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Equivariant vector bundles on the Lubin-Tate
moduli space

M. J. HOPKINS AND B. H. GROSS

Introduction

Lubin and Tate showed that the functor of deformations of a formal group F
of dimension 1 and height n over ZjpZ is representable by the formal scheme
X = SpfZpfful,'" ,Un-ID over ZJ" They also described an action of the etale
group scheme G = Aut(F) over Zp on the moduli space X. Here we will study
this action by a consideration of certain G-equivariant vector bundles on X _ In

particular, we show that there is an etale, surjective map:

X lSI Qp ---+ pn-l ® Qp

of rigid analytic spaces over Qp which converts the action of G on X ® Qp into
a linear action on projective space.

Following Drinfeld, we will work in the more general setting of formal A­
modules, where A is a complete discrete valuation ring with finite residue field.
(The case cOIl8idered by Lubin and Tate is when A = Zp.) Part I is a summary of

the basic results' of this theory, which are due to Lazard, Honda, Lubin, Cartier,
Drinfeld, Hazewinkel and many others. In Part II we consider extensions and
deformations of formal A-modules_ The main results here are due to Lubin-Tate
and Drinfeld; we have expressed them in the language of rigidified extensions and
the universal additive extension, following Grothendieck and Mazur-Messing.

In Part III we introduce the moduli space X = Spf A[UI,'" ,Un-Ill of defor­
mations of a formal A-module F of dimension 1 and height n. This is a formal
scheme over A, with an action of the etale group scheme G = Aut(F). We use
the theory of the universal additive extension E of F to construct some natural
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The condition on the action of UF on Lie(F) is simply that

The set HOffiR(F, F ' ) of all homomorphisms over R is an A-module, with addition
and A-multiplication defined using the operations of F'. We will write this A­
module simply as Hom(F, F') if the base ring R is fixed. If F = F ' we write
End(F) for Hom(F, F); this is an A-algebra under composition.

An example of a formal A-module, which is central to the theory, is the module
Ga of dimension one. This is defined by the series

for i = 1,2, ... ,n.

We will usually not distinguish between the formal A-module Faver R and the
collection of series {F(X, V), aF(X) }, which depend on the choice of parameters
X of the algebra R[Xll. The latter are often referred to as "formal group laws"
or "formal A-module laws" in the literature. A different choice of parameters X'
for this algebra would result in a law {F'(X', V'), UF' (X') }isomorphic to the
original one over R. We write X +F Y for F(X, V).

If F is a formal A-module over R and a : R _ S is a homomorphism of
A-algebras, then the series {aF(X, Y), aup(X)} define a formal A-module over
S. We will write this module simply as of.

A homomorphism I : F _ F ' of formal A-modules over R is a homomorphism
of formal groups (given by n' power series X' = I(X) in n variables) which
satisfies

F(aFX,aFY) = aF(F(X, Y)).

in RUX'].

( mod deg2)

{

Ga(X,Y) =X + Y

"G. (X) = i(a)·X

a;(X) '" i(a)X;

f 0 aF = ap' 0 f

(1.4)

which satisfy

(1.5)

(1.6)

(I.7)

Part I. Formal A-modules

1. Homomorphisms

Let A be a complete, discrete valuation ring with uniformizing parameter 11"

and finite residue field k = A/1rA. Let q be the cardinality of k and K the
quotient field of A.

Let R be a commutative A-algebra, with structure map i : A _ R. By
definition, a formal A~modlJle F of dimension n over R is a commutative formal
group of dimension n over R, together with a ring homomorphism B : A _
EndR(F) such that the endomorphism B(a) = UF of F acts by the scalar i(a) on
the tangent space Lie(F), for all a in A.

The formal group structure on F is given by a formal comultiplica.tion on the
algebra R[XI ,X2, ••. ,Xnll = .R[Xll- Once parameters have been chosen, the
comultiplication is described by n power series in 2n variables:

(1.1)

F(X, Y) = (FI(Xl ,'" ,Xn,Y1,'" ,Yn),'" ,Fn(X1,' . ,Xn,Y1,'" , Y.. ))

G-equivariant vector bundles on X, and from these bundles construct the tan­
gent bundle of X, the bundle of exterior i-forms, and the canonical line bundle
of X.

In Part IV, we restrict equivariant bundles to the general fibre X ® K, which
is a rigid analytic space over the quotient field K of A, isomorphic to the open
unit polydisc of dimension n -1. We show that the G-bundle .cie{E) of rank n is
flat over X 0 K. Taking the image of its horizontal sections in the quotient line
bundle £ie(F), we construct an etale, surjective map from X ® K to pn-l® K.
As a coroUary, we obtain the differentiability of the action of G on X.

After this paper was written, it was pointed out to the authors that in 1978
Lafaille [G.L79J proved, what in this paper are Corollary 23.21 and Corol­
lary 23.26. Our argument differs very little from his. We have nevertheless
decided to include the proof in order to keep this paper as complete as possible.

It is a pleasure to thank Ching-Li Chai and Kevin Keating for pointing out
some minor errors in an earlier draft.

which satisfy the usual associative, commutative, and identity laws: We have an injection of A-algebras;

(1.2)
{

F(X,O) = X,F(O, Y) = Y

F(X, F(Y, Z)) = F(F(X, Y), Z)

F(X, Y) = F(Y, X).

(1.8)
R ~ EndR(Ga)

a ~ fo(X) = aX.

The endomorphism Up is given by n series in n variables

(1.3) apeX) = (al(Xl,'" , X .. ),," ,a.. (X1,··· ,Xn )),

2. Invariant differentials

Let F be a formal A-module over R. The R-module w(F) of "invariant dif­
ferentials" on F is defined to be the submodule of the differentials w(X) =
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f(X)dX = ~7=1/;(X)dX, of RIXJ over R which satisfy,

{

W(F(X, Y)) = w(X) + w(Y)

(2.1) w(aF(X)) = i(a)w(X) a E A.

PROPOSITION 2.2. The R~module w(R} is free of rank n = dim(F),

basis Wi (X) of differentials which satisfy

of RrrXB over R. This R-module is alBo free of rank n, with dual basis over R

where Bij(Y) = 8~ Fi(O, Y) == O;j (mod deg 1). The formula,

a
Dj(X) =L B'j(X)ax,',

a
D = L h,--x:) = L9'(0)' h,(O)a, ;(w = L9,dX"

with a

mod deg2.w,(X) '" dX,

Every invariant differential on F is closed.

PROOF. The n x n matrix ()f power series over R:

(a~j F,(O, Y)) = (B'j(Y))

iscongruent, mod degree 1, to the identity. Hence it is invertible, with inverse

defines a non·degenerate pairing of free R-modules:

On the formal A-module Gil. we have w(F) = RdX and Lie(F) = R8~' The
pairing (adX, biJ/aX) is equal to abo

If f : F -+ F' is a homomorphism of formal A-modules over R, there is an
induced map of R-modules

( , ) ,w(F) x Lie(F) ~ R.(2.4)

(mod deg 1).(A'j(Y)) '" [

is also translation invariant [Hon70, Prop. 1.2], and has linear term

It is proved in [Hon70, Prop. 1.1] that the differentials

w(aF(X)) =L f;(aF(X))da,(X)

n a
D(X) = L/;(X) ax,

;=1

f. , Lie(F)~ Lie(F').

d, Hom(F, G.) ~ w(F)

f~ df(X).

(2.5)

In particular, the endomorphism aF acts on the R-modules w(F) and Lie(F) by
multiplication by ita).

This can be defined as the adjoint of r using the pairing (2.4):

3. Logarithms

Let F be a formal A-module over R and f : F --t Gil. a homomorphism of
formal A~modules over R, Then

U'W',D)F = (w',f.D)F'.'

w = r(dX') = df(X) = t :;. (X) . dX,
1=1 I

is an invariant differential on F. This gives a homomorphism of R-modules

(3.1)

PROPOSITION 3.2. 1) IJ R is a flat (= torsion-free) A-algebra, then the map
oj (1.8) induces an isomorphism R ~ End(Ga) and the map d ~f (3,1) is an
injection,

2) IJ R is a K -algebra, then the map d of (3.1) is an isomorphism, so
Hom(F, Ga) is a free R-module of rank n = dim (F),

(mod deg 2)

(mod deg 2)w(aF(X)) '" ita) L f,(O)dX,

r 'w(F') ~ w(F)

L9,(X')dX:~ L9;(f(X))df;(X).

The functor dual to w(F) is the R-module Lie(F) of invariant derivations

(2.3)

by OUI hypothesis on the series GF(X), Hence it is equal to i(a)' w(X). 0

If f : F --t F' is a homomorphism of formal A-modules over R, there is an

induced map of free R-modules

n

w,(X) = L A'j(X)dXj '" dX,
j=l

from an R-basis of the space of differentials on X which sa.tisfy w(F(X, Y)) =
w(X) + w(Y). In [Hon70, Prop. 1.3] it is shown that each Wi is closed.

To complete the proof, we must show that every element in this free R-module
satisfies w(aF(X}) = i(a)w(X). If w = L:Ji(X)dXi is translation invariant, then

by the above w = L:Ji(O)Wio The differential
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and we claim there is a unique series of this form which satisfies

PROOF. 1) Since A is a discrete valuation rIng, R is flat if and only if i(a)
is not a zero divisor in R for all a ::j:. 0 in A. Let I(X) = L:k>JakXk be an
endomorphism of G = Ga, so fo 1rG.= 1I"G 0 f. But 1l'G(X) = i(ll-). X, so

Hence Uk - i(lI"k -1r) = O. For k 2 2 the element nil: -1i is a uniformizer in A, so
by our hypothesis of flatness, i(1rk - 11") is not a zero divisor in R. Thus ak = 0
for k 2 2 and leX) = aIX, This shows the map of (1.8) is an isomorphism.

To show that d : Hom(F, Go} ---+ w(F) is an injection, we observe that
df(X) = 0 implies that f " 0 (mod deg 2). The identity f01rF = 1rGoof = i(1r)-f
then shows that f = o. Indeed, if UkX k is the leading term of f (X) we find that
Uk·i('1I·k-1I") =0.

For 2), ac:;SUtne Ris a K-algebra. In particular, R is a flat A-algebra so the map
d of (3.1) is an injection. To show that d is surjective, we break into two cases.
When char(K) = 0, the invariant differentials w on F are all formally exact:
w = df. This follows from the fact that they are closed; we choose the primitive
uniquely by insisting that f(O) = O. Then f : F --+ Ga .is a homomorphism of
formal A-modules by (2.1).

If char(K) = P then PF(X) = 0 and F is isomorphic, ac:; a fonnal group,
to n copies of Ga. We must show there is a unique homomorphism of formal
A-modules f ' F ~ G. with df(X) = 131dX, + ... + l3,dX, in w(F). The
homomorphisms from G~ to Ga all have the form

ak(i(,,-»k = i(1r)' ak

':::"'F

with 1'(0)" O.

F

~
FP

= e(l(X) + f(Y)

=e(af(X), a E A.

F rp

x~

{

F(X,y)

aF(X)

1rF(X) = f(X'")

with df = w. We call f a logarithm for F, and its inverse e = /-1 : Go.
an exponential. We then have

(3.5)

PROOF. Let w be a basis for w(F) overR. Sincerrp(w) = i(lI")'w = 0, we have
1fF(X) = h(XP). Let FP be the conjugate formal A-module over the field R,
which has characteristic p. Then we have a commutative diagram of morphisms

If fHO) ;f; 0, the same argument using differentials shows that h = h(X"). If
1fF ;f; 0, we eventually have

LEMMA 4.1. Assume that R is a field and that i(1f) = 0 in R. Then either
1fp = 0 in End(F) or there is an integer n;::: 1 such that

4. The height

In this section, F is a formal A-module of dimension lover R. If R is a field,
then either i(rr) = 0 in R or i(lI') is a unit in R. The latter case, when R is a
K -algebra, was considered in the previous section. We now consider the case
when i(lI') = O.

forallk,?:L

with !i(Xd =L a;(k)X('
k?:O1=1

n

f(X) = 2:: f,(X,),

This follows from the fact that when k ;::: 1, i(1I"P~ -11") is a unit in R, so we
may solve for the coefficients of f successively. To show f is a homomorphism
of formal A-modules, we must check that f 0 (F = i(() . f for all ( E k (as
A = k[1fE). But i(()-l . f 0 (F = g is another series which satisfies (3.3), as
(F °1rF = 1fF ° (F. Hence 9 = f as claimed. 0

Wdte q = pl. We must show that h" O( mod n, so that 1rF(X) = f(X'").
Since 11"FO(F = (F0ll"F for all (q-l )Bt roots of unity ( in A" , we have i( () = i((ph).
Hence (q - 1) divides (ph -1), which implies that f divides h. 0

If the second case occurs in Lemma 4.1, we say the formal A-module F hac:;
height n over R. More generally, if R is a complete, local, Noetherian ring with
maximal ideal P containing i(lI'), we say F has height n over R if its reduction
hac:; height n over the field RIP. We call such rings "local A-algebras" for short.

(3.3)
{

f OtrF=i(1r)'f

Bi(O) = {3i, i = 1,2,," ,no

1rF(X) = f(XP') for some h ;::: 1, with f'(O) -:F O.

From Proposition 3.2 we may conclude the following. Let F be a formal A­
module of dimension 1 over R and let w be a basis of w(F) over R. If R is A-flat,
so injects into the K-algebra R ® K, there is a unique isomorphism

PROPOSITION 4.2. Assume R is a local A-algebra, and F is a formal A­
module of dimension 1 and height n over R. If G is a formal A-module of
dimension lover R, then reduction of homomorphisms induces an injection of
A-modules

(3.4) f :F"':::::" Ga over R®K HomR(F,G)....., HnmRIP(F,G).
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where fql (X) is the series obtained from leX) by replacing each variable Vj by
vJ. This is Hazewinkel's "functional equation" [Baz78, 21.5J. The expansion of
f(X) has the form

Let A!u] be the flat A-algebra A[vl, V2, V3, ... J of polynomials in an infinite
number of variables Vi_ Let leX) = f[uJ(X) be the unique series with coefficients
Alm ® K = K[Ull V2, v3, ... J which satisfies

PROOF. Assume f : F --> G satisfies !(X)- == 0 mod pk). We will show

that leX) == 0 mod pk+1. Since R = UmR/P'1t, this ':'Iill establish the claim
Since f is a homomorphism of A-modules, f 0 1rF = 'Ira 0 f. Since 71"o(X) =

i(1r)' X + ... and i(1l") is in P, we have 1rG 0 leX) =0 mod pk+l. Hence
f 0 1rF(X) = 0 mod pk+l. But f 0 1TF(X) == f(aXqft +. --) mod pHI, where
the substitution is made in the RIP-module pk/pHl and Q' i= O. Hence f =: 0
mod pk+l. 0

COROLLARY 4.3. If R is a local A-algebra and F has height n over R, then
Hom(F, Ga ) ~ O.

