ B, lift to R,
and A+« By, is contained in Endg(Fy). O

20. Flat bundles; rigid equivariant bundles
Let M be an eguivariant bundle of rank m on X. Then the sections

(20.1) M=H'(X®A, M@ A4,)

form a free R = AnfJu]] = HYX ® A,,Ox & A,) module of rank m. The group
G = G(A;) = Aut4(A,) acts A-lnearly on the left of M. We say M is flat iff
there is an A-linear representation Mj of G on a free A,-module of rank m and
an isomorphism

(20.2) M ~R&a, Me

of R{G]-modules. (The group G acts diagonally on R ® Mp). Bquivalently, A4
is flat if M has a basis {ey,e;, -+ ,€n} over R such that the A;-module M,
spanned by the e; is G-stabie.

For example, the equivariant line bundle M = Ox (k) defined in (15.14)} is
flat: Mp = An{k) is given by the k*" power of the reduced norm character of
G(A,) = B,,. This example is typical of flat line bundles.

PRoPosITION 20.3. The flai line bundles on X are determined by the action
of AX on the fibre of the canonical lift. Restriction o this fiber defines an iso-
morphism between the abelian group of flat line bundles and the subgroup

(20.4) Hom {(1 4+ 74)*, {1+ m4)*) x Hom ((An/7), (An/m}*)
of Hom{AxX, AX) generated by the reduced norm and the map
a— {a),

where

(a)=a modm
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s the “Teichmuller™ representative of a modulo 7. "For an element (A, ) of (20.4)
we have My = An(A, p) = A, - e where

{be _)\( )p(b be G(A,,),

with b the reduction of b mod . The corresponding flat line bundle O x (X, o) has

central character
xa) = ¥* (%) o).

Proor. If M is a flat line hundle, then My = A, - e. We may asswume e lies
in the rank 1 A-module M(" = H9(X, M). Then e = e and be = a(b) - e with
a(b) € A5, Thus o is a homomorphism o : B — A4}. Since the image of a is
commutative, a is trivial on the commutator subgroup of B}, which is equal to
the intersection of the kernel of the reduced norm with (1 + ¢.B,)*. The result
now follows. [

On the other hand, not all line bundles on X are flat. For example, the equiv-
ariant bundle Cie(F) is not flat provided n > 2. Indeed, the central character
Xrie{a) = e of this bundle is not of the form A" for A € Hom{A", A*) once
n > 2. More generally, the equivariant line bundle M = Lie(F)®* is not fat,
provided r > 2 and k # 0. Indeed, the torus T'(A,)} = A; acts on the fibre Mp
by the character @ — a* by Proposition 16.8, but acts by the character ANa)
on the fibre at 0 of the flat bundle Ox ().

We now return to general equivariant bundles M on X. We let M ® K denote
the general fibre of A, which is a rigid equivariant bundle on the rigid analytic
G-space X ® K. The sections

(20.5) V==H"X@ K, M®K,)

form a free 5 = K, {{u}} = HY(X®K,, Ox & K,} module of rank m = rank(M),
and the group G acts K-linearly on the left of V. We have

(20.6) Ve5Seg M

where @ acts diagonally on the tensor product; this isomorphism follows from
the fact that X is affine.

Notice that we have changed our notation slightly from the previous section

~ where § = K, {{u}} was denoted V,,. The results of §19 shows that V has the
structure of a Fréchet space over K,,. For the natural bundles Lie(F), Cie(E),
Ty, %, etc., considered in §§16-17 one can imitate the method of §19 to show
that the action of G on V is continuous. However, this is not true in all cases:
for example, when M = Ox(A) is a flat line bundle, the action of G on V is
continuous if and only if the character A : A* — A* is continuous.
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We say the bundle M is generically flat if M & K is flat over X ® K. By this
we mean the following: there is a representation KMy = K, ® M of G on a free
K,-module of rank m and an isomorphism

(207) Vo S@K,, KMO

of 5[G}-modules. Equivalently, V has a basis {e,... ,e,) over § such that the
Ky-module spanned by the e; is G-stable.

A generically flat bundle M need not be flat: in the next section we will see
that the bundle Lie(E) of rank n on X gives such an example, once n > 2,
In this case, Mp is the left regular representation of G(4,} = BL on B,, =
AnDpAn® @ A, If M has rank m and is generically flat, let {eg, - - | €m)
be a basis for K My over K, and let (e},... ,e!,) be a basis for M over R. Since
both give bases for V over §, there is a matrix A € GL,,(8) which transforms e
into ;. The matrix A is well-determined up to right multiplication by GL,,(R)
and left multiplication by GL.,(K,), hence gives a class

(20.8) [A] € GLyn (Ku)\GLm(8)/GLm (R).

H [A] = [1] in this double coset space, the bundle M is flat over X. This certainly
occurs when m = 1, i.e., when AM is a line bundle, as by Corollary 18.8 we have:
§* = K%-R* =% x R*. Hence

PROPOSITION 20.9. If M is an equivariant line bundle on X, the following
are el equivalent:
i) M is flat.
i) M is generically flat.
i) M = Ox(A,p) for some element (X, p) in the subgroup (20.4) of
Hom(AZ,AX).

21. The bundle Lfie(E) is generically flat
Let

(21.1) V = S @z Lie{ B} = Hompg(RigExt(F, G,), 5}

be the sections of the equivariant bundle Lie{E) ® K,, over the space X @ K.
In this section we will construet a basis of “fat" sections {eg, ¢1,... ,cn1) of V.
In the next section we will show that the A,-submodule spanned by the ¢ is
G-stable.

The sections ¢; are described by a limit procedure, using the coefﬁcnents of
quasi-logarithms representing classes in RigExt{F, G, ).
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ProposiTION 21.2. Let F be the universal deformation of height n over
Afuy, -+ yuq—],
let g(X) = kaX“ be a quasi-logarithm of F', and let i > ( be a fized integer.
Then the sequence
ak=1rk-m;m+.- k=1,23,...

of elements in Au] ® K converges to an element a = lHmg_oon in K{{u}}.
The limit & depends only on the class of g in RigExt{F, Gg).