(5.3) f(X) =X+ L~f"(xq')
i;?:l

The coefficients bk in the expansion of f(X) may be calculated using the
following recursion, which is a consequence of the definition of f;

~'. b, EAim.

• V, (V2 v
q+I)f(X) = '" b,Xq = X + -xq + - + -'- Xi' + ....L 11'" 11'" 11'"2

k~O

(5.4)

(5.5)

(5.6)

{
bO = 1

~ "-1
1I'"bk = bovk + bIv:_I + b2vL2 + ... + bk_IV'!. .

From this it follows, by induction on k, that
5. A~typical modules

When A = k[1I'"D has characteristic PI we may construct formal A-modules of
dimension lover the ring R as follows. Let

PROOF. By the above proposition, it is enough to prove that

we have f = O. 0

HOmRjP(F, Ga) = O.

Since any homomorphism f ; F _ Ga over RJP must satisfy

f 0 ~p(X) = f(aXq' + ... ) = i(~)f(X) = 0

The coefficients ble of this series are completely determined by the identity f 0

1fF = i(1I'")' f. If R is a local A-algebra, then F has height n over R provided
aha2,." ,a"_l lie in P, the maximal ideal of R, but an t O( mod Pl.

When A has characteristic zero, it is more difficult to write down the series
F(X, Y) and aF(X) defining the general formal A-module of dimension lover
R. However, it is possible to normalize the choice of coordinate on the algebra
R[Xll so that the logarithm (when R is A-flat) for the co-multiplication has the
form (5.2). These formal A-modules are called "A-typicaln , and are convenient
for many computations. A detailed description of their properties is given in
Hazewinkel's book [Baz7SJ; we review some of the theory in this section.

mod (Vl,'" IVk_l), degr/+l

mod (11'", VI,··· 1Vk_I), degr/ + 1.

f(X) " X + V. xq'
~

1tFU!.I(X) == VkXql<

Moreover, we have the congruence

have coefficients in Arm, and define a formal A-module F[~l of dimension lover
A[Q] with logarithm f[Q]. We have

PROPOSITION 5.7 ([Haz78, 21.5]). The series

F(X, Y) = r'(J(X) + fey»~

ap(X) = r'(af(X) a E A

H F is any formal A-module of dimension one over R, we say F is "A-typical"
if it is the specialization of F[Q] with respect to a homomorphism of A-algebras
A[m - R. Such homomorphisms are given simply by specifying the images
of each variable Vi in R. Hazewinkel shows [Bu7S, 21.5.6J that any formal
A-module of dimension lover R is isomorphic to an A~typical one, so working
with A-typical formal A-modules entails no loss of generality. We will often do
so.

The modules F described by (5.1) are all A-typical, as the series defining the
universal A-typical module Flm (when A has characteristic p) have this form.

b, E R0K.

(5.1)
{

F(X'Y) =X+Y

(p(X) ~ i«() . X, (E k

lI'F(X) = i(1I'") . X + L:k~lakXq" I ak E R.

These series uniquely determine a formal A~module F over R, and one can show
that any formal A-module of dimension one over R is isomorphic to one of this
form. If R is a flat A-algebra, the logarithm f : F --t Ga over R 0 K with
df = dX has the form

(5.2) f(X) ~ X + L b,Xq',
k;?:1
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for all (q _lyt roots of unity ( in A·.

If R is A-flat, the module F is A-typical if and only if its logarithm over R 0 K
has the form of (5.2). Finally, A·typical modules have:

(5.8) (F(X) = i(()' X

where f is a lRcochain (6.1). The quotient A-module is the symmetric 2­
cohomology H'(F, F'). [LT2, §2; Dl, §4J.

We now show how classes in H 2(F, F')II correspond to extensions of F by F'
in the category of formal A-modules over R, up to the usual equivalence relation.
If E is a formal A-module over R, we say the sequence of homomorphisms

O--+F' E' F O

O F' E F_O

is exact if the associated sequence of free R-modules

commute. Let Ext(F, F') denote the set of equivalence classes.

"1·1

O_F/~ELF_O

'F'1

(6.4)

is exact. An extension of F by F' is, by definition, an exact sequence of for­
mal A-modules as in (6.4); we say two extensions are equivalent if there is an
isomorphism i : E --+ E' of formal A-modules over R which makes the diagram

0_ Lie(F') ~ Lie(E) ~ Lie(F) -t 0

J(X) = (f,(X), ... ,{n'(X))

in n variables X = (Xl> - -. ,Xn ) with no constant terms. The set of all 1­
cochains forms an A-module, with addition (f + g)(X) = f(X) +F' g(X) and
A-multiplication af(X} = aF,f(X) coming from Fl. The coboundary of =

{tJ.f(X, Y),Ii.f(X)o E A} is defined by

{

tJ.f(X, Y) = fey) -F' f(X +F Y) +F' f(X)
(6.1)

1i.f(X) ~ aF'f(X) -F' f(aFX)

Part II. Extensions and deformations

6. Symmetric 2-cohomology and extensions

Let R be an A-algebra, and let F and F' be formal A-modules of dimensions

n and n' over R.
A I-eochain on F with values in F' is a set of n' series

The kernel of 0 is a sub A-module of the !-cOf;:hains) which is the I-cohomology

H'(F, F'). Since tJ.f(X, Y) = 0 if and only if f(X +F Y) = f(X) +F' f(Y), and
oaf(X) = 0 if and only if f(UFX} = up,f(X), we have-an identification

(6.2) H'(F,F') = Hom(F,F').

PROPOSITION 6.5. Let {.a.,ca } be a symmetric 2-cocycle on F with values in
F'. Then the formal A-module E with coordinate ring R[X', X] and operations

E«(X' ,X), (Y', V)) = (F'(X', Y') +F' tJ.(X, V), F(X, Y))

aE(X',X) ~ (aF'X' + '.(X),aFX)

A 2·cochain on F with values in F' is a set {6.(X, Y), oa(X}a E A} where
.6.(X, Y) is a set of n' series in 2n variables and, for a E A, oa(X) is a set of n'
series in n variables. These series have no constant terms, and form an A·module
via the operations on F'. We sa.y the 2-cochain { 6., oa } is a symmetric 2-cocycle
if-the following identities hold [Dri74, §4]:

is an extension of F by F'. The homomorphism Q is defined by a(X') = (X', O)
and the homomorphism 13 is defined by {3(X', X) = X.

The equivalence class of E in Ext(F, F') depends only on the cohomology class
of{.6..,oa} inH2 (F,F')a_

(6.3)

!
tJ.(X, Y) = ll.(Y, X)

tJ.(Y, Z) +F' tJ.(X, Y +F Z) = tJ.(X +F Y, Z) +F' tJ.(X, Y)

'.(X) +F' '.(Y) +F' tJ.(aFX,aFY) ~ aF'tJ.(X, Y) +F' ,.(X +F Y)

1i.(X) +F' 1i,(X) +F' tJ.(aFX,bFX) = '.+,(X)

aF"'(X) +F' 1i.(bFX) = ,,,,,(X)

The symmetric 2-cocycles form a sub A·module of the 2-cochains, which con­
tains the A-module of coboundaries - those cocycles of the form

lif ~ {tJ.f(X, V), li.f(X)},

PROOF. The identities (6.3) satisfied by {6.,oa} show that the multiplica­
tion on E is commutative and associative, that UE is an endomorphism of the
formal group underlying E, and finaUy that the map taking a to aE is a ring
homomorphism from A to the endomorphism ring of the formal group. Thus E
is a formal A-module, which is easily seen to be an extension of F by F'.

If {.6.,ca Y = {.a.,oa }+of is cohomologous to {6.,,sa}, the map i(X',X} =
(X/ +F' f(X),X) gives an isomorphism from E to E' which renders the exten­
sions equivalent.

Conversely, every extension of F by P' can be put in the form of Proposi­
tion 6.5. For the formal implicit function theorem shows that we may choose a
section s : F _ E, consisting of n +n' series in n variables X with no constant
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then define a 2-cocycle {il, 8a } on F with values in F'. The class of this cocycle
in H2(F, F ' )II is independent of the choice of section s, and the extension E is
equivalent to the one defined in Proposition 6.5. Thus we have established a
bijection of sets

{
G(X, Y) = F(X, Y) + ,.:'.(X, Y)h(F(X, Y))

ac(X) = ap(X) + ,o.(X)h(X)
(7.3)

PROPOSITION 7.2. The R-module of*-isomorphism classes of deformationlJ G

of F to the ring R[E]j(E2
) is isomorphic to the R-module Ex:t(F, Go.) ®R Lie(F).

If {a,ca } is a 2-cocycle on F with values in Ga and D = h(X)8j8X ia an
invariant derivation oj F! then the series

define a deformation of F over R[EJj(E2 ). The*-isomorphism class oJG depends
only on the image of {il,8a } 0 D in H2 (F,Ga )J1 0R Lie(F) = Ext(F, Go.) 0R
Lie(F), and every deformation G of F has the form (7.3).H'(F, F'). ~ Ext(F, F').

(6.6)

(6.7)

term, such that f3 0 seX) = X. This gives coordinates (X', X) on E for which
«(X') = (X' ,0), iJ(X', X) = X, and ,(X) = (0, X). The sedes

,(X +F Y) -E seX) -E s(Y) = (.:'.(X, Y),O)

s(aFX) -E aEs(X) = (o.(X), 0)

The isomorphism. (6.7) gives Ext(F, r) the structure of an A-module; it is a
bifunctor: like Hom(F, F ' ), which is covariant in F ' and contravariant in F. If
E is an extensian defined by the data {.:'.(X, Y), O.(X)} and

(6.8)
{

g = g(U) , G~ F

l = l(X/): F' -- G'

PROOF. This may be checked directly, using the fact that heX) is a constant
multiple of the series

II~F(X,Y)I = FI(O,X).
(O,X)

o

We may restate Prop'osition 7.2 in a more invariant manner by introducing
the additive fonnal A-module Ga ® M of dimension n over R, where M is a
free R-module of rank n, This is defined to be the additive formal A-module
with Lie(Ga ® M) :::::- M (canonically). We then have canonical isomorphisms
of R-modules

are homomorphisms of formal A-modules, then g/Eg is, by definition, the exten­
sion ofG by G' defined by the data {g'Ll.(gU,gV),g'o.(gU)}. 0

Remark. One can alao define the A-module Ext'(F, F') = H'(F, F'). nsing
symmetric 3-cocyc1es on F with values in pi modulo coboundaries of symmetric
2-cochains. This A-module is always trivial (cf. [Mac50, Prop. 41, [Hea59],
[Laz55, Prop. 1]), a fact which has important coru>equences for deformation
theory. (7.4)

{
Hom(F, G. 0 M) ~ Hom(F, G.) 0R M

Ext(F, G. 0 M) = Ext(F, G.) 0R M

7. First order deformations

We now specialize to the case when F is a formal A-module of dimension 1 and
r = Ga. Then Ext(F, Ga) = H 2(F, Ga)J1 is an R-module, as R is a subring of
End(Ga) by (1.8). Following Lubin-Tate and Drinfeld, we give an interpretation
of the R-module

(7.1) Ext(F, G.) 0R Lie(F) = HomR(w(F), Ext(F,G.))

COROLLARY 7.5. Let F be a formal A-module of dimension lover R. There
is a natural map of R-modules

d, Hom(F, G. 0 Lie(F)) ~ R,

which is injective when R is A-flat and an isomorphism when R is a K -algebra.
Moreover, the R-module

using deformation theory.
A formal A-module G over the ring R[El/(€2) is a deformation of F provided

G == F and aG == ap (modulo E). We say two deformations G and G1 are *­
isomorph.ic if there is an isomorphism r.p: G --+ G'over R[E:Jj(€2) such that r.p == X
mod E. This gives an equivalence relation on the set of all deformations of F, and
the equivalence classes form an R-module (using addition and R-multiplication
of the linear term in the expansion G = F + EB, ac = ap + Eb).

Ext(F, G. 0 Lie(F))

is isomorphic to the set of *-isomorphism classes of deformations of F to the
ring R[')f(").

PROOF. The statements on Hom are simply restatements of Proposition 3.2,
using the isomorphism ( ); Lie(F)®w(F) -;;:JR. The statement on Ext is a
restatement of Proposition 7.2. 0
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fE:E--G a

!E(X',X) = X' + g(X)(8.8)

(8.7)

By Proposition 3.2, there is a unique homomorphism

over R 0 K such that dfE = WE. The map IE is given by a series

where g(X) E R 0 K[XJ satisfies g(O) = 0 and dg(X) = veX). Since IE is a
homomorphism, we have

O-GB~ELF-O(8.1)

(8.2)

together with a splitting of the sequence of Lie algebras (d. (MM, §2])

~.

0 Lie(Ga}~ Lie(E) -;:::! Lie(F)

8. Rigidified extensions

We define a rigidified extension of F by Ga as an extension of formal A­
modules over R:

•

Indeed, two rigidifications of a fixed extension differ by an element in

Hom(Lie(F),Lie(<Ga)) = w(F),

(8.4) Hom(F, <Ga)..c!..,w(F) ~ RigExt(F, <Ga)~ Ext(F, <Ga)~ O.

5g = {L>,6.}(8.9)

where {A,Oa} is the 2-cocycle over R describing the extension E. Hence both
dgand 6g are integral.