PRroOF. It suffices to show the sequence {ar} in Cauchy, as K{{u}} is a
complete metric space. By our description of the topology on K{{u}} given in
§18, we must show the sequence { ax(z)} is uniformly Cauchy on each affinoid
subdomain x € Y(e). Let N = N(e, ¢) be the smallest non-negative integer such
that

i
(21.3) £ _i4N20 for all i > 1.
[ -4

If e < g we may take N = 0; if e > g+ 1 we have N > 1. We will show that
(21.4) ax(z) = agsr{z)  mod 7N Alg]

for all points £ € Y (e}, thereby establishing the claim.
Assume char(A) = p for simplicity (the argument is essentially the same in
the general case). Write

Te{X) = Zﬂqut-

k>0
Then ag = w,0; € P = (m,u1, - yup—1} for i # n, and a, =1 mod P. Since
g(X) is a quasi-logarithm of F, the series
—éyg = g(rp X} —wg(X)
is integral {i.e., has coefficients in the subring Aflu} of Afu] ® K). But the
coefficient of X" is equal to

n+;i

(21.5) S o micaly - T,
i=0

50 the function in (21.5) lies in Affu]. We now specialize to an z € Y{e). Since
m*m; € Afu] by Proposition 8.12, we have
. ; T .
Ordw(mi(ﬁ)aaﬂ'_.'(ﬁ)) = e i
for all £ # j. Hence, by (21.3) we have:
1'nj(g)aﬂ(g)“'J = Afp45 (L) ( mod 7~V Alz]).
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But an(z) =1 + 4 with ord, {3) > % Hence
mj(zon(2)?” = m;(z) ( mod x~N A[z]).

Combining the previous two congruences, taking j = kn + i, and multiplying by

#* we obtain

T mka 1i(2) = 7 gy i () { mod x*~NAlg]).

for all £ € ¥(e). This gives (21.4). The limit o = lim a; depends only on the
class of g, 85 limg oo T mpp s = 0 if Mype; € Afly] for all k. £

We now define the elements ¢; in Homp(RigExt{F, G,),5). Let g(X) =
Y. miX?" be a quasi-logarithm on I over R = Anfu]. Then
(21.6) {Co{y) = limg oo TE1TYn

Ci(g) = limg o0 "Tk+lmkn+=' i=1,2,---,n—1

The limits exist in § = K, {{u}} by Proposition 21.2. The specific constauts are
chosen fo give a simple specialization at £ = 0. Indeed, if {90, %1y.e  Gn-1) i5
the basis for RigExt({F, G,) over R given by §9, we have

(21.7) c:(g; )0} = &;;

This follows directly from a calculation of the quasi-logarithms g;(0} = fj on Fy,
given by Proposition 13.8. -

PROPOSITION 21.8. The elements (co,e1,... ,cn_i) defined by (21.6) give &
basis for Lie(E) @ S over S.

Proor. Let T be the n x n matrix with entries in §

(21.9) T = (eilos))

where g; is the standard basis for RigExt(F, G,) over R. The elements ¢; form
a basis of Homg(RigExt(F,G,), $) if and only if the matrix T is invertible over
§. Thus we must show the determinant det T' is a unit in 5, or equivalently, by
Proposition 18.7, that

(21.10) det T(z) # 0 for all z € (m)"1.
But det 7{z) # 0 if and only if the linear map '
e(z) : RigBxt{F,G,) ® K — K(z)"

gz (- efglz)),

is an isomorphism. Since e{z) is a map between two K(z) vector spaces of
dimension n, it suffices to show that ¢(g) is an injection. This follows from
Lemma 21.12 below. [J

(21.11)
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LEMMA 21.12. Let g(z). = Ymi(z)X? be o quasi-logarithm on Fy with
ci(g(z)) = O for all i. Then the coefficients my(z) of g{z) He in Alzl, s0 g(z)
represenis the trivial class in RigExt(F,G,).

ProoF. Assume z € Y{e) and let N = N(e,q) as defined in {21.3). By the
proof of Proposition 21.2 we have the congruence:

mod 7~ Alz).

my{E) = wrrg.5(2)
~ If ord.(m;{z)) < — N, then this shows that
Ordw(mn+j(£)} = Ordw(mn{z)) -1,

and hence ¢;{g(z)) # 0 for i =j mod n. Hence the hypothesis that c;{g(z}) =0
for all ¢ implies that

orde(m;{z)) 2 -N for all j.

If any coefficient of g(z) has negative valuation, the above argument shows we
may find a coefficient m;(z) with minimal valuation < 0. But (21.5) then shows
that ord{mmp4;{z)) = ord(m;(z)}, which contradicts the minimality. Hence

ord,(m;{z)) > 0 for all j,
and g{z) = 0 in RigExt(F,G,). O

Remark. When g lies in ¥ (e} with e < g, so the maximal ideal I of A[z] has
divided powers, one can show that the isomorphism c(z) of (21.11) identifies
the lattice RigExt{F, G,) with the latiice A[g]*. When ¢ > g + 1 the elements
¢ {g{z)) may have denominators.

We want io make the functions c;{g;) in the matrix T of (21.9} more explicit.
Fori=10,1,2,... ,n—1let '
(21.13) i(w) = (o) in K{{u}}

We recall that gg = f(u) is the logarithm of the universal deformation F = F(u)
over X. Since the limits defining the elements ¢; commute with the derivations
D; = 8/8u; used to define the quasi-logarithma g; = D;go, we find

(21.14) Dj¢ifw) = cilgy) i=l2...,n-1
Thus the matrix T has the form:

#o Dhgo - Dnoido

(21.15) ro|® D¢t o Daoitn

¢n—1 Dl';bn—l T Du—l‘i’n-—l

s 'L‘;i:ﬂm‘iﬂﬁﬁ
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By formula (21.7) we have the specialization

_ 100
(21.16) Q) =1= 010
00---1

COROLLARY 21.17. The element € = det T is @ unit in Afu] with (D) = 1.