The definition of g(X) required a formal splitting of the extension E over R,
to write it in the form of Proposition 6.5. If we change the formal section, and
describe E by the cocycle {t!J..', 15~} = {6, 6a } + 6h, we find that g' = 9 + h.
Since the series h has coefficients in R, the series 9 is well~de:fined in the quotient
by integral series.

Conversely given a series 9 with 6g and d9 integral, we define an extension E

of F by Ga over R using the symmetric 2-cocycle 69 = {t!J.. , 6a }. We define a
differential WE on E by the formula

in w(<Ga).a'(WE) = dX'(8.3)

in the category of free R-modules. Equivalently, a rigidified extension is an
extension together with an invariant differential WE on E such that

The R-module RigExt(F, Ga ) of rigidified extension classes fits into a 4 term
exact sequence [Kat79, §5.2]:

We can give a deformation-theoretic interpretation of the R-module:

RigExt(F, <Ga) 0R Lie(F) = RigExt(F, <Ga 0 Lie(F))

The class of (E,WE) in RigExt(F,Ga) depends only on g, up to the addition of
an integral series. This gives the bijection of Proposition 8.5. 0

similar to the second assertion of Corollary 7.5. Let wp be a basis for the free
R-module w(F) of invariant differentials on F. Then wp gives an isomorphism
of R-modules:

WE = dX' +dg(X).(8.10)

have coefficients in R.

L>g(X, Y) = g(Y) - g(X +F Y) + g(X)

5a g(X) = i(a)g(X) - g(aFX) a E A

and the splittings of a trivial extension form a principal homogeneous space for
Hom(F, <Ga ).

When R is A~flat, so injects into the K-algebra R0 K, we can give an ex­
plicit description ofRigExt(F, Ga ) following Honda, Fontaine [Fon77], and Katz
[Kat79, §5.1]. If g(X) is a power series with no constant term and coefficients
in R 0 K, we say the 2-cocycle 6g = { t!J..g(X1 V), 6a g(X) } is integral if the series

PROPOSITION 8.5. Assume R is A-flat. Then there is an isomorphism of
R-modules

RigExt(F, <Ga) =
(g(X) E R 0 K[XJI g(O) = O,og and dg are integral}

{g(X) E RIXJ ,g(O) - O}

PROOF. Let (E,WE) be a. class in RigExt{F,Ga ). Write E in the form of
Proposition 6.5; then

RigExt(F,<Ga)0R Lie(F) -.::. RigExt(F,<Ga).

.We claim that the elements in this R-module are in one to one correspondence
with *-isomorphism classes of deformations (G,wo) of the pair (F,wp) to the
ring R[<J/«').

Indeed, assume (E,WE) defines a rigidified extension of F by Ga. Define the
deformation G of F over R!€]/(€2), using the cocycle {t!J..,6a } arising from a
formal splitting of E and the invariant derivation D = h(X)8j8X dual to WF,

as in Proposition 7.2. Then the differential

(8.6) WE = dX' + v(X). (8.11) wa(X) = WF(X) + ,"(X)
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This is equal to

8.g(X) = i(,,)g(X) - g("FX).

PROPOSITION 8.12. Assume F is an A-typical group of dimension lover the
flat A -algebm R. Then

is invariant on G, where veX) is given by (8.6). If R is A-flat, then leX) +Eg(X)
is a logarithm for the group Gover R ® K, where / is the logarithm associated
to w on F and g(X) is given by (8.8).

a : AI,,] ~R.

PROPOSITION 9.2. For i = 1,2,3
"

" the series

X''
U.eX) = '" Dibk(v)X

qlt == - +... mod deg ql + 1
L. - "
k~O

g(X) = ao! + al91 + (}:292 + ...

is a quasi-logarithm for the group Fhd.

We now consider specializations of the universal quasi-logarithms gi to formal
A-modules F over local A-algebras R. Recall that a "local A-algebran is com­
plete, local, and Noetherian with maximal ideal P containing i(1r). We assume
F is A-typical of dim~nsion1 and height n over Rj then F = a(F[Q) for a unique
homomorphism of A-algebras

is a quasi-logarithm for the group FULl. We have:

1 •• • }8g,(X, Y) "-(X' + Y' - (X + Y)' )
~ .. mod degqi+ 1

8og,(X) " -(a - a")X"

"
PROOF. Let G;[,,] = a,(FI,,]) be tbe deformation of Ff!!l to AI,,]I<J1«' = 0)

given by the homomorphism

a, : AI,,]~ AilLlI<J1«')
Vj t----+ Vj j i- i

Vi 1--+ Vi + to.

Then the logarithm for Gi[lli has the form! + €9i, where 9i(X) is defined by
Proposition 9.2. Hence Yi is a quasi-logarithm for F[!!l, and the calculation of

_6Yi is immediate. 0

COROLLARY 9.3. For any ao, at, a2, . in Awl, the series

with mkER®Kg(X) = L m.X'·
k~O

with dg and 6g integral. We must show that this implies that i(rr)k . rnA: lies in
R, which we write as 1rk . rnk for simplicity.

Since dg is integral, ffiO lies in R. Assume that k ~ 1 and that we have shown
that 1ri mj lies in R for all j < k. Consider the coefficient of X qlo in the integral
series

1rmk - mk~qi + terms in ?r
1- kR.

Since k ~ 1, this shows that ?rmk lies in n 1-A: R, so ?rkmk lies in R. D

We call a power series g(X) = L:mkXq' I with dg and 6g integral, a "quasi­
logarithmsn for the A-typical group F. In the next section we will calculate the
quasi-logarithms on the universal A-typical group F[Q) over the ring

RigExt(F, Go) '"

(g(X) = I:k>0 m.X'· : i(,,)' . m. E R, dg and 8gintegral}

(g(X) - I:.;,o m.X'· : m. E R}

PROOF. Every *-isomorphism class of deformation of F to R[t:]j(t;2) is repre­
sented by an A-typical group G. The logarithm I(X} + fg(X) associated to WG

is then a series of the form (5.2), so

Since F has height n over R we therefore have

By Proposition 5.7 we have:

1rPl!!l(X) == VkXqi

AilLJ ~ A[v" v" .. ·1.

9. Universal quasi-logarithms

We let F!Q] be the universal A-typical group over AWl with logarithm

fiX) = Lb.(Q)X'·
b~O

(9.4)
{

a(vi) E P

a(vo) E no

mod (",V,,," ,v._,), deg(</, + 1)

i = 1,2, ... ,n-l

(9.1)

over Klul defined by (5.3). For i = 1,2,3"

a
D,b(u) = ov, b(ill

we let D i be the derivation

of Ki£I.

When R is A-flat, so injects into R ® K, we may define the specialization of
the quasi·logarithms j, gl, . .. ,gn.-! on F[JLl via the map Ct to obtain classes

(9.5) fo = a(J), h = a(g,), ... , f.-, = a(g._,) E 1lig&xt(F, Go).
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(9.6) Ii/; = a(ligi ) = {l\,i(X, Y),Ii~(X)} in Ext(F,Ga ).

For general local A-algebra R, we cannot specialize the quasi-logarithms 9i, but
we may define the specialization of their coboundaries 6Yil which are symmetric
2-cocycles on F[Q] over A[W. For i = 1,2, .. , ,n - 1· define the classes

PROPOSITION 9.8. Let F be a formal A-module oj dimension one and height
n over the local A-algebm R. Then the R-module Ext(F, Ga.) is free of rank
(n-l) with basis {6h,lif" ... ,6f.-d and the R-module RigExt(F, Ga) is free
of rank n. When R is A-fiat, the quasi-logarithms {fo, fl, 12, ... ,fn-l} give a
basis ofRigExt(F,Ga).

By Proposition 9.2 we have the congruences

o~ w(F) ~ RigExt(F,G.) ~ Ext(F,Ga)~ 0

Since Hom(F, Ga ) = 0 by Corollary 4.3, we have an exact sequence

(9.12)

following (8.4). Since w(F) is free of rank 1 and Ext(F, Ga) is free of rank n -1,
RigExt(F, Ga) is a free R-module of rank n. The elements {fo, /1,'.' , fn-l}
give a basis when R is A-flat, as fa spans the image of w(F) and the images
{8fJ,: .. ,8fn-d give a basis of Ext(F, Ga ).

COROLLARY 9.13. IJ R - R! is a homomorphism of local A-algebras, the
induced maps of free R'-modules

ExtR(F,Ga ) 0R' ~ ExtR,(F,Ga )

RigExtR(F,Ga ) 0R' ~ RigExtR,(F,Ga )

are isomorphisms.

mod deg qi + 18~(X) '" (1- ~q'-I)Xq'(9.7)

PROOF. The congruence (9.7) and the argument in [LT66, Prop. 2.6J com­
bine to show that the elements {8fI, ... ,6/n_l } give a basis for Ext(F, GoJ =
H 2 (F, Ga )". We show here that the classes 61i are independent over R, and leave
the proof that they span to the reader.

Assume that Loj(8/i) = 0 in JI2(F,Ga.)s' In particular, there is a series
h(X) in R[XD such that

Since i(-rr) is in P and

.-1

L aili~(X) = 8.h(X) = h(~FX) - i(~)h(X).
j:l

10. A·divided powers

Let R be a flat A-algebra. We sayan ideal I ~ R has "A-divided powers"
provided

for all j ~ 1.

for allj ~ 1.

Itl ~ 7riR(10.1)

(10.2)

(We write 1ri R for i(1r)iR throughout this section.)
As examples, the ideal I = nR has A-divided powers. Another case of impor­

tance is when R is the ring of integers in a. finite field extension L of K. Let P be
the maximal ideal of Rand e the ramification index of Lover K, so (Pl = 1rR.
The ideal P has A-divided powers provided

qj > .
-_J
e

(mod P)~FX '" g(xq")(9.10)

(9.9)

the coefficients of X q' on theright hand side of (9.9) are in P for i = 1,2, ... ,n­
1. But by (9.7) we have

Hence 01 == 0 mod P, which implies 02 == 0 mod P, etc. Thus Oi == 0 mod P
for all i, and the left hand side of (9.9) is a series with all coefficients in P. Since
g'(O) f 0 in (9.10), this implies that h(X) is in P[Xl

Now assume, by induction, we have shown that Qj == 0 mod pk-l for all i
and that h(X) is in pk-I[Xj. Then i(1T)h(X) is in pk[XD and the coefficients of
Xq' on the right hand side of (9.9) lie in pk, for i ~ n - 1. By (9.11) this shows
that 01 == 0 mod pk, hence 02 == 0 mod p k, etc. Similarly OJ == 0 mod pk for
all i and the left hand side of (9.9) is a series with all coefficients in pk. Using

. (9.10) and the fact that g'(O) f 0, we see that h(X) E pk[Xl This induction
shows that a, == 0 mod pA: for all k ~ 1. Since nk >1 p k = 0 in R, a, = 0 for
i=I,2,'" ,n-I. 0 -

(9.11) 6~(X) '" xq' +... (mod P).

This occurs precisely when e ~ q. We note, for future reference, that the in­
equality of (10.2) will certainly hold for allj ~ J(e, q), where J(e, q) is an integer
depending only on e and q.

PROPOSITION 10.3. Let F and F' be two A-typical formal A-modules of di­
mension lover R, and let I ~ R be an ideal with A-divided powers. If ({J and 'if;
are elements of Hom(F, F I

) with ({J == 'I/J mod I, then

",' =,p' , RigExt(F', G.)~ RigExt(F, Ga ).

PROOF. Let a E RigExt(F' , Ga ), and represent (}' by a quasi-logarithm

g(X) = L mkX
qk with rrkmk E R.

Then ((J·g(X) is represented by the quasi-logarithm g(({JX) and 1/J·g(X) is rep­
resented by g('ljJX). Hence we must show that

'" "',p mod I==> g(",) '" g(,p) mod R.
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O---F'---E F-----+O

such that the diagram:

E'_F_O

Write <p = ,p + Il where Il(X) E I[XI. Then

'" ..g(<p) - g(,p) ~ ~ m.«(,p + Il)' -,p' )

= I;m. (t, (qi}',p,·-,)· g'l
O-G'~

1, I,

But fOT i 2: 1, (qjk)6 i has coefficients in 1[
k R. (This uses the fact that q is in

1rR). Since mk' 7fk is in R, this establishes the claim. 0

commutes.

PROOF. Write G' =Ga@M I • Then

Let

(11.1)

o

This gives the homomorphism g/. The unicity of i follows from

weE) = RigExt(F,G.).

Hom(F, G') = Hom(F, G.) '19 M' = O.

Hom(F',G') = Ext(F,G.) '19M'

=Ext(F, G').

(11.4)

Proposition 11.3 states that any additive extension of F arises uniquely by
push-out from the universal additive extension. In particular, any endomor­
phism of F lifts uniquely to an endomorphism of E. We also have a canonical
isomorphism

{
HOm(F, G.) ~ 0

Ext(F, Go:} is a free R-module of rank n-1.

These facts combine to prove the existence of a universal additive extension E
of F over R.

Let M = HomR(Ext(F, Ga ), R), which is a free R-module of rank n - 1, and
let F' = Ga ® M be the Msociated additive formal A-module of dimension n-1.

Then
Ext(F, F') = Ext(F, G.) '19 M

= EndR(Ext(F, G.)).

Let R be a local A-algebra and let F be a formal A-module of dimension 1
and height n over R. Combining Corollary 4.3 and Proposition 9.8, we have seen
that

11. The universal additive extension

be an extension corresponding to the identity map in EndR(Ext(F,Ga )). If
o _ F' _ E ' _ F _ 0 is another extension in this class, there is a unique

isomorphism i : E _ E' over R which makes the diagram

(11.2) O_F/~ELF_O Indeed, let 0: be a class in RigExt(F, Gn), viewed as an extension g of F by
IGa and a differential WE' which pulls back to dX'. The universality of E gives
a homomorphism i : E - E', and i~(WE') is the associated class in w(E). The
restriction of i to F' is the map g' : F' _ G" which is the image of a in
Ext(F, G,,) = Hom(F/: Ga ). Hence

and the exact sequence (9.12) is given by the cotangent sequence

0--+ F'-J-

,I
O--+F' -

E-F-O

I, I,
E'_F--+O

(11.5) w(F') = Ext(F, G.)