Proor. We have already shown that ¢ is a unit in K {{u}}, and (21.16) shows

that €{0) = 1. The fact that ¢ is a unit in Afu] now follows from Proposi-
tion 18.7. O

COROLLARY 21.18. The wedge product c = coAey A- - Acn—1 lies in A" Lie(E)
and gives a basis for that rank | moedule over R.

PROOF. Clearly ¢ lies in A" Lie(E) @ §. To verify that it is integral and a
basis, we cvaluate it on the basis vector g = gg A gy A--- A gn_y of A w(E) over
R. But

clg)=e=detT
iBauwitin B O -

22. The group action; crystals and connections
Qur aim in this section is to complete the proof that the vector bundie Lie(E)
is generically flat, by showing that the submodule
(22.1) M(] = Anco @Anﬂl &3---83:4,.6,;-1

of V is G-stable.
Clearly Mj is stable under the action of {o} = Auta{A,), as the classes ¢; are

rational over K {{u}}. To show M, is stable under the action of G(4,), we need
a generalization of Proposition 10.3.

PROPOSITION 22.2. Let F' and F' be A-typical formal A-modules over R =
Aplu] with 7p = 7@ = X9 mod P. Let @ : F — F' be a homomorphism of
formal A-modules over R and $(X) a series in R[X] with o =9 mod P. Ifg
iz o quasi-logarithm on F' then

cile’g) = ci(gly X)) in 5,
fori=0,1,2,... ,n~1.
Proor. We must show that for all £ € (m)*~! we have

ci(g{9))(z) = cila(¥))(z).

}?a‘sume £ € Y{e) and let N = N(e,q). The argument in the proof of Propo-
sition 10.3 shows that the series g, (pX) — gz(¥X) has coefficients in ==V A[z].
Hence the limits ¢; of this series are zero, which establishes the above claim. [J
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Let b be an element of G(A,) = Auty, (F ®k).‘By definition of the action on
V = Lie(E) ® § = Homg(RigExt(F,G,), 5) we have

bei(g) = Blei(b'g)) in §

where 3 = B(b) gives the action on § = K,{{u}} and g is any quasi-logarithm
on F. By (16.7) we have

. “lg(X) = g7 g(kX)
where k(X is the unique isomorphism from 8F to F over R which reduces to b
mod P. Thus
bei(g) = ci(g{BE(X)))-
Let &'( X} be any lifting of the series 8(X)} to An[z]. Then £ = gk mod P,
so by Proposition 22.2 we have

be;(g) = es(g(K' X))
Write g{X) = E"—ic,{g) Fi(X) + r(X), where the series f; are defined in
Proposition 13.8. Smce ¢i(f;X) = &i5, we have ¢;(rX) = 0 for all 7. Since k'X
has coefficients in A,, we also have c;(r{k'X}) = 0 for all i, and hence
n—1
gk X)) = ci(g) - sl f5(K' X))

i=t
The coefficients ¢;(f;(k'X)} lie in A,; hence
n—1

(22.3) bee= Y alf5(K X)) ¢

=0
Lies in Mp = HBJ,_OA c; as claimed. We have proved

PROPOSITION 22.4. The equivariant vector bundle Lie(E) is generically flat
over X @ K, with representation K M, given by the lefi regular representation of
G(An) = B}, on the K, -vector space B, ® K of dimension n.

The line bundle \" Lie(E) is flat, and we have an isomorphism

/“\Cie(E) = Ox(1)

taking the basiscp Ay A---Aep—y fo 1.

Proor. To identify the representation of B}, on My, we restrict to the torus
T(Ap) = Aut(Fg). In this case, we may lift b to an endomorphism k'{X} of Fy
and find:

KXy =a’(b) §;
Thus be; = of(b) - ¢; for all b € T(A,). The unique n-dimensional represen-
tation of B with these eigenvalues is the left regular representation, and its
determinant is the reduced norm. [

‘-umr:gq
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flemark. The generically flat structure on Lie(E) may seem a little od hoc
as presented here, and we indicate 2 more conceptual argument when 4 = Z,.
In this case, the vector bundle Lie(E) is the covariant Dieudonné module of the
p-divisible group F' [Kat79, Ch. V]. It has a G-invariant integrable connection
over X:

(22.5) V: Lie(E) — Lie(E) & 1.

Since £ie(E) is an “F-crystal”, the connection V has what Dwork calls a Frobe-
nius structure. A general result (cf. [Kat73, Prop. 3.1]) then implies that the
K-vector space

(22.6) ' HY(X @ K, Lie(E) @ K)¥

of horizontal sections for the associated rigid bundle over X @ K has dimension
n = rank(Lie(E)). This space is stable under , and spanned by our specific
elements c; (which are normalized 1o be eigenvectors for the torus .

One reason why we have chosen an explicit construetion of the flat sections is
that the existence of an integrable connection does not suffice to descend from
a K{{u}} module to a K-module when char(K) = p. Another reason is that it
facilitates computations of the map to projective space, which will be given in
the next section.

Remerk. Proposition 22.4 only describes the structure of the representation
of By on KMy, With a bit more work, one can determine the structure of the
integral representation of B} on My : it is isomorphic to the representation by
left multiplication on the free {right) A,-madule:

(22.7) B, = A, DA, @@ " A,.