Its dual, in the category of R-modules, is the exact sequence:

commute. Indeed, the difference of two isomorphisms would induce a homo­
morphism from F to F' , and Hom(F,F') = Hom(F,G,,) ® M = O. Hence the
sequence (11.2) is well-defined up to a unique isomorphism over R, and we call
E the universal additive extension of F.

(11.6) p' •o~ w(F)~ w(E)~w(F') ~ o.

PROPOSITION 11.3. If 0 _ G' _ E' _ F _ 0 is any extension of F by an

additive A -module G1
, there are unique homomorphisms over R:

i:E_E', g':F'-GI

(11.7) 0~ Lie(F')~ Lie(E)~ Lie(F) ~ 0

of Lie algebras, where the terms are free R-modules of rank n _ 1, n, and 1,
respectively.
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by the images .B(ud, which must lie in P. We say that the formal A-module F'
over R is a deformation of F oS! k provided

Part III. Equivariant bundles on the moduli space

12. The universal deformation

Henceforth we fix an integer n 2: L Let (12.9) F'::F®k modP.

be the local A-algebra of power series in the variables Ui' Then AM is a regular
local ring of dimension n, with maximal ideal ('lr,ul,u2"" ,Un_l) and residue
field

(12.1)

(12.2)

AM = AIUl' 11,2,'" ,Un-In

A[~j(1l",Ut,'" , un-x) = Aj1l"A = k

Since RIP is a field containing k, the field of definition for F®k, this congruence
is meaningful; in particular, F' has height n over R. The key deformation­
theoretic result over local A-algebras is the following theorem of Lubin-Tate
[LT66, §3, lor A = ZpJ and Drinleld [DrI74, §4J.

PROPOSITION 12.10. Let F' be a deformation ofF®k over the local A-algebra
R. Then there is a unique element

finite of order q.
Let F = F[y] be the A-typical formal A-module of height n over A[YD which

is obtained from the universal A-typical module FUz.J defined. in §5 by the spe­
cialization

f3 E Hom(AM, R) = pn-l

such that the specialization (3F = F[,ByJ is *-isomorphic to F' over R. Moreover,
the *-isomorphism

F = aF[,,]
a : Af!1J ~ AM

(12.3) Vi ~ Ui i=1,2,' . ,n-l

un ~ 1
V, ~ 0 i~n+l.

h:{3F"'::::' F' overR

is unique.

PROOF. This is exactly as in Lubin-Tate; the key cohomological calculations
are as follows. First:

It follows from Proposition 5.7 that we have the congruence (12.11) Ext'(F', G.) = O.

Hence the reduction F ® k of F modulo the maximal ideal of A[yn has height
n. In fact, we have [Haz78, 3.2.4]:

(12.5) 'F@'(X) = X'" in k[XJ.

Since the A-module F €I k is defined over the finite field with q elements, the
series

This gives the dimension (= n -1) of the tangent space to the versal deformation
space. Finally, since F' has finite height

This insures that deformations from RjI to R exist when j2 = 0, and that the
versa.I deformation space is smooth. Next, since F' has height n

(12.4) 'F(X) " xq" mod(1l",Ul,"',un_d, degqn+l.

(12.12)

(12.13)

Ext1(F', Ga) is free of rank n - lover R.

Hom(F', G.) = O.

gives an endomorphism of F €I k, which satisfies

It is not difficult to show that End(F &> k) is the commutative Awalgebra A[lfll of
integers in the totally ramified extension K(rp) = K( yt1r) of K.

Now let R be any local A-algebra - recall that this means that R is complete,
local, and Noetherian, with maximal idea.l P containing i(-n} The R~module

Indeed, X(R) = pn-l. It also shows that F = F[yJ is a universal deformation
of F &> k over X. The general fibre

This shows the generic deformation has no non-trivial automorphisms, and that
the moduli space exists. 0

Proposition 12.10 states that the functor of *-isomorphism classes of defor­
mations of F €I k to local A-algebras is representable by the fonnal scheme

X = Spl A[!!lJ.(12.14)

in End(F 0 k).

I'(X) = X'

cpn = 11"(12.7)

(12.6)

(12.8) Hom(A[!!lJ,R) (12.15) X0K·

of all continuous homomorphisms of topological A-algebras is isomorphic to
(p)n-l. Indeed t such a. homomorphism f3 : A[!!~ -+ R is completely determined

is a. rigid analytic space over K, -isomorphic to the (n -i)-dimensional polydisc.
We will study this analytic space, and the K -algebra K Hy)} of rigid analytic
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functions on it, more thoroughly in Part IV. Here we simply note that its points
over an algebraic closure f< of K are given by

k((n) the cyclic extension of degree n of k. The automorphism group of An over
A is cyclic of order n, generated by the Frobenius automorphism (J defined by

(12.16) (X ® K)(K) = X(A) = (m)"-1, (13.4) U«(n) = (X

where A is the integral closure of A in K and m is the maximal ideal This automorphism satisfies the congruence

(a E A: ord(aj > OJ (13.5) u(a):; a q (mod "An)

by (12.5). As for the logarithm of FQ., we have the following formula.

If {3 E (m)n-l we let Fp be the corresponding specialization of F = FlY] over
the fiat A-algebm R = A[/lJ.

PROOF. This follows from a combination of (I3.1) with the functional equa­
tion (5.3) for the logarithm of Flu]. Together they show that fo{X) satisfies the
functional equation

1 •
fa(X) = X + -fa(X' j

"which gives the expansion recursively. 0

Let (n be a primitive (qn - 1) root of unity in k. Then the ring An = Aj(nl is

the unramified extension of degree n over A, with residue field An/nAn = kn =

i = 1,2,'" ,n-l

EndA. (F~) = An·

a"(li) = ui(aj· h

{
,'.

fa(X) = E.>a x..
h(X) = ~ fa{xq')

PROPOSITION 13.8. The series

(13.7)

for any element a E An.

PROPOSITION 13.6. The series (n(X) = (n . X defines an automorphism of
the formal A-module FQ. over An. We have

PROOF. By Lemma 13.3, we have !O«(n . X) = (n . fo(X). Since

we find that

F~(X,Y) = fa-
1(1a(X) + fo(Y))

aF.(X) = f a-
1(a 'fa(X)),

(13.9)

are quasi·logarithms for the formal A-module Fft , and give a basis for the free
A-module RigExt(FQ.l Gn). These basis elements are eigenvectors for the action
of An = EndA n (F!!.). We have

F~«(nX, (nY) = (n . F~(X, Y)

aF.«(nX) = (n' aF.(X),

This shows (n . X is an automorphism of FQ• and that the ring An = A!(n] acts
as endomorphisms of FQ. Over the base R = An.

Since FQ. has height n, the inclusion An <.......t EndAn (F.!l) shows that FQ. is a group
of Lubin-Tate type [LT65]. (This also follows from the congruence (13.2)). We
may then conclude that An is the absolute endomorphism ring of F.!l' 0

We now give a description of the free A-module RlgExt(F.!l' Ga ) using quasi­
logarithms.

for all a E An and i = 011"" ,n-I.

i i: n

( mod "A)

0:: AW]- A
v,; 1---+ 0

Vn 1---+ 1.

"F.(Xj:; xq'

(13.1)

(13.2)

LEMMA 13.3. The logarithm fo of FQ. is given by the series

xqn xqzn

fo(X) =X+ -+ --+ ...
" ,,'

xqkn

=2:-•.
k,2:0 1r

13. The canonical lifting

In this section, we study the specialization F.Q. of the universal deformation
F ~ F[y]. This is a formal A-module over the local A-algebra R = A, which is

obtained by the homomorphism [3: A[y] - A with {3(Ui) = 0 for all i. Hence
FQ. is an A-typical formal A~module of height n, which is obtained from Flm via
the specialization

We call FQ. the "canonical lifting" of F 121 k.
Since FQ. == F €I k mod 1rA we have
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such that {3F is *·isomorphic to F'. Moreover, the *-isomorphism

Since h reduces modulo (1f, ttl •... ,Un_I) to b-1 , which is an automorphism of
F0k, the group F' is also a deformation of F0k. Hence, by Proposition 12.10,
there is a unique continuous homomorphism of A-algebras

over A.. [yJ].

j3,AM ~AnM

h:F"':::;' F '

(14.3)

(14.4)

{
F'(hX, hY) = h(F(X, Y))

aF,(hX) = h(aFX),

where F = Fbd is the universal deformation over AM. By definition of F ' , the
series h defines an isomorphism of formal A-modules

(14.5)

and the center Z = Aut(F) of G is the constant group scheme A*.
Let b be an element of G(An ) = Autk.. (F 0 k), given by the invertible power

series b(X) with coefficients in kniXll. Lift the series b-1(X) arbitrarily to an
invertible series heX) with coefficients in And and define the formal A.module
Plover An full by

(~g(X) = g(nX).

o

(~(f,) = (t ./;,
which is a special case of {l3.9}. This follows from the fact that for any quasi­
logarithm g(X) on /0 we have

Finally, we may use the canonical lifting F!! of F 0 k to determine the ring
Endk .. (F €I k), which is also the absolute endomorphism ring of the reduced
group F 0 k. By Proposition 4.2 we have an injection:

An = EndA• (F~) ..... End•• (F 0 k).

The series rp(X) = X q also defines an endomorphism of F® k, by (12.6), which
satisfies rpn = 11".

PROOF. The series fi in Proposition 13.8 are exactly the specializations (9.5)
It. = a(gi) of the universal quasi-logarithms on the A-module FUt] via the ho­
momorphism a:: of 13.1. Hence they give a basis by Proposition 9.8.

Since' any 0: E A acts by multiplication by 0: on RigEx.t(FQ., Ga ) = w(EQ.)' it
suffices to show that

PROPOSITION 13.10. We have

EndA:n (F ® k) = An €a Anrp $ A.. lfJ'l EEl··· $ AnlfJn- 1

(14.6)

is unique.

j: {3F ~ F' over A.... M.

14. The group action

We now describe the action of the group scheme G = Aut(F 12> k) on the
formal A-scheme X = Spf A[!!II of deformations of F 0 k to local A-algebras.

The group G is etale over k, with points

where <po; = aU r.p for all a E An. This ring is the absolute endomorphism ring
of F ® k over kJ and is isomorphic to the maximal order in the division algebra
of invariant ~ with center K.

PROOF. This is standard, see [HazTS, §23]. 0

It is the twist of the constant group scheme A .... [cp]" over k by the one-cocycle
of Gal(kn/k) taking the generator (J to the automorphism "conjugation by r.p".
We view G as an etale group scheme over Al which becomes constant over the
unramified extension An. The torus T = Aut(Fo) is a subgroup scheme of G,
with points

j3 = j3(b) ,AnM 2, A.M.

k = k(b): f3FL F'~F

The composite map

PROPOSITION 14.7. The homomorphism (3 of (14.5) depends only on

bE Aut(F0k)

(and not on the lifting h(X) of b-1(X) to An[XV. It extends to a continuous
automorphism of An ~algebras

(14.8)

depends only on b, and is the unique isomorphism from (3F to F 'over An[!!lI
which reduces to the automorphism b of F0 k mod 7r,!!.

PROOF. The map f3 depends only on the *·isomorphism class of the defor.
mation F ' , which is clearly independent of the choice of lifting h(X). It clearly
extends to a homomorphism of An-algebras; we will soon show (Prop. 14.9) it
is an automorphism by proving that the composite l3(b) 0 {3(b- 1) is the identity
map.

The isomorphism k clearly reduces to b mod 7r,.!!. By Proposition 4.2 it is
the unique map from I3F to F with this' property, so depends only on b. 0{

T(A) = A'

T(An ) = A~

{
G(k) = AI<pJ' = A' Ell A<p Ell .. · Ell A<pn-l

G(k,.) = G(k) = Anl<pJ' = A~ Ell An<p Ell· .. Ell An'i'n-l.

(14.2)

(14.1)
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PROPOSITION 14.9. The map b -+ P(b) defines a representation

{3(b) 0 U, =L a;(b) ,yJ,(14.14)

F~ = h(F..(h-'X,h-'Y)).

This is always isomorphic to F;!. over R (via hL and is *-isomorphic to F~ iff b
lifts to an automorphism of F~ over R. 0

det(a,(b);) E A~.

PROOF. Indeed for b E G(R), the point ;fb in X(R) = pn-l corresponds to
the deformation F~~ over R which is *-isomorprnc to

In particular, Proposition 14.13 shows that the center Z of the group scheme
G acts trivially on X, as every lifting F~ has endomorphisms by A and hence
automorphisms by A"'. It also shows that the torus T is precisely the subgroup
scheme of G which stabilizes the point ~ = Q= (0,0"" ,0) of X(A) = (1fA)n- l .

The action of an element b in G(An) = An[lfI]'" on An[!!lI is completely deter­
mined by the images

as l3(b) is An-linear and continuous. The constant coefficient aj:(b)o lies in 'irAn,
and the linear coefficients aj(b); give an invertible Jacobian matrix:

The element (1' E Aut(An / A) acts by conjugation of coefficients

{3 , G(An) - AUtA. (An[y]),

(14.10)

Indeed, the composite k1 0 t3dk2 ) is an isomorphism

t31t32F~t31F ~F

whichTeduces to b1b2 in Aut(F®k). Hence {31fhF and (3(b 1b2 )F are*-isomorphic.
By uniqueness, this proves (14.10). 0

The left action of G(An) on the An-algebra An[!!lI gives, by transport of
structure, a right action of the etale group scheme G on the formal scheme
X = Spf A[r;] over A. If x is • point of X(R) ~ Hom(AM, R) and 'I' is •
function in A[!!ll we write

so the group G(An ) acts on (the left oj) the An -algebra An[~'

PROOF. Let h,b2 be elements of G(An ) = Autkn(F@k), and write Pi for
{3(b,) and k, for k(b;). We will show that

{
{3(b'b,) ~ {3(bd 0 {3(b2 ) = {3, 0 fJ,

k(b,b,) = k, 0 {3,(k,).