The basis elements
{Lpph ™)
correspond to the basis
{co.c1,. .. sCn—1)

of My, and are eigenvectors for the torus. Similarly, one can show that the
Ay -module spanned by the dual basis

( CasClyeee Cn—lv)
of
«{E) @ § = RigExt(F,G,) ® §

gives a representation of B, isomorphic to right multiplication (by the inverse)

on the module:
n—1

wl_n-Bn = An@Ang b "'@Anw
which is the inverse different of B, in B, @ K.
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The element

(22.8) b=op+ o+l + -+ 0" e,

of By, with a; € A, and ap € A7, acts on My through the matrix:

ag mal_, - T wal
"=2 n—1
o aj - oof af
- n—1
(22.9) C{h) = g of . af in GLn(4,)
o a:_g L ag,n—z agnAl
with respect to the basis {cg, - ,ca—1). Its reduction lies in the parabolic sub-

group of GL,(k,) which stabilizes the hyperplane spanned by {&;,8,- -, Q_l}
in My/mMy = Lie{E ® k}. This hyperplane is precisely the image of Lie(F' @ k),
as it is annihilated by & in w{F ® k). )

23. The étale map to projective space

As mentioned in the introduction, Corollary 23.21 and Corollary 23.26 are
due to Lafaille [G.L79].
In this section, we change notation slightly and let

B=Afu1,- - yun] = Aful,

R, = AnIIH]i
and similarly,
§ = K{{u}}
Sp = Ka{{u}}-

Let {ca,¢1,... yq-1) be the Bat basis of the free S-module Lie(E) &g S which
was defined in §21.

We define the rigid sections w; of the line bundle Lie(F) over X @ K as the
image of the elements c; under the map

Lie(E)® 8§ — Lie(F)®@ S

i oy,

(23.1}
Let W be the K-subspace of Lie(F} ® § spanned by the sections w;.
PropPostTION 23.2. The sections {wp, w1,... ,Ws—1} have no common zeroes

on X ® K, and are lincarly independent over K. The subspace W @ K, of
Lie(F)® 8, is stable under G and gives the left regular representation of G{A,).

s bk siraed g
.%-
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PROOF. Since the ¢; give a basis for Lie(E) ® § over S and the map of free
S-modules in (23.1) is surjective, the elements w; span the $-module Lie(F)® 8.
Hence they have no common zeroes on X ® K.

To see that the elements w; are linearly independent, or equivalently, that dim
W = n, we assume ¥, k;w; = 0 with k; € K. Since Lie(F)®§ = Homp(w(F}, S)
we have 3 kyw;(w) = 0 for any invariant differential on F. Taking w = dgy,
where gq is the logarithm, we find

N k=0 in S.

Here ¢; = ¢;(go) are the rigid functions on X ® K defined in (21.13). Since the
k; are constants, this implies :

D kiDypi =0 in 5,
where D; is the derivation 8/ du;j of §. But then the element 3 kici of Lie(E)® 5
is equal to zero, as it annjhitates the basis elements {gg, g1, . .. 1gn—1) of w{E) =

RigExt(F, G,). Since the c; are independent over .5, we have k; = 0 for all 3.
The subspace W @ K, is stable under @, as the map of {23.1) arises from
a map of G-equivariant bundles Lie(E) — Lie(F) on X, and G stabilizes the
K.-subspace spanned by the ¢; in Lie{E)® §,. The resulting G(An)-module is a
quotient of the left regular representation on B, @K = K, 9K, @ - B lIK, .
Since it has dimension n, it is isomorphic to the left regular representation. O

Let W' be the dual space Hom({W, k) and let {w}, - ,w!_,} be the dual
basis of W’. Let P(W) be the projective space of all hyperplanes n W (following
Grothendieck), or equivalently, the classical projective space of atl lines in W,
Then G acts an (the right of) P(W) @ K,, = P(W ® K,): the subgroup (o) =
Gal(K./K) acts on the coefficients and the subgroup G(An} = B acts by
fractional linear transformations. Indeed, if C = C'(b) is the matrix of b acting
on W @ K, with respect to the basis {i;), which was described in (22.9), then
b acts on the usual homogeneous coordinates [yo, 3, - - y¥n—1] of P(W) @ K,
by right multiplication by €. The caleulation at the end of §22 shows that the
action of G{Ar) preserves the point [1,0,0,-- ,0] of the reduction P(W) @ k,,.

We define a map of rigid analytic spaces over K

(23.3) : XK — P(W)

by taking the point 2 in X ® K to the hyperplane of sections of W which vanish
at . Thus

(23.4) ®(z) = {w e W ® K(z) : wlz) = 0}.

PROPOSITION 23.5. The map & is an étale rigid analytic morphism. It is
G-equivariant over K., and surjective over K.
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Proor. We first describe ® in terms of coordinates on P{W), using the dual
basis w]. The section w = ¥ k;w; vanishes ai g if and only if

Y kii(z)=0.

Hence the line in W' which corresponds to the hyperplane of vanishing sections
is spanned by

w' =Y dulz)- wi
The map € is thus given by the homogeneous coordinates
(23.6) ®(z) = [do{2), h(zh .+ » pna ()]

Since each ¢; lies in §, and the ¢; have no common zero {by 21.16-21.18), # is a
well-defined rigid anailytic morphism. To see that & is étale, we must check that
* the differential :

is an isomorphism of K{z) vector spaces, for all z € X ® K. This is equivalent
to showing that the matrix

bo(z)  Dhdolz) -+ Da-rdolz)
Plz)= |- ' .

frr(2) Didnos (&) - Drorfns(2)

is invertible. But detT{z) = e{z) # 0, as ¢ = detT is a unit in 5 by Corol-
lary 21.17.

The G-equivariance of @ is immediate. Explicitly, it means that for all & €
G(A,) we have

(23.7) B(zh) = (z) - C(b)

where C(b) is the matrix of b given in {22.9), acting by right multiplication on
the homogeneous coordinates ®{z) = [da(z),... ,Pn_1{z)]. It follows that the
action of (7 stabilizes the polydisc:

(238) Y= {E = (11y11y21"' :yn—l) :Ord‘n’(yi) > 0}

of P*~1(K), which reduces to the point (1,0,0,--- ,0) in PP~1(k).
The proof of surjectivity will be completed as Corollary 23.21 below. O

DEFINITION 23.9. An isogeny between formal A-modules G and G' is an ele-
ment of Hom(G, G') ® Q@ which has a two-sided inverse in Hom(G", G} @ Q.

h o g
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The group of isogenies of F @k, is the group (B, ® K)*. It acts on P(W)R K,
by fractional linear transformations. The Frobenius element acts via the matrix

0...0n
1...00
(23.10) T=|. ..
0...10

In particular, the element ¢™ acts trivially.
The equivariance of the mapping $ admits the following generalization.