(14.11) (x, rp) = x 0 lfI in R. (14.15) a(~=aJ:gJ) = La(aJ) ',1/;

(From the dual point of view, (x, Ip) is just the value of the function Ip(g) at the
point x.) The element 9 E G acts on X by the formula:

this action is A-linear and normalizes the action of G(An ). We have the formula

in AutA(An[!!lI). In particular, the compact K-analytic group
(14.12)

This gives a morphism

(xg, '1') = (x, 9'1').
(14.16) a{3(b)a-1 = {3(<pb<p-l)

PROPOSITION 14.18. The invariants AnMQ of Q. on the ring AnM consist
of the constant power series in y with coefficients in A.

acts on the A-algebra AnM, where G acts on G(An) = An[Ip]· by the outer
automorphism "conjugation by rp".

PROOF. It suffices to show that An[y~G(A.. ) = An, as Ai") =A by Galois
theory.

To do this, we observe that G(An ) has a single orbit on the set X(An)
(1fAn)n-l. Indeed, any lifting Fi!. of F (9 k to R = An has 1f·series satisfying

Q = G(An) " (a)

mod deg2)

mod 1TAn ).{

nF,(x) '" nX

nF,(X) '" xq'

(14.17)
XxG-tX

(x,g) ~ X9

in the category of schemes over A, which satisfies all the diagrams for a group

action.
The following result describes the orbits of G on X.

PROPOSITION 14.13. Let!£ = (Xl,'" ,xn-d be a point in X(R) = pn-l,
corresponding to a defonnation FiE.. of F 181 k over the local A-algebra R, up to
*-isomorphism. The subgroup scheme GiE.. of G fixing ~ is equal to the image of
the injection

Aut(F..) ...... Aut(F 0 k) = G

'Under reduction mod P. The G-orbit of ~ consists of those deformations Fy

which are isomorphic to ~ over R. -
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fey) - f(Q) ~ g(y)

so cannot contain (1fAn )n-l [BGR84, 5.14J. D

Y(I) ~ {" E (K)"-l , Ix;1 ~ l/q for all i},

vanishes on (1fAn )n-l, which implies that g(y) = 0 and leg) = ao.,Indeed, if
g(y) i- 0, its zero locus is nowhere dense in

g(m,n) = (gm,gn)

g(m0n) =gm 0gn

gf(m) = g(f(g-lm))
{

MfBN

M0RN

HomR(M,N)

(15.6)

Conversely, an A-linear representation of Q on a free R-module M of rank m
determines an equivariant vector bundle M of rank m on X, provided the action
satisfies (15.5) and M{a) is a free A[WJ-module of rank m with M(a) ®AW R =
M.

The simplest example of an equivariant bundle M on X is the trivial bundle:
M = Ox, M = R of rank 1. If M and N are two equivariant bundles on
X which afford representations M and N of fl, then M G;I N,M ® N', and
Hom(M,N) are equivariant bundles on X which afford the representations

respectively. The equivariant vector bundle M = Hom(M, Ox) is called the
dual of M, and M= HomR(M,R) the dual representation.

A homomorphism 1 : M --+ N of equivariant bundles on X is a homomor­
phism of Ox-modules which commutes wit~ the right actions of G. This gives
rise to a homomorphism 1 : M --+ N of free R-modules which satisfies

X(An) "G(An)/T(An) "AnIIPl" /A;'(14.19)

as T(A n ) is the stabilizer of Fo.
Consequently, if the series !(y) = LaJ!!J in An[yD is fixed by G(An ), we

have

f(,,) ~ f(Q) = 00

for all ~ E X(An) = (1fAn)n-l. Hence the series

Hence F~ is a formal A·module of Lubin-Tate type [LT65] with End An (F.i£) =
An. Since all Lubin-Tate modules are isomorphic over An, Proposition 14.13
shows that G(An ) has a single orbit on X(An ), and in fact, that

15. Equivar~t vector bundles: general theory

Let Ox denote the sheaf of functions on the formal scheme X over A, so
We say f is an isomorphism iff it is an isomorphism in the category of R-modules,
and that the sequence(15.1) HO(X,Ox)=AM·

(15.7) f(gm) = g(f(m)) mEM,gEQ..

An equivariant vector bundle M on X is by definition a sheaf of Ox-modules,
which is locally free of finite rank, together with a right action of G

which is compatible with the right action of G on X.
Since X is affine, the equivariant bundle M is completely determined hy its

space of sections

(15.2) MxG~M

o--t M' --t M --t MIl _ 0

of equivariant bundles is exact if the associated sequence of representations of Q.

o --t M ' _M --t Mil _ 0

is exact in the category of R-modules. We have canonical isomorphisms of rep­
resentations

which is a free An [YlI module of rank =rankox (M). The group G(An ) = An[!pJ*
acts An-linearly on the left of M, and this action satisfies

(15.3) M = HO(X 0An,M 0An),

(15.8) {M0~
~

~

(M)

Hom(M,N).

for r E An[y] = R, where f3 = f3(b) is defined by (14.5). Since M is defined
over A, the cyclic group (O") = Aut(AnjA) acts semi-linearly on M, and this
normalizes the action of G(An ). Hence the group Q. = G(An ) )<l (0") acts A­
linearly on M and this action satisfies

Let Homc(N, M) be the A-module of all G-homomorphisms from.N to M.
Then

(15.4) b(r· m) ~ I'(r)· bm

(15.9)

In particular:

Hornc(N,M) = (M 0R N)£.

(15.5) germ) = g(r)· gem) rER,mEMgEQ. (15.10) Hornc.(Ox,M) = M£.
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PROPOSITION 15.11. We have rankA(MQ) ::; -rankR(M). In particular, the
A-module

as derived functors of Horne in the category of Ox-modules with an action of
G. In particular, we define the cohomology modules of an equivariant bundle M
by

HomaW,M)

is free of rank S rank(N) . rank(M).

PROOF. Let {ml,'" ,mt} he a maximal set of R-independent elements in
MQ; clearly t::; rankR(M). If mE MQ we have m = 'L:=lrimi with g(r.) = ri

for all i, and 9 E fl.. But by Proposition 14.18, Rf2 = A and hence the elements
mi give an A-basis for MQ. 0

We may also define the A-modules

We may define the A-modules

{
Ext~G(N'M)

H~G(X,M) = Ext~dOx,M)
(15.19)

(16.1) M = Lie(F) 0 AnM
AM

of rank L This has a. natural action of (u) = Aut(AnjA); we now describe an
An-linear action of the group G(An ) = Autkn (F 0 k) on M.

Recall that for each b E G(An), there is a unique isomorphism

16. Equivariant bundles: some exact sequences

We now use the universal deformation F over AM to define some natural
G-equivariant bundles on X. Consider for example, the free R = An[y]I module

as derived functors of HornpG in the category of Ox-modules with an action of
PG.

Ext~(N,M)

Hf,(X,M) = Ext~(Ox,M).(15.13)

(15.12)

These are subtle invariants of the representation M of Q.
We say the equivariant bundle M has central character X : A· - A· if, for

all m E M and a E A· = Z(An ) we have

For example, the central character of M = Ox is equal to the trivial character
X = 1, as Z acts trivially on X.

Let N : An[lf/l* - A* be the reduced norm homomorphism; the restriction of
N to the center A· is equal to the character x(a) = an. If k is an integer, let
Ox(k) be the equivariant bundle of rank 1 on X whose representation R(k) is

given by the following twist~d action of Q on R:

(15.15) gk(r) = (Nb)k. g(r) g = b xu'.

Then Ox(k) has central character x(a) = ank. More generally, if M is an
equivariant bundle on X we define the twisted bundle

k(b) , {3F~ F

The central character of lie(F) is given by the formula

mEM.

M ~ HO(X 0 An, Cie(F) 0 An)'

b(m) ~ k(b).({3.m)(16.2)

of formal A-modules over R which reduces to b mod (n,!!). Here {J = {J(b) is
the automorphism of AnW studied in (14.5)~(14.7). Consider the composition

M~Lie(,8F)~M

where the first map is given by the base change {J : R _ R. We define
•

(i6.3)

Since k(b). is R-linear and {3.(rm) = {3(r)· {3.(m), this action of G(An) satisfies
(15.5). Hence there is an equivariant line bundle (= vector bundle of rank 1)
lie(F) on X with

a(m) ~ x(a)· m.(15.14)

(15.16) M(k) = M 00x(k).

Then .ankM(k) ~ rankM and M(k)(i) = M(k + i).
character, so does M(k) and

(15.17) XM(k)(a) ~ XM(a)· ank .

If M has a central

(16.4) XCie(F)(a) = a.

Indeed, for b = a in A· we have,8 = 1 and k(b) = aF.

Let E be the universal additive extension of F over AM and let F1 be the
additive A-module F' = Gil ®HOIDR(Ext(F, Ga ), R). We have an exact sequence
of free A[yD-modules,

Instead of considering all equivariant bundles M on X, we can restrict to
those with trivial central character X. These may be viewed as PG-equivariant
bundles on X, where PC is the projective group. Similar to the above, once we extend scalars to R = Anff!!ll, there is an action of

G(An ) on the free R-modules in this exact sequence. We summarize this result
as follows.(15.18) PG = G/Z.

(16.5) o -Jo Lie(r) _ Lie(E) __ Lie(F) __ O.
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(17.1)

PROPOSITION 16.6. There is an exact sequence of equivariant vector bundles
on X:

o~ Cie(F') ~ Cie(E) ~ Cie(F) ~ 0

of ranks n - 1, n, and 1, respectively, which gives the sequence (16.5) of free
A[[Yll-modules on taking global sections. The central character of these bundles
is given by: X£.ie(a) = a. 0

Taking the dual of the exact sequence in Proposition 16.6 gives an exact
sequence

be the corresponding deformation. If b E G(An ), the deformation bet) is given
by first conjugating the above series by (3 = fJ(b) to obtain a deformation f3F,
then using the isomorphism k = k(b) : {3F ~ F to obtain a new deformation of
F,

{
Fb(.) (X, Y) = k({3F(k-~~, k-'Y) + '~~(k-'X, k-1y))

OF.(.,(X) = k({3oF(k X) + ,{39a(k X)).

PROPOSITION 17.2. The isomorphism of free R-modules in Proposition 7.2:

17. The tangent bundle and the canonical line bundle

Let Tx denote the tangent bundle of the (smooth) formal scheme

X = Spl Alu" ... ,un-,I

Rig[xt(F, Ga ) [x'(F, Ga )

of equivariant bundles on X of ranks 1, n, and n - 1, respectively, and central
character Xw(a) = a-I. We may define the action of G(An) on the sections over
An, using the formula:

Indeed, the functors w(F), RlgExt(F, Ga ), and Ext(F, Ga ) are contravariant and
commute with base change.

If M is any equivariant vector bundle on X, the fibre MQ. over ;I. = Q is a
free A-module, and the torus T(An ) = A~ which stabilizes ~ = Q acts on the
An-module MQ = M,!! ® An. We can determine this action on the vector bundles
Lie and tv, using Proposition 13.8.

PROPOSITION 16.8. The torus T(An) acts on Lie(F)o via the identity char­
acter e(er) = 0: of A~, and acts on Lie(E)o via the dire.ct sum of the n distinct
charaeterst"i(O:) =17 i (o:) i=0,1,2, ... ,n-I.

b(m) = (k(W')·({3.m).

9, [xt(F, Ga) 18> Cie(F) -.::. Tx

But we have:

{
G(X, Y) = Ll.(X, Y) . h(F(X, V))

9a(X) = 'a(X) . heX)

induces an isomorphism of equivariant vector bundles on X:

9, Ext(F, Ga) 18> Lie(F) -.::. T

COROLLARY 17.3. We have Tx :::: Hom(.Cie(F'),.cie(F)) as equivariant vec­
tor bundles on X.

b(c) = {{3Ll.(k-1X, k-'Yj, {3oa(k-' X)},

beD) = k.((3h(X)8;8X).

One now checks directly that 9(b(c)0b(D)) corresponds to the deformation Fb(t)

01 F given by (17.1). 0

PROOF. We must check that () commutes with the action of G(An ). Recall
that () takes the class c ® D, where c = {~(X, Y), 6a (X)} is a symmetric 2­
cocycle and D = h(X)8j8X is an invariant derivation, to the deformation F t
with

PROOF. Hom(Cie(F'), Cie(F)) " Cie(F'iI8>Cie(F). But Cie(F'fis isomorphic
to w(F'i= [xt(F,Ga ). 0

J

J
i
•
~
:1

1

II

~ w(F') ~ 0"'(E)

II

o~ ",(F)~

(16.7)

is called the canonical bundle of X.

Let n.\: = (Tx jbe the cotangent bundle of X and for i = 0, 1, 2, ... ,n -1 let

be the bundle of i-forms on X. Then rank n~ = (nil). We have n~ = Ox and
the line bundle

over A. Then Tx is a vector bundle of rank n - 1 on X; the sections

T = HO(X 18> An> Tx 18> An)

are in one to one correspondence with the deformations of the universal group F
from R = AnM to R[e]/(f2), up to *-isomorphism. We now define an action of
G(An ) on T, which gives Tx the structure of an equivariant bundle on X with
trivial central character.

For t E T, let

{
F.(X, Y) = F(X, Y) + ,G(X, Y)

OF. (X) = aF(X) + '9a(X)

(17.4)

(17.5)

i i

n~ = 1\ n'x = 1\ Tx"

n~-l = Kx
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Part IV. Rigid analytic bundles

18. Rigid analytic spaces

The general fibre X ® K of the formal scheme X over A has the structure of
a rigid analytic space over K. If R is a flat, local A-algebra we have

PROPOSITION 17.6. For i = 0, 1, ... ,n - 1 we have an isomorphism of equiv­
ariant bundles on X:

fl'" '" 1\ £ie(F') 0 r;;(F)"'.

Moreover,

K.x '" r;;(F)""(I). (18.1) (X 0K)(R0K) = X(R) = pn-1.

The first claim follows immediately from Corollary 17.3 and the definition of
n~. Indeed

(17.7) flk '" Lie(F') 0 r;;(F)

Applying this to R = A, the integral closure of A in an algebraic closure k of
K, we have P = m = {x E k: lxl < I}. Here lxl = q-ordr(z) is the normalized
valuation of K, extended uniquely to [(. Hence X 18' K is the (n -1)-dimensional
open unit polydisc:

and we have the general formum:

I\(M 0£) = I\M 0£'" when rank(£) ~ 1.