PROPOSITION 23.11. Suppose Fy and Fy are two deformations of F® k and
that T : Fy — Fp is an isogeny deforming b € (B, @ K)*. Then ®(z)® =
b(z).

DEFMNITION 23.12. A *-isogeny between two deformations of F ® k is an
isogeny deforming the identity map.

We will establish a converse to Proposition 23.11 below (Proposition 23.28).
Among other things, this represents the range of the map & as the set of -isogeny
classes of deformations of F ® k. ’

LEMMA 23.13. For deformations F and F?, the following are equivalent:
{1) The deformations F and F' are x-isogenous;
{2) There is an isogeny T : F — F* deforming a multiple of the identity map
af Fek.
(3] There is an isogeny T : F — F' deforming o power ™ of the Frobenius
endomorphism of F @ k, with m =0 mod n. ’
ProoF. This is easy. O
For a point {¢g, ..., pe—1] of PP, set
_ &
$o

Thus the w; are coordinates on the hyperplane in projective space defined by
¢n # 0. By composing with the map &, the w; can also be regarded as “mero-
morphic" functions on Lubin-Tate space X @ K.

Let D be the clesed polydisk in X @ K defined by the inequalities

n—i

wy p<i<n—1.

Viw) 2

i=1,...,n— 1L
n

For a rigid analytic function f on I' define the valuation
Vo(F) = inf{V(f(z)) [z € D }.

Then, for example

n—t
Volu) = —
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LEMMA 23.14. The functions w; converge on the domain D. There is an
inequality
Vp(w,‘ - u{) > Vp(ui).
In particular, the w; can be teken to be uniformizing parameiers on the closed
polydisk D.

COROLLARY 23.15. The mapping © restricts fo a rigid analytic isomorphism
between the polydisk I} in Lubin-Tale space, and the polydisk Dw in projective
apace defined by the inegualities

Vi) > n-t

- i=1,...,n—1
(]

ProoF OF LEMMA 23.14. Recall that the log of F is

logp(z) =z + Z bzt .
n>{

The main step 8 to establish the inequality

I<i<n

(23.16) Vo (r by — mar®h3,) > =
To deduce the Lemma, first set 1 = n to conclude that
Vo(r®be, — 1) > 0
Vpl¢p— 1) > 0.
It then follows that
Volwi — w) = Vp(r*H bap s — wn®83,),

so the result follows from (23.186).
The inequality (23.16) is established by induction on nk + ¢. This is trivial
for k =0, i =1, since by = uy fa. ‘It follows from the functionai equation {5.5)

of the log that
why = Z uib?:i'
D<i<n

Using this, write

k+1 kyo!
L E: YT ki
O<j<n

NS

kio!
ki — Uil Do =

It therefore suffices to show that

V(u,wkbnk+,_1) (n—i)fn>0 O0<j#i<n

i
P

b e ggﬁﬁ
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First suppose that § > 1. Using the induction hypothesis calculate

n—i n-~ _7 —z n—i
V(ujﬂ bnk+t—3) T = n +qJJ n
J_ —
_ -G 1) >0
n

Now suppose that j < i. Again using the induction hypothesis calculate

Viwakpr _n—i=n—j J—nu(i—j)_ _n—i
(u;w nk-l-‘—J} n n +q n 1 n
_ @ -l G-5)
n

This completes the proof. 1]

Because we are working over K, the formal A-module F: is determined by
its “physical” groups of points which consists of the maximal ideal of the A
with the group law given by F;. This A-module will be written F:(A). The
torsion submodule Fy (A} of F z{A) is the sub A-module consisting of elements
annihilated by a power of w. As an abstract A-module it is ispmorphic to (K/A)".
The sub A-module of F;(A) consisting of elements killed by = will be denoted
oFs

DEFINITION 23.17. An element 0 # o« € F,, _ is called canonical if

=tors
{23.18) 0#BEF,
A sub A-module of Fe,

= Vi{a) 2 V(A).

Stord

g 18 canonical if it is generated by a canonical element.

Rematk. 1) It is not difficult to show that
V([x)($) 2 1+ V().
It follows that if a € Faz, .., 18 canonical, then [r]{a) = 0. A canonical sub-module
is there for abstractly momorphlc to Af(r).
ii) Since, for i € A%,
[{](z) = iz - ( a unit ),
every non-zero element of a canonical subgroup is canonical.
If e is & canomical element of F; then there is a natural isogeny
(23.19) T=T,: F —~ Fy/(a)

with kernel the sub A-module generated by a. It is given by the following formula
of Serre [Lubé7)

(23.20) II (= =t
wajmy =

It follows from (23.20) that F/(a) can be given the structure of a deformation
of £ @k in such a way that the isogeny (23.19) deforms the Frobenius isogeny
plzy=z%of F® k.
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1
Vi) §
V{uz) 1
I e .
1 ¢ 7 "

FIGURE 1. The Newton polygon of [r](z)

COROLLARY 23.21. The map ® is surjective over K.

Proor. By Proposition 23.11, if w is in the image of the map @, then so is
w- T, where T is the matrix (23.10). By Corollary 23.15 every element of Dy
is in the image of ®. It therefore suffices to show that Dy is a “fundamental
domain” for T in the sense that the T-translates of Dy cover P~ But it is
eagy to check that if & = [¢o,-..,¢n—1], and i is chosen so that

i
V(¢t] + ;
is minimized, then w-T% € Dy. O

LEMMA 23.22. Suppese that a € F_,_m is a canonical elernent, and that T is

rs

the isogeny given by (23.20). If0 £ B e Fy then

tors’
VIT(B)) = qV(#). O

The elements killed by 7 in Fz(A) are the roots of the power series [r}{z).
Their valuations can be read off of the Newton polygon of [r](z), which turns
out to be the convex hull of the collection of points .