(18.2) (X0K)(K)={.,=(x".··,xn_,)EKn- 1 , Ix,l<l alii}.

The K -algebra of ~igid analytic functions on X oS! K consists of those power
series:

This gives the final formula for Kx.

0---1" oi- ---1" 'cie(E) 0 w(F) ---1" Ox ---1" o.

COROLLARY 17.9. There i.'i an exact sequence of equivariant bundles on X
with trivial central character:

The exact sequence of Proposition 16.6 gives, after taking top exterior powers,
an isomorphism of equivariant line bundles.

. . lim la··· I ;, -;
JI+.12+ ... +j.. _I--+QO }132"'Jn-1 "11 "'rn"-l = 0

(18.3)

(18.4)

rpC~) = Lajl ...j"_Iu{lu~2 ---u!" = LaJ!!J

with coefficients aJ E K which converge on the open unit polydisc. The condition
on the coefficients aJ of lp which is equivalent to convergence is:

whenever ri are fixed real numbers with O.s r. < 1 for all i.

We denote the K -algebra of rigid analytic functions on X 0 K by

v = K {{y}}.

This contains the A-algebra M = A~!!lI of integral power series, which are the
formal functions on X. It also contains the K-algebra M 0 K of power series
whose coefficients aJ are bounded in absolute value, and

n

n

1\ Lie(E) '" Ox(l).

n-1

(17.8)

1\ De(F') 0 Lie(F) '" 1\ £ie(E).

In §22 we will show that there is an isomorphism (Proposition 22.4):

The exact sequence of Corollary 17.9 gives a class

which induces a cup-product in cohomology:

The wedge product of diHerential forms gives a G-homomorphism

PROOF. This is the tensor product of the sequence in Proposition 16.6 with
the line hundle r;;(F). 0

p(.,) ,V ~ L ~ K(.,)

\O~ \0(.,)

is surjective; its kernel Ie=!.) is a maximal ideal of V (which depends only on the
orbit of =!. under AutK(K)). We now show how the maximal ideals I(=!.) can
be used to determine membership in M or M ® K, as well as the units in the
K~algebraV.

(18.5) 11\011 =sup{ laJI }
J

defines a norm on the vector space M ® K. The larger space V haa the structure
of a topological K-algebra, which we will describe below.

If the series /pC!!) lies in V, we may evaluate cp on points =!. E (m)'~-l in the
open polydisc. Fix such apoint ~ = (Xl,." ,xn-d with Ix.d < 1 for all i. The
resulting homomorphism

i = 0, 1, . ,n - 1.

fl'x' 0 oj _ ni+j
x x'

e=6(1) in Hj,G(X,flk)~Extj,G(Ox,nk)·

e i in H}G(X,n~)

Hf,a(X, o~) 0 H~a(X, n~) - H~tq(X, 01;)·

(17.13)

(17.11)

(17.12)

Using this map, we may define the class

(17.10)



ii) V = K ({y)) is a faithfally flat M 0 K = AM 0 K algebra.

COROLLARY 18.8. i) Every unit ;p of the K *algebm V = K Hy}} has the

form 1rk . VJM, where rpM is a unit in M = A[y-D. and k =ordx- ao = ord,.. VJ(Q)·

where rp(y) = ~aJgJ. For a proof, see [BGR84, 5.1.4J. 0

PROPOSITION 18.7. Assume 'P(!!) = "La;!!J is a non~zero junction in V =
K {{y}}. Then the following conditions are all equivalent:

PROPOSITION 18.6. Assume lp is in V = KHi!}}. Then

i) 'I' is in M = AM iff 1'1'(2;)1 :S 1 for all 2; E (m)"-I.

ii) Ip is in M ® K iff Irp(,'f)1 ~ qN for all J!. E (m)n-l, where N is an integer
depending only on !.p,

PROOF. One has the identity

61

h+h+···+J.. _l

lim laJI/g • = O.
J
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h+J;,+··+j,,_l
11'1'11. = sup{ laJi/q • )

J

= sup {1'I'(2;I).
=.EY(e)

Y(e) = {2; E (l?)"-l , Ix;1 :S q-l/.)

- 1 1
= {2; E (K)"- ,ord,(x;) '" - ).

e

(18.9)

(18.12)

(18.10)

We let M(e) = {'I' E V(e) , 11'1'11. :S 1) be the unit ban in this Banach space;
then M(e) is an algebra over A.

Let e 2:: e' , so Y(e') '-+ Y(e). The restriction of 'rigid analytic functions gives
a homomorphism

Y(l) ~ Y(2) ~ Y(3) ~ .

Vie) ~ V(e')

of K*algebras, which is injective and completely continuous with respect to the
narms 11'1'11, and 11'1'11" [80r62, p. 185J. Since

I
V = liE'V(e) = nV(e)

e e>l

M = I\JnM(e) ~ nM(e)
e e?:l

This is a Banach algebra over K, with norm [BGR84, §5.1J.

Here e 2:: 1 is an integer; we have obvious inclusions

We now give V the structure of a Frechet algebra (= inverse limit of Banach
algebras) over K. To do this, we introduce the affinoid subsets of X 0 K:

(18.11)

X 0K = Ii.'!1Y(e) = UY(e).
e?:l

The K -algebra V(e) of rigid analytic functions on the closed polydisc Y (e)
consists of those series VJ(Y) = l: aJyJ which satisfy

and

~!

"it
~

,~

o:f
A

~
'1

~,
;l

ii
"

fi'
;,
0'
-j

~
il

~
n

(t

i~
u
it

r
I
iJ
~
}J
,;j

~J
~
'j'j

ij
",

inRU{oo),
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sup{ laJ I) = sup{ '1'(2;) )
J •

i) We have on4(ao):::; ord,..(aJ) for all J.

ii) The junction cp . 1f-N is a unit in M = AM for some integer N.

iii) We have 14'(~ I = qN for all :f ~ (m}n-l, where N is an integer which
depends only on ip.

tv) The function r.p is a unit in M <8' K.

v) The junction r.p is a unit in V.

vi) We have '1'(,,) # 0 for all" E (m)"-I.

PROOF. IT ord(uo) = N :::; ord(a;) for all J, then cp/7(N is a unit in AM by
the formal inverse function theorem. This, in turn, implies that 1;p(~/1rNI = 1
for all ~, so Icp(~)1 = qN for all~. By Proposition 18.6, this shows VJ is a unit
in M ® K, so it is certainly a 1lllit in V and hence VJ(;~) f 0 for all~. But if
ord(ao) > ord(uJ) for any J, the theory of Newton polygons shows that VJ bas a
zero in (m)n-l. This completes the proof. 0
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we obtain on V the structure of a. Frechet algebra. Specifically, a sequence { I.{Jn }

of functions in V converges to the function VJ in V if and only if VJn --t VJ in each
V(e). Since the metric topology on V(e) is defined by the sup norm (18.11), this
notion of convergence is the usual one of "uniform convergence on compacta".
Thus CPn --t VJ in V iff

Remark. Although the maxirnaJ ideals I(;~:) defined in (18) are sufficient to
detect membership in M and M ® K, as well as the units in V, they do not
exhaust the set of all maximal ideals of V. For example, take n = 2 so V =
K{{Ul}}' Let S = {Xl,X2,"'} be an infinite sequence of points in m. with
Lirnj-+oolxjl = 1, and assume S is stable under AutK(K). Let I be the ideal of
V consisting of functions If! which vanish at all but a finite number of points of
S. Then I is non-zero, but is not contained in any maximal ideal I(~) of the
type (18).

i!
:1

(18.13) {
Y, > 0, Ye '" 13N("e) : Yn '" N("e)

1'1'.(;<) - '1'(2;)1 < ,.
and 2; E Y(e)
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PROPOSITION 19.2. The action of the topologicalgTOup Q. on the rigid analytic
space X ® K n over K is continuous.

Remark. Although V is a complete metric space', the topology of V is not
given by a norm. In particular, M is not the unit ball in V. It is the unit ball
in the Banach space M 0 K, which is the continuous linear dual of the space of
rigid analytic functions on the closed unit polydisc [Ser62, p. 172].

19. The group action: continuity

The action of the group scheme G on the formal scheme X extends to an
action on its general fibre X 0 K. If rp = ip(y) is a rigid function in the space
lin = V ®K K n and b an element of G(An ), we have the formula

The group (0") = Gal(Kro./K) also acts on V ®Kn by conjugation, and, as before,
this normalizes the action of G(An ). Hence the group Q. = G(An ) ~ {O") acts
K-linearly on the left of the Kn-algebra Vn .

Recall that G(An ) is the group of units in the order

B n = An $ Anrp ffi··· $ Anrpn-l = Endkn (F ® k)

For N ::?: 1 the subgroups 1+rpN Bn are normal of finite index in fl., and nN >1(1+
rpNB n ) = 1. Taking these subgroups as a basis for the open neighborhoods of
the identity gives fl. the structure of a profinite topological group.

M = H"(X eAn,M eAn)

H'(F~ e R,G. e I). = H'(F~ e Rll,G. e I) •.(19.4)

(20.1)

form a free R = An[!!II = HO(X ® An' Ox ® An} module of rank m. The group
Q. = G(An) >II AutA(An ) acts A-linearly on the left of M. We say M is flat iff
there is an A~linear representation M o of {l on a free An-module of rank m and
an isomorphism

20. Flat bundlesj rigid equivariant bundles

Let M be an equivariant bundle of rank m on X. Then the sections

PROOF. We use induction on N. The result is true for N = 0, where 1 +
1T

N B n = B~ = G(An ), as ;[2b lies in Y(e)(K). Next assume N ~ 1. Let a be
an element in f< with ord.(a) = ~ and consider the deformations F~ and F,[

of F 0 k over the local A-algebra R = A/(a)N+lA. We must show they are
*-isomorphic, so ~ == y rnod(a:N +1...If This is equivalent, by Proposition 14.13,
to showing that EndR(F:r:) contains the subring A+1rN 8 n of B n = Endi(F0 k).

Let I be the ideal aliAj(a)N+l.J of R. By induction EndR/1(FJ contains
the subring A + 1T

N
- 1B .. of En. But [2 = 0, SO [LT66 l Prop, 2.4J shows that

the obstruction to lifting an element f(X) in EndR/1(F:!.) to EndR(F1:.) lies in:

Since 1f[ = 0, the A~module of symmetric 2-cohomology with coefficients in I is
annihilated by 1f. Hence the endomorphisms in 1f • (nN -1 Bn ) = 1(NBn lift to R,
and A +1fNBn is contained in EndR(F,;E). 0

b<p(y) = <p(bu" bu" . . ,bun-').(19.1)

PROOF. This is equivalent to the claim that the map (20.2) M",ReA"Mo

of R(m-modules. (The group Q acts diagonally on R ® Mo). Equivalently, M
is flat if M has a basis (el' e2,··· ,em) over R such that the An~module M o
spanned by the ei is fl.-stable.

For example, the equivariant line bundle M = Ox(k) defined in (15.14) is

flat: M o = An(k) is given by the kth power of the reduced norm character of
G(An ) = B:. This example is typical of Bat line bundles.

PROPOSITION 20.3. The fiat line bundles on X are determined by the action
of A~ on the fibre of the canonical lift. Restriction to this fiber defines an iso~

morphism between the abelian group of fiat line bundles and the subgroup

Q.xVn--+Vn

(g, <p) ~ g<p

of topological spaces is continuous. Since the series bUi in (19.1) have coefficients
in An' the action of G on X®K stabilizes the affinoid subdomains Y(e) of (18.9),
for all e ;::: 1. But V is topologized as the inverse limit of the spaces V (e), so we

must show the map

Q x Vn(e) ~ Vn(e)

is continuous for all e, where V(e)n = V(e) ®K Kno This follows from the
following more precise result. 0 (20.4) Hom «1 + ~A)X, (1 + ~A)X) x Hom (An/~)X,(An/~r)

LEMMA 19.3. Let ~ = (Xl"" ,xn-d be a point in Y(e)(K), so ord,..(x·d ;::: ~

for all i. Assume b lies in the subgroup 1 + rrN Bn of fl, and write 11 = ~b =
(Yl, ... ,Yn-d. Then -

of Hom(A:, A:) generated by the reduced nonn and the map

a ....... (a),

ord.(x, _ y,) ~ (N + 1)
e

for all i.
where

(a) == a mod 11"
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is the "Teichmuller" representative o/a modulo 11". For an element (A, p) of(20.4)

we have Mo = AnCl",p) = An' e where

We say the bundle M is genericaUy flat if M 1& K is flat over X 0' K. By this
we mean the following: there is a representation K Mo = K n ® M o of Q. on a free
Kn-module of rank m and an isomorphism

{;::;(~) p(b)· e bE G(An ),
(20.7) V",S0K"KMo

with b the reduction of b mod I.p. The corresponding flat line bundle Ox (..\, p) has
central character

x(a) = ,In (:)) pea).

PROOF. If M is a flat line hundle, then M o = An . e. We may assume e lies
in the rank 1 A-module MJI'T} = HO(X,M). Then ae = e and be = a(b)· e with
o(b) E A~. Thus Q is a homomorphism Q : B~ ---+ A~. Since the image of Q is
commutative, a: is trivial on the commutator subgroup of B~, which is equal to
the intersection of the kernel of the reduced norm with (1 + ¢Bn)X _ The result
now follows. 0

[AJ E GLm(Kn)\GLm(S)/GLm(R).

PROPOSITION 20.9. If M is an equivariant line bundle on Xl the following
are all equivalent:

of S[Q.l-modules. Equivalently, V has a basis (el,. _. ,em) over S BUch that the
Kn-module spanned by the eoj is .G.-stable.

A generically fiat blIDdle M need not be flat: in the next section we will Bee
that the bundle .cie(E) of rank n on X gives such an example, once n 2: 2.
m this case, Mo is the left regular representation of G(An) = B~ on B n =
An EBtpAnffi' . '$tpn-l An. IfM has rank m and is generically fiat, let (ell' .. ,em)
be a basis for K Mo over K n and let (ei, ... ,e~J be a basis for Mover R. Since
both give bases for V over S, there is a ma.trix A E GLm(S) which transforms e~

into ej:. The matrix A is well-determined up to right multiplication by GLm.(R)
and left multiplication by GLm(Kn ), hence gives a class

(20.8)

ii) M is generically fiat.

iii) M :::: Ox (A, p) for some element (A, p) in the subgroup (20.4) of

i) M is fiat.