{(.V{w))|i=0,....n, wp=m, wus=1}

Let V'(u;) be y-coordinate of the point on the Newton polygon of [](z) lying
above ¢*. There is an inequality

Vi) 2 V'(w;).

F— mﬂ.ﬁ
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Set
e =V'(w)-V'(u,) i=1,...,n,
and define ¢; for i € Z by requiring that

Bi = €&j lflEJ mod n.

I§ follows from the theory of the Newton polygon that for 1 < i < n there are
g’ — ¢ roots of fx(x)} with valuation e;/(¢* — ¢'~'). The canonical elements
have valuation e; /(g —1).

The fact that the Newton polygon is convex translates into the assertion

€ =]
Fogi g

i<j =
or, equivalently .

ge; 2 €iy-

The condition that F; be in the domain I} is expressed by the series of in-
equalities
gt te <~ i=1,..n
n
B it useful to introduce

1
S (R O ) P

and express this condition as
{23.23) %<0 i=1,...,n

Since e; + -+ + e, =1, the value of 5; depends only on i modulo n.
Now suppose that Fi- is obtained from F, by modding out a canonical sub-
group, and let

T:F;_—'Fir

be the map given by (23.20). Write ul, e, s for the moduli and associated
invariants of Fy.

LeMMA 23.24. If ge, > e, then
Bi = &j4+1 1€ L.
If ge, < e; then

s
€y == .
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ProOF. It follows from (23.20) that for i > 0, the image in Fy(A) of the
gl — g' elements killed by 7 with valuation &;/{g**! — ¢*) is a set of ¢f — ¢*~!
elements with valuation e;/(¢* — ¢"~1). This accounts for g"~! of the elements
in wFg. The remaining g" — ¢*~! elements are the image under T' of the roots
of the g - 1 equations

(23.25) [r)(z) - [i](e) =0  0#i€Aj(m).

These equations all have the same Newton polygon. H is the convex hull of the

collection of points
€1 i -
{(01q_1)=(q |V(u‘i))|1£££n}'

To analyze these remaining roots, first note that the line connecting the points
{g" 1, V' {ta_1)) and (¢™, V'(u,)) = (¢",0) intersects the y-axis at the point
y = gen/(g— 1). There are two cases to consider.

If gen, > €1, then the common Newton polygon of the equations {23.25) is the

line connecting the points
(_qe_l 1) and {(g",0).

The g™ roots of each equation all have valuation e;/{g™{g — 1}). Their image
in o Fg is a set of (g — 1)¢g"" elements with valuation e;/{g" — ¢"~!). This
accounts for the case ge, > €; of the lemma.

When ge, < e; then the common Newton polygon of (23.25) contains the
segment connecting (g™ %, V'(u,_y)) and (g",0). It follows that the minimum
valuation of the elements in ,Fyr is gen /(g™ — ¢*~'). This gives, then, the
equation '

’
€n = G€n-

This accounts for the case ge, < e; and completes the proof

COROLLARY 23.26. -Every deformation £ € X @ K(A) s isogenous to one
n D, by an isogeny deforming ¢™ form some m. The resulting deformation
satisfies ge, > ep.

Proor. By modding out canonical subgroups a few times, if necessary, we
can suppose that ge, > e;. Now choose i so that s; is maximized, and let

FE — F!r

be the isogeny obtained by modding out a canonical subgroup i times. Then
€; = e;4i, and s_'?. = 8;4; — & by Lemma 23.24. Since 3; was chosen to be
maximal, we have s7 < 0 for all j. This completes the proof. O

CoroLrary 23.27. If ®(z) € Dw, then F; is »-isogenous to o deformation
in D.

i

2t

s g

T
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PRoOF. For a point w = [gg, .., da] € P"YR), set

Wp=T7
w.-=% i=1,...,n—1
Wy =1,

and let V'(w;) be the point on the convex hull of the set

(pi‘ V(w,-))

lying above pf. Define

ei(w) = V'(w) = V'{w;,_,y), i=1,...n

Eian(w) = e:(w)

si{w) =er(w)+...e5(w) i€

If 2 € D then e;(®(z)} = ;.
Since ®{z)) € Dw we have
$:(¥{z)) <0 forabli.

By Lemma 23.26 F, is isogenous to a deformation Fyr, with g:_i € Dby an
isogeny deforming ¢™ for some m. Then

8i(2) = 5 ((2")) = 3,44 (B(2)) — 3 (B()) .

Now choose j > 0 so that j +m = 0 mod n, and let Fzn be obtained from

Fz: by modding out a canonical subgroup j more times. It then follows from
Lemma 23.24 that

5:(z") = 5; {B(z"))
= Imtitj (P(Z)) — 8m+; (${2))
= 5 (®(z)) < 0.
This completes the proof. O

PROPOSITION 23.28. Let Fpr and F, be two deformations of F ® k over A
and b € (B, ® K)* an isogeny of F ® k. Then

o)’ =2(z') inPU(K)

if and only if there is an isogeny ¢ : Fy — F, over A with p = b {mod
m). In perticular, the stabilizer of ®(z) is the tmage of (End(F;) ® K)* in
(End(F @ k) ® K)*, and ®(z) = ®(z') if end only if the formal A-modules Fp
and F; are “%c-isogenous” over A. h
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ProoF. The “only ™ assertion has been proved above. For the “if” assertion,
first write b = ¢p™by with by € B”. By modding out canonical subgroups m times
from F, we reduce to the case b € B*. By acting on Fy by b we then reduce to
the case b = 1. By modding out canenical subgroups from both Fy and Fy« and
using Corollary 23.26 we reduce to the case

(2} = &(z) € Dw-

By Corollary 23.27 the groups F, and Fy: are #-isogenous to deformations Fy
and Fy respectively, with .3’ € “D. But then ¥ = ¥ by Corollary 23.15. This
completes the proof. [

The interpretation of points of projective space as x-isogeny classes of de-
formations over flat, local A-algebras allows one to reconstruct the étale map
$: X®K — P*"1@ K as follows. The rigid analytic space X @ K has a
tower of finite Galois covers X,, ® K with Galois groups GL,.(A/7™A); these
are obtained by adjoining the m™-torsion points on the universal deformation I
over X ® K [Car80, p. 19]. Let

(23.29) Xo®K=1lim Xn®K
m

which is a pro-rigid analytic space over K, with an action of GL,(A). The group

scheme G also acts on X, ® K, and one obtains an action of the product group

GL, (A} x By on X ® Ky, with the elements {{e,a}: a € A”} acting trivially.
In fact, Deligne observed that the larger group

(23.30) {{g.b) € GLu{K) x (B, ® K)* : ord.(det g) = ord, (M)}
acts on Xoo, ® K, ([Del], [Car90, pp. 20-21]). In particular, the product group

(23.31) GLS(K) x B acts on X ® Ko,

where :
GLA(K) = {g € GL,(K) : detg € A*}.