If [A] = [1] in this double coset space, the bundle M is flat over X. This certainly
occurs when m = 1, i.e., when M is a line bundle, as by Corollary 18.8 we have:
S· = K~· R· = 1fz x R·, Hence

v = HO(X 0Kno M 0Kn )(20.5)

On the other hand, not all line bundles on X are fiat. For example, the equiv­
ariant bundle .cie(F) is not flat provided n 2: 2. Indeed, the central character
X.cie(a) = a of this bundle is not of the form An for ..\ E Hom(A·, A·) once
n 2: 2. More generally, the equivariant line bundle M = .cie(F)@k is not fiat,
provided n 2: 2 and k i= O. Indeed, the torus T(An ) = A~ acts on the fibre Mo
by the character a: 1--+ ok by Proposition 16.8, but acts by the character ..\(Na)
on the fibre at.Q. of the flat bundle Ox(..\).

We now return to general equivariant bundles M on X _ We let M ® K denote
the general fibre of M, which is a rigid equivariant bundle on the rigid analytic
G-space X ® K. The sections

fonn a free S = Kn{{y}} = HO(X0Kno Ox0Kn) module of rank m = rank(M),
and the group Q acts K-linearly on the left of V. We have

Hom(A~, A:).

where Q acts diagonally on the tensor product; this isomorphism follows from
the fact that X is affine.

Notice that we have changed our notation slightly from the previous section
- where S = K n {{,!!}} was denoted Vn . The results of §19 shows that V has the
structure of a Frechet space over K n . For the natural bundles .cie(F), .cie(E),
Tx,n~, etc., considered in §§16-17 one can imitate the method of §19 to show
that the action of Q on V is continuous. However, this· is not true in all cases:
for example, when M = Ox (A) is a fiat line bundle, the action of Q on V is

continuous if and only if the character). : A· -. A· is continuous.

21. The bundle t:ie(E) is generically flat

be the sections of the equivariant bundle .cie(E) ® K n over the space X I&> K n .

In this section we will construct a. basis of "fiat" sections (CO, Ct. ... ,Cn.-l) of V.
In the next section we will show that the An-submodule spanned by the Ci is
Q-stable.

The sections Ci are described by a limit procedure, using the coefficients of
quasi-logarithms representing classes in RigExt(F, Ga).

(20.6) V=S0R M
LeI

(21.1) v = S 0R Lie(E) = HomR(RigExl(F, Ga ), S)



PROPOSITION 21.2. Let F be the universal deformation of height n over

A[Ut.··· ,un-lll,

let g(X) = L mkXqk be a quasi· logarithm of F, and let i ~ 0 be a fixed integer.
Then the sequence

Combining the previous two congruences, taking j = kn + i, and multiplying by
1[.1: we obtain
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r
~
I

But on(gz) = 1 + fJ with ord.(fJ) ~ ~. Hence

ffi;(;l<)an(;l<)" "ffi;(;l<) ( mod ,,-NA[;cl) .

67

ak = 1["1: • mltn.+i k = 1,2,3, ... 7rkm.l:n+;:(~} == 1r.l:+lm(k+l)n.+i(~) ( mod "k-N A[;cl).

for all ~ E Y(e). This gives (21.4). The limit a = limal;; depends only on the
class of 0, as limk ......oo7rkmkn+i = 0 if mknH E Aff!!ll for all k. 0

Let g(X)

i = 1,2,··, ,n - 1

We now define the elements c. in Homn(RigExt(F, Ga ), S).
L:m.\:X'/ be a quasi-logarithm on Faver R = Ann!!B. Then

{
CO(O) = limk--.oo 1[kmkn

_ . k+lc,,(g) - hm.l:-.oo 7r m.l:n+i
(21.6)

of elements in AM ® K converges to an element a = limk.....oo6k in K HyJ}.
The limit a depends only on the class of 9 in RigExt(F, Ga)·

PROOF. It suffices to show the sequence {ak} in Cauchy, as K {{y}} is a
complete metric space. By our description of the topology on K {{yH given in
§18, we must show the sequence {ak(~)} is uniformly Cauchy on each affinoid
subdomain:r. E Y(e). Let N = N(e,q) be the smallest non-negative integer such
that

-li.g = g("FX) - "g(X)

If e S q we may take N = 0; if e 2: q + 1 we have N 2: 1. We will show that

; qi
ord".(m.(~)u~+j_J~)) ~ - - i

e

so the function in (21.5) lies in Aff!!ll. We now specialize to an ~ E Y(e). Since
1rimi E An!!~ by Proposition 8.12, we have

for all ~ E (m)n.-l.

T = (<:;(g;))

c,(g;)(Q) = Ii,;.

det T(;l<) "0

(21.7)

PROOF. Let T be the n x n matrix with entries in S

PROPOSITION 21.8. The elements (CO,CI,." ,Cn-i) defined by (21.6) give a
basis for Lie(E) 031 S over S.

(21.9)

This follows directly from a calculation of the quasi-logarithms gj(Q} = f; on FQ.,
given by Proposition 13.8.

The limits exist in S = K n Hy}} by Proposition 21.2. The specific constants are
chosen to give a simple specialization at ~ =.Q. Indeed, if (00,01, ... ,gn.-d is
the basis for RigExt(F, Ga ) over R given by §9, we have

(21.10)

where OJ is the standard basis for RigExt(F, Ga } over R. The elements Co form
a basis of HOIDR(RigExt(F,Ga)l S) if and only if the matrix T is invertible over
S. Thus we must show the determinant det T is a unit in Sl or equivalently, by
Proposition 18.7, that

(21.11)

But det T(gz) '# 0 if and only if the linear map

c(;l<) , RigExt(F, Go) 0 K ~ K(;l<)n

g("j ~ ( .. ,c,(g(;l<», ... )

is an isomorphism. Since c(:1:.) is a map between two K(:1:.) vector spaces of
dimension n, it suffices to show that cC~) is an injection. This follows from
Lemma 21.12 below. 0

'f

I
J
I
I
i
j

,
i
1
1

~
;

j
J
i,
ij
'1

j

( mod ,,-NA[;cl).

for all i 2: 1.

mod 1rk - N A[~

n+j
~ q' .
~ ffl;:' frn + j _ i -1rffin+J'
.=0

q'
--i+N>Oe -

ak (~) == ak+! (;f.)

(21.5)

for all i '# j. Hence, by (21.3) we have:

mj(~}un.(~Yr' == 1rmn+j(~}

for all points 12. E Y(e), thereby establishing the claim.
Assume char(A) = p for simplicity (the argument is essentially the same in

the general case). Write

(21.3)

(21.4)

7rF(X) = L akXq~.
k~O

Then 0:0 = ?r,0;: E P = (7r,Ub··· ,Un-d for i '# n, and Un. == 1 mod P. Since
g(X) is a quasi-logarithm of F, the series

is integral (Le., has coefficients in the subring AM of AM ® K). But the
coefficient of xqn+

J is equal to



and hence Ci(y(;!;.) i= 0 for i == j mod n. Hence the hypothesis that 0:;:(9(,1:.)} = 0

for all i implies that

PROOF. Assume ~ E Y(e} and let N = N(e, q) as defined in (21.3). By the
proof of Proposition 21.2 we have the congruence:

If any coefficient of g(;~) has negative valuation, the above argument shows we
may find a coefficient mj(~) with minimal valuation < O. But (21.5) then shows
that ord(ll'mn+j(e» = ord(mj(e», which contradicts the minimaUty. Hence
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Mo = AnCO $ Ancl EEl··· $ AnCn-l

By formula. (21.7) we have the specialization
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(

10"'0)
T(Q) = I = 0 1 ... 0 .

00 .. · 1

COROLLARY 21.17. The element € = detT is a unit in AnY] with (Q) = 1.

(21.16)

(22.1)

is a unit in R. 0

c(g) =, ~ detT

PROOF. We have already shown that (is a unit in K{{y)}, and (21.16) shows
that €(Q) = 1. The fact that € is a unit in AnY] now follows from Proposi­
tion 18.7. 0

C0':t0LLARY 21.18. The wedge product C= CoAClA·· ·ACn_1 lies in /\n Lie(E)
and gives a basis for that rank 1 module over R.

PROOF. Clearly c lies in 1\n Lie(E) ® S. To verify that it is integral and a
basis, we evaluate it on the basis vector 9 = 90 1\ 91 A··· A 9n-l of /\nw(E) over
R. But

22. The group actionj crystals and connections

Our aim in this section is to complete the proof that the vector bundle Lie(E)
is generically :flat, by showing that the submodule

of V is Q-stable.

Clearly Mo is stable under the action of (O") = AutA(An), as the classes Ci are
rational over K{bJ}. To show Mo is stable under the action of G(An ), we need
a generalization of Proposition 10.3.

'j
J
1
i

"1
J;1,

:;

r
l
~1

1

for all j.

for all j,

mod 1f-N Al±].
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ord.(mj(")) ? -N

68

ord.(mj("))? 0

and g(,,) "0 in RigExt(F, Ga). D

Remark. When e lies in Y(e) with e ~ q, so the maximal ideal I of·A[,m has

divided powers, one can show that the isomorphism c(~) of (21.11) identifies
the lattice RigExt(F, Go;} with the lattice A[iEn . When e ~ q + 1 the elements
Ci(9(~)) may have denominators.

We want to make the functions Ci(9j) in the matrix T of (21.9) more explicit.
For i = 0, 1,2, .. " ,n - 1 let

LEMMA 21.12. Let gld:.) = Emk(~)Xi: be a ~quasi.logari.thm on FI;. with
,,(g(,,)) = 0 Jor all i. Then the coefficients m,(,,) oj g(,,) lie in A!1:J, so g(,,)
represents the trivial class in RigExt(F,Ga).

mj (;~) == 1!"mn +i (~)

If ord,.. (mj (~» < - N, then this shows that

ord,(m.+j(")) = ord,(m.(,,)) - 1,

We recall that 90 = fey) is the logarithm of the universal deformation F = F(!!)
over X. Since the limits defining the elements c; commute with the derivations
D j = a/aUj used to define the quasi-logarithms OJ = D j 90, we find

Thus the matrix T has the form:

(

¢O D,¢O .. D.-1¢0 )
1>1 D 1¢l .. D n - 1cP1

rPn-l D1Pn-l .. Dn _ 1¢n_l

(21.13)

(21.14)

(21.15)

¢,(y) = ,,(go)

D,¢,(y) ~ c,(g,)

T=

in K {{J!lJ.

j = 1,2, ... ,n - 1.

i
ij
'I
i
I
I
I
!

PROPOSITION 22.2. Let F and F' be A-typical formal A-modules over R =
AnllYll with 1fp := 1fp' := X

qfi
mod P. Let lp : F -+ F' be a homomorphism of

fonnal A-modules over Rand ,p(X) a series in RnXll with I.{J ==,p mod P. If 9
is a quasi-logarithm on F' then

"('I'0g) = ,,(g(.pX)) in S,

for i = 0, 1, 2, ... ,n - 1.

PROOF. We must show that for all.2i. E (m)n-I we have

c; (g( '1')) (,,) = ,,(g(.p)) (,,).

Assume :£ E Y(e) and let N = N(e, q). The argument in the proof of Propo­
sition 10.3 shows that the series g~(IpX) - g~(,pX) has coefficients in 1f-NA{,m.
Hence the limits Ci of this series are zero, which establishes the above claim. 0
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(22.3)

of

(co', Ct", ... ,cn-l)

.-1
Ipl-nBn = An €BAn!!!. $ .. . $An'L-

". ".

which is the inverse different of En in En ® K.

(1,1p,1p2, ... ,rpn-l)

HO(X 0 K,De(E) 0K)v

'i7 , Cie(E)~ Cie(E) 0 n!".

En = An $ IpAn $ ... $ Ipn-lAn.

(22.5)

(22.6)

correspond to the basis

(22.7)

The basis elements

Remark. The generically flat structure on Lie(E) may seem a little ad hoc
as presented here, and we indicate a more conceptual argument when A = Zp.
In this case, the vector bundle Cie(E) is the covariant Dieudonne module of the
p-divisible group F [Kat79, Ch. VJ. It has a G-invariant integrable connection
over X:

of horizontal sections for the associated rigid bundle over X ® K has dimension
n = rank(£ie(E)). This space is stable under G, and spanned. by our specific
elements Ci (which are nonnalized to be eigenvectors for the torus T).

One reason why we have chosen an explicit construction of the fiat sections is
that the -existence of an integrable connection does not suffice to descend from
a K{{!!}} module to a K-module when char(K) = p. Another reason is that it
facilitates computations of the map to projective space, which will be given in
the next section.

Remark. Proposition 22.4 only describes the structure of the representation
of B; on K Mo, With a bit more work, one can determine the structure of the
integral representation of B: on M o : it is isomorphic to the representation by
left multiplication on the free (right) An-module:

Since- £ie(E) is an "F-crystal", the connection V has what Dwork calls a Frobe­
ruus structure. A general result (d. IKat73, Prop. 3.1]) then implies that the
K-vector space

(eo,C" ... ,0.-1)

of M o, and are eigenvectors for the torus. Similarly, one can show that the
An-module spanned by the dual basis

w(E) 0 S = RigExt(F, G.) 0 S

gives a representation of B: isomorphic to right multiplication (by the inverse)
on the module:

"j

;1

~
-'i

:1
,

I
i
I
j

I
I

1
i
'I
j

I
I
1

1

.-1

be; = L c;(fj(k' X))· Cj

j=o

lies in Mo = EBj,:-J Ancj as claimed. We have proved

PROPOSITION 22.4. The equivariant vector bundle £ie(E) is generically fiat
over X ®K, with representation KMo given by the left regular representation of
G(An) = B: on the Kn-vector space En ® K of dimension fi.

The line bundle /\n £ie(E) is fiat, and we have an isomorphism

be;(g) = c;(g(k'X)).