One can show that, just as X @ K is the quotient of X ® K by GLn(A4),
the projective space P"~! @ K arises as the quotient of X, ® K by the larger
group GLI(K). The fibres of the map & are thus identified with the cosets
GL,(4) \ GLE{K}, which form a subset of the vertices of the buiiding associated
to PGL,(K).

24. The group action: differentiability

The group G(Ay) = B2 has the structure of a K-analytic Lie group of dimen-
sion n?, which is a closed subgroup of GL,(K,) via the representation (22.9).
Its Lie algebra g = Lie(B}) is a form of gl, over K:

(24.1) 3® Ky = gla (Ko )
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The isomorphism of (24.1) gives rise to a 1-cocycle on Gal( K, /K) with values
in Aut(g ® Kn) = PGL.(K,,), taking the generator o to the automorphism
*comjugation by ", Let t be the Lie algebra of the torus T(A4,) = A}; then t is
a Cartan subalgebra of dimension n in g which is split over K,,. Finally, let 3 be
the 1-dimensional Lie algebra of the center Z{A,) = A*.

If 4 is an element of g, viewed as an n x n matrix over K, via the derivative
of the representation (22.9), then the element 1 + 7™ lies in the group G(A,)
for m sufficiently large. This gives us a working replacement for the exponential
map when 4 has characteristic p. A corollary of the existence of an étale G-map
from X @ K to projective space is the following

PROPOSITION 24.2. If ¢ 15 a rigid function in S, = K, {{u}} and v is an
element of g, the limit

. U+ ™y —e

Dyfg) = lim T LEE

erists in Sy, and defines ¢ K,-derivation of S,. The map v — D, defines a ~
representation of Lie algebras

8@ K, — Derg, (5,) = HY (X ® K,,, Tx ® K,,)

with kernel = 3 ® K, and image isomorphic fo pgl,(K,). The image is stable
under the action of G{A,) on sections of the tangent bundle.

Proor. The corresponding facts are clear for the derivative of the G-action
on the projective space P(W). Since the mapping ® : X ® K — P(W) is étale,
there is no obstruction to lifting the resulting vector fields to X ® K.

In fact, one can show that the K-Lie subalgebra of pg @ K,, which acts as
K-derivations of the algebra § = K{{u}} is isomorphic to pgl, over K! Indeed,
let {co,¢1, -+ .en_1} be the flat basis of Lie(E) @ § described in §21 and let
{€0 1 .- en~i } De the dual basis of RigExt(F,G,)® § = w(E)® §. The
K—subspa.ce spanned by the vectors ¢; @ ¢ in Lie(E) ® w(F) ® § has dimension
n?; over K, the group G (Ay) acts via the adjoint representation, and stabilizes
the line spanned by 3777 L@l

Consider the projections t;; = 8(c; @ ¢; ) of these elements to rigid sections

" of the tangent bundle of X, under the map of equivariant bundles.

(24.3) 8: Lie(E) ® @(E) - Lie(F) ® o(F') ~ Tx.

Then E _0 tii = 0 and the vector t;; span a Lie algebra of dimension n? 1 over
K which is isomorphic to pgl,. (The isomorphism takes f;; to the matrix with
a single 1 in the {{ + 1)'* row and (j + 1)*® column). Over K,,, the elements iy
are eigenvectors for the torus T(A,):

(24.4) alty) = 2y,

oifa) o € A
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Appendix
25. Formulaire when n =2

We give some explicit formulae to illustrate the general theory of the group
action on X, in the simplest non-trivial case when n = 2. Then Ay = A @ A
with (o a primitive (g% — 1} root of unit. We write

(25.1) glo}=a for a € A,.
We have By = Ay @ A2y with ¢ = 1, p, = &p for @ € A;. The element
(25.2) b=a+pp of B

acts on the basis (cg,c1) of Lie(E) @ § by the matrix

a 73
(253} _ C=C(b)= (ﬁ 5 ) .

Let 2w = uy, s0 K {{u}} = K{{u}} is the algebra of rigid functions on the open
unit disc. The functions

(25.4) dofu) = co(go) $1{u) = cil(go)

can be calculated from the coefficients of the universal logarithm gg(X):

i+g 1
(25.5) yo(X)=X+"-fX'i'~x~(u?72 +;)X‘*2+--..
n
We find
(25.6)
dolu) =1+ Y & LA i
nE x w2
—_ 1 + l Z uq20+q2|}+l + iz Z uq2n+q2b+l +qﬂt+ﬂ+qﬂd+3 +
0<a<t t<aghbgesd
(25.7)
l+giq’
$r(u) =u+uf + = 4+
- Zuqza " l Z uqza+q:n+1+q2c+z +
0%a T o<azbee

From a consideration of the Newton polygon, we find that ¢g vanishes at:

g + 1 points awith ord,(a) = qlﬁ
2 . . _ 1
(25.8) ¢*{g + 1) points awith ord,(a) = A0

¢*(g + 1) points awith ord,(a) = m-
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Similarly, ¢; vanishes at & = 0 as well as

q(g + 1} points awith ord,{a) = ;-tsy
(25.9) ¢°(g+1) points awith ord,(a) = mriny

The zeroes a of ¢y and ¢y, which are all simple, correspond to “quasi-canonical”
liftings F, of F @ k, in the sense of [Gro86)], with @ = A;. They are the
inverse images of the points [0,1] and [1,0} en P! under the mapping &(z) =
[¢o(z). ¢1(D)]: X @K — P @ K.

The function e{u) = det T = ¢g{u)g} (u)— by {u)gh () has expansion beginning

(25.10) e(u) =1- %ulﬂ'l + qzuq2"‘1 IR

Its coefficients are all integral, and ¢ has no zeroes on X. When char(A4) = p we
have e = 1.

The ratio:
(25.11) win) = ¢1(u}/dolu)
is a meromorphié function on X, which is regular, and univalent on the affinoid:
{25.12) Y(g) ={c em:ord,{a} > % }-
If b = &+ pf lies in B3, then
(25.13) b(w) = EH

as rigid analytic parameters on Y{g) . Indeed:
(z") = ®(2)° = [po(e), 41 (2)] - ©
= lago(z) + Bo1(z), 7Bdo(z) + & (z)]

s0 bu(z) = w(zb) = ¢ (zb)/do(zh) is given by (25.13).
The derivations:

_ dow)?

to = =2 o -9/ 8u
(25.14) tio = “57‘((1‘-“))—2 -8/8u
fog = %&5}1(") - 8/0u.

of K {{u}} span a 3-dimensional Lie algebra (isomorphic to pglz} over K. They
describe the differentiated form of the PG-action on X @ K, and over Ky are
eigenvectors for elements o in the torus PT(A;) = A%/A*, with eigenvalues
a/d,&fa, and 1 respectively. '
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Finally, we note that the deformation theory of A-divisible modules of di-
mension 1 and beight 2, which was developed by Serre and Tate when A = Z,
[LST64] and extended in {Gro86, p. 326}, provides a simple analogous case
to the theory discussed above. Let Fp be a formal A-module of dimension 1
and height 1 over k = A/mA, and let F be the unique lifting of Fy to A. Let
Go = K /A be the étale A-module of height 1 over k with trivial Galols action,
and let & be the unique lifting of Gp to A. We let X denote the formal scheme
aver A which classifies +isomorphism classes of deformations of the A-divisible
module Fy x Gy of height 2 to local A-algebra R.

Since any deformation E of Fy x Gy lies in an extension

(25.15) 00— F—EFE—G—10,

and Exth(G, F) = F(P), the A-module of points of F in the maximal ideal P
of R, we have

(25.16) X(R) = F(P).

Thus the rigid analytic space X ® K is again isomorphic to the open unit disc,
but now has a canonical A-module structure.

The endomorphism ring of Fo xGp is Ax A, whereas the universal deformation
only has endomorphisms by A {embedded diagonally). Hence the group A" x
A* = Aut{Fy x &) acts on X, and the diagonal subgroup AA* acts trivially.
The element a = (a,1) € A* X A* acts on the ring Afu]} of formal functions on
X by the formula: -

(25.17) a o p{u) = glaru).

In other words, X is isomorphic to F as a formal scheme with A*-action over 4.
The origin of F corresponds to the canonical lifting F x G, and the 7°-torsion
points of F (/) correspond to the quasi-canonical liftings of level 5. These give
g¢*~ g — 1) points in each with ord.(a) = TFLT(IQTU' Their endomorphism
rings are equal to

{{a,b)eAx A:a=b ( mod=")}.

The analog of the map & to projective space is the A™-equivariant, étale,
surjective homomorphism of rigid analytic groups over K:

P XK ~AloK

z — logg(z).

Assume F is A-typical, for simplicity. Then the rigid function ¢{u) = logr(u)
is given by the series

(25.18) plu) =ut Tt D
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We have
2
(25.19) eu) =g¢'(u) =1+ 9,51 + g - R
T r?

integral and invertible on X. The kernel of ¢ consists of all quasi-canonical
liftings. The A™-action on X is converted to the linear action on affine space:

(25.20) aoz=az, z = d{u).

When A =Z, and Fy = Gm, a point of X over 2,, corresponds to a unit g = 1
mod M, and the map ¢ takes g to Dwork’s parameter log g € Q,,.

" Since the linear action of A* on affine space is differentiable and ¢ is étale, we
may conclude that the group action on X @ K is also differentiable. Hence, for
any v € K = Lie(A*) and ¢ € K{{u}}, the limit

{25.21) D)= lim (+myop-¢
m—co T

exists in K{{u}} and defines a derivation D, of K {{u}} over K. Using the limit,
formula [Haz78, p. 217
(25.22) log(u) = lim (r~™ - wfF(u))

we find: D {u) = ~- %&)l Hence the image of Lie{A*) in the derivations of
K {{u}} over K is the 1-dimensional Lie algebra spanned by the vector field

_ lu)
(25.23) D, = ;—(u—)a,fau.
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Constructions of elements in Picard groups

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SADOFSKY

ABSTRACT. We discuss the first author’s Picard groups of stable homo-
topy. We give a detailed description of the calculation of Picy, and go on
1o describe geometric constructions for lifts of the elementa of Pic;, We
also construct a 15 cell complex that localizes to what we speculate is an
interesting element of Picy, For all n we describe an algebraic approxima-
tion to Picn using the Adams-Novikov spectral sequence, We also show
that the p-adic integers embed in the group Pic, for all n and p.

1. Introduction and statement of results

We begin with the basic definition. The functar
E":X—85"AX

is an automorphism of the category of spectra, which preserves cofibration se-
quences and infinite wedges. If T is another such automorphism, then Brown’s
representability theorem applied to 7.(TX} gives a spectrum S¢ with

TX=8rrX

and
Sp1 ASr = S0,
This motivates the following definition.
DEFINITION 1.1. A spectrum Z is inverlible if and only if there is some spec-

trum W such that

ZAW = 5" .
Pic is the group of isomeorphism classes of inveriible spectra, with mulliplication

given by smask product. Given an isomorphism class A € Pic we will write S*
for a representative spectrum.
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