Write g(X) = Ej;;c;(g) . h(X} + reX), where the series f; are defined in
Proposition 13.8. Since c;,(liX) = 6ij , we have q(rX) = 0 for all i. Since k l X
has coefficients in An, we also have Cj(r(k'X) = 0 for all i, and hence

The coefficients Ci(!J(k'X» lie in An; hence

taking the basis Co"" Ct"""'/\ Cn-I to 1.

PROOF. To identify the representation of B: on M o, we restrict to the t.orus
T(A n ) = Aut(FQ.). In this case, we may lift b to an endomorphism k'(X) of Fo
and find:

fj(k'X) ="j(b)· f;.
Thus bci = (Ti(b) . Ci for all b E T(An ). The unique n-dimensional represenM

tation of B~ with these eigenvalues is the left regular representation, and its
determinant is the reduced norm. D

b- 1g(X) = r 'g(kX)

•1\ Cie(E) ..::, Ox(l)

.-1
c.(g(k' X)) = L Cj(g)· c;(fj(k'X)).

;=0

where k(X) is the unique isomorphism from {3F to F over R which reduces to b
mod P. Thus

bc;(g) = c;(g(f3k(X))).

Let k'(X} be any lifting of the series b(X) to An[xll. Then k' == (3k mod P,
so by Proposition 22.2 we have

Let b be an element of G{An ) = Autk" (F 0 k). By definition of the action on
V = Lie(E) 0 S = Homn(RigExt(F, G.), S) we have .

bc.(g) = f3(c.(b- 1g)) in S

where (3 = 13(b) gives the action on S = Kn {{,!!}} and 9 is any quasi-logarithm
on F. By (16.7) we have
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of B~, with (Xi E An and 0:0 E A~, acts on Mo through the matrix:

The element

b = ao + ipl1:1 + rp2
0.2 + ... + 'P,,-lan_l

<>0 1ta~_l •. 1l"o:~n-2 1tafn
-

1

<>1 <>& af-2 ag"·-l

in S.2>,4>, =0

PROOF. Since the Ci give a basis for Lie(E) 0 S over S and the map of free
S-modules in (23.1) is surjective, the elements Wi span the S-module Lie(F) ®S.
Hence they have no common zeroes on X 0 K.

To see that the elements Wi are linearly independent, or equivalently, that dim

W = n, we asswne L:i~Wi = 0 with ki E K. Since Lie(F)0S = HOIDR(W(F), S)
we have L:kiWi(W) = 0 for any invariant differential on F. Taking W = dgo,
where go is the logarithm, we find

in GL,.(A,.)"-,
<>,<>f<>,C(b) =

(22.8)

(22.9)

0,.-1 a:~_2
,,-2 ,,-I

a1 00
Here <Pi = Ci(gO) are the rigid functions on X ® K defined in (21.13). Since the
ki are constants, this implies

where D j is the derivation a/aUj of S. But then the element L: kiCi ofLie(E)0S
is equal to zero, as it annihilates the basis elements (gO,gl, ... ,gn-l) of weE) =
RigExt(F, Ga )· Since the Ci are independent over.8, we have k.; =°for all i.

The subspace W @Kn is stable under Q, as the map of (23.1) arises from
a map of G-equivariant bundles L:ie(E) _ L:ie(F) on X, and Q stabilizes the
Kn-subspace spanned by the Ci in Lie(E)@Sn. The resulting G(An)-module is a
quotient of the left regular representation on B1j0K = Kn$rpKnW·· '$<pn-l K ...
Since it has dimension n, it is isomorphic to the left regular representation. 0

with respect to the basis (eo,'" 1Cn-I). Its reduction lies in the parabolic sub­
group of GL,.(kn) which stabilizes the hyperplane spanned by {ell (:2,'" ,Cn-I)
in M O/1rMo = Lie(E0k). This hyperplane is precisely the image ofLie(F'@k),
as it is annihilated by Co· in w(F €I k).

23. The etale map to projective space

As mentioned in the introduction, Corollary 23.21 and Corollary 23.26 are
due to Lafaille [G.L79].

In this section, we change notation slightly and let

2:,k,D;4>, = 0 in S,

R = A[ul,'" ,Un-11 = AM,

R" = AnM

and similarly,

S = K{{y}}

Sn = Kn{{y}}.

Let (eo,CI, ... ,Cn-I) be the 8at basis of the free S-module Lie(E) 0R S which
was defined in §21.

We define the rigid sections Wi of the line bundle .cie(F) over X 0 K as the
image of the elements Ci under the map

Let W' be the dual space Hom(W, K) and let (w~, ... ,W~_l) be the dual
basis of W'. Let peW) be the projective space of all hyperplanes in W (following
Grothendieck), or equivalently, the classical projective space of all lines in W'.
Then Q acts on (the right of) P(W) '" K n ~ P(W '" K n ), the snhgcoup (<7) =
G~(K.. /K) acts on the coefficients and the subgroup G(An ) = B~ acts by
fractional linear transformations. Indeed, if C = C(b) is the matrix. of b acting
on W 0 K n with respect to the basis (Wi), which was described in (22.9), then
b acts on the usual homogeneous coordinates [Yo, Yr.'" ,Yn-l] of peW) 0 K ..
by right multiplication by C. The calculation at the end of §22 shows that the
action of G(An ) preserves the point [1,0,0,'" ,0] of the reduction peW) @kn .

We define a map of rigid analytic spaces over K

Let W be the K-subspace of Lie(F) 0 S spanned by the sections Wi.

PROPOSlTlON 23.2. The .'lections (wo, WI, ..• ,Wn_l) have no common zeroes
on X 0 K, and are linearly independent over K. The subspace W 0 K n of
Lie(F) 0 Sn is stable under Q. and give.'! the left regular representation a/G(An)'

by taking th~ point .:1::. in X 0 K to the hyperplane of sections of W which vanish
at.:1::.. Thus

PROPOSITION 23.5. The map cP is -an eiale rigid analytic morphism. It is
fl-equivariant over K n, and .'mriective over K.

~,X0K ~ P(W)

~(,,) ~ {w E W '" K(,,) ,w(,,) = OJ.

(23.3)

(23.4)I

J
i

Ci 1--+ Wi_

Lie(E) '" S ~ Lie(F) '" S
(23.1)
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PROOF. We first describe ~ in terms of coordinates on peW), using the dual
basiB w~. The section w = E kiWi vanishes at ;£ if and only if

~l

'i
'! The group ofisogenies of F®kn is the group (Bn®K)X _ It ads on P(W)®Kn

by fractional linear transformations. The Frobenius element acts via the matrix

The map (Jl is thus given by the homogeneous coordinates

d¢~, T~(X 0 K) ~ T,(:) (P(W))

2>'¢'(~)= o.

W' =L cPi(Z;.)· w~.

O~i~n-1.

(

0 ... on)
L .. 00

: ". :: .
0 ... 10

T=(23.10)

In particular, the element "," acts trivially.
The equivariance of the mapping lP admits the following generalization.

PROPOSITION 23.11. Suppose Fx and FXI are two deformations of F0 k and
that T : F~ --+ F!!, is an isogeny -deformfug b E (Bn <&0 K)x. Then .p(~i
i/>(~). 0

VD(F) ~ in!{ V(f(x)) IxED}.

DEFINITION 23.12. A *-isogeny between two deformations of F 131 k is an
isogeny deforming the identity map.

We will establish a converse to Proposition 23.11 below (Proposition 23.28).
Among other things, this represents the range of the map lP as the set of*~isogeny
classes of deformations of F 0 k.

LEMMA 23.13. For deformations F and F', the following are equivalent:

(1) The deformations F and F' are *-isogenous;

(2) There is an isogeny T : F --+ F' deforming a multiple of the identity map
of F0k.

n - i
V(ud~-- i=l, ... ,n-l.

n
For a rigid analytic function f on D define the valuation

(3) There is an isogeny T : F --+ F' deforming a power VJm oj the Frobenius
endomorphism of F ® k , with m == 0 mod n.

PROOF. This is easy. 0

For a point [¢o, .. _, ¢n-tl of pn-l, set

¢,
Wi=-

¢o

Thus the Wi are coordinates on the hyperplane in projective space defined by
¢n f:. o. By composing with the map lP, the Wi can also be'regarded as "mero-­
morphic" functions on Lubin-Tate space X 0 K.

Let D be the closed polydisk in X @K defined by the inequalities

":1

i
!

;!

I
-j
'!

i/>(~b) = i/>(~) . C(b)

(
¢O(~) D,¢O(~) ... Dn-l¢O(~) ]

¢n-l(~) D'¢n-'(~)'" Dn-I¢n-I(~)

i/>(~) = [¢o(~), ¢,(~)"" ,¢n-l(~))'

y = {" = (1, Yl, Y2,' " Yn-I) ,ord.(y,) > OJ

T(~) =

(23.7)

(23.8)

(23.6)

where C(b) is the matrix of b given in (22.9), acting by right multiplication on
the homogeneous coordinates lP(2iJ = [¢o(J;.), ... ,¢n-l(J;.)]. It follows that the
action of Q. stabilizes the polydisc:

of pn-l(K), which reduces to the point (1,0,0,·· - ,0) in pn-l(k).
The proof of surjectivity will be completed as Corollary 23.21 below. 0

is an isomorphism of K(~) vector spaces, for all;r E X ® K. This is equivalent
to showing that the matrix

Since each cPi lies in 5, and the l/Ji have no common zero (by 21.1&.21.18), ip is a
well-defined rigid analytic morphism. To see that ip is etale, we must check that
the differential

Hence the line in W' which corresponds to the hyperplane of vanishing sections
is spanned by

is invertible. But det TC~) = l:(~) ':f; 0, as f = det T is a unit in S by Corol­
lary 21.17.

The Q-equivariance of ip is immediate. Explicitly, it means that for all b E
G(An ) we have

DEFINITION 23.9. An isogeny between formal A-modules G and G' is an ele­

ment of Hom(G, Gt ) 131 Q which has a two-sided inverse in Hom(G', G) ® Q.

Then, for example
n-i

VD(ud=~.
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PROOF OF LEMMA 23.14. Recall that the log of F is

To deduce the Lemma, first set i = n to conclude that

lOgF(X) = x + L bnx
qn

.
.>0

LEMMA 23.14. The functions Wi converge on" the domain D. There is an
inequality

ooF fJ E F~",~ ==> V(a) ~ V(fJ).

First suppose that j > i. Using the induction hypothesis calculate

k vi n-i n-j .j-i n-i
V(ui~ b k+ _) - -- = --+'1"-- ---

n1) n n n n
(qi - 1)(j - i)

= > O.
n

Now suppose that j < i. Again using the induction hypothesis calculate

V( kbvi ) n-i n-j ;n-(i-j) 1 n-i
Uj1l" nk+i-j -~=-n-+q n --~

,,(qc-i _--:lL:o)(:.:n_-~(':.-'-~J",,'))- >0.
n

(23.18)

This completes the proof. 0

Because we are working over K, the formal A-module FiE.. is determined by
its ~hysical'" groups of points which consists of the maximal ideal of the A
with the group law given by Fl.. This A-module will be written FiE..(A). The
torsion submodule F!.tOrl/A) of F!.(A) is the sub A-module consisting of elements
annihilated by a power of 1l". As an abstract A-module it is isomorphic to (KIA)n.
The sub A-module of F.!.(A) co~isting of elements killed by n will be denoted
1I"F!::

DEFINITION 23.17. An element O::j; n E F.!.tors is called canonical if'.~;
'1

lSi$;n.

i = 1, ... 1 n - 1.
n-i

V(w;)~-­
n

(
k+l kui n-i

Vv 7l" bnk+i - Ut1f bnk ) > --
n

o

(23.16)

COROLLARY 23.15. The mapping ll> restricts to a rigid analytic isomorphism
between the polydisk D in Lubin- Tate space, and the polydisk Dw in projective
space defined by the inequalities

Vv(Wj - ud > VV(Ui)'

In particular, the Wi can be taken to be unifonnizing parameters on the closed
polydisk D.

The main step is to establish the inequality

IT (x - [i](a)).
iEAj(1I") F~

T =T. , F~ ~ Fd(a)

V([~J(t)) ~ 1 + V(t).

A sub A-module of F!.tors is canonical if it is generated by a canonical element.

Remark. i) It is not difficult to show that

It follows that if 0: E F~tOrB is canonical, then [nJ(o:) = O. A canonical sub-module
is there for abstractly isomorphic to Aj(1r).

ii) Since, for i E A x,

(23.19)

[i](x) = ;x' ( a unit ),

every non-zero element of a canonical subgroup is canonical.
If 0: is a canonical element of F=. then there is a nat1iral isogeny

(23.20)

with kernel the sub A-module generated by a. It is given by the following formula
of Serre [Lub67]

It follows from (23.20) that F:/(a) can be given the structure of a deformation
of F@ k in such a way that the isogeny (23.19) deforms the Frobenius isogeny
v>(x) = x' of F0k.

/.!

fl
I

~i
;1

O<j::j;i<n.

nbl = L Uibi~i·
O<i<n

VV(Wi - 'U.i) = Vv (1rk+ 1bn k+i - Uf1l"kb~~),

k+l k v' _ "'" . kb,i
1l" bnk+i - Ui1l" bnk - LJ uJn nk+i-j-

O<j<n
j=/:i

V(ujnkb~~+i_j) - (n - i)fn > 0

VD(1Tkb~~ - 1) > 0

VD(¢o - 1) > O.

Using this, write

It therefore suffices to show that

so the result follows from (23.16).
The inequality (23.16) is established by induction on nk + i. This is trivial

for k = 0, i = 1, since bi = ut!n.·It follows from the functional equation (5.5)
of the log that

It then follows that
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79

ei = V'(tl.i) - V'(Ui_tl

and define ei for i E Z by requiring that

i = 1, ... ,n,

V'(ud

V'(u,)

ei =ej ifi=) modn.

It follows from the theory of the Newton polygon that for 1 :S: i :S: n there are
qi _ qi-l roots of [?rex)} with valuation ei/(qi _ qi-l). The canonical elements
have valuation eI/(q - 1).

The fact that the Newton polygon is convex translates into the assertion

I

1 q q'

............ 1

qn

i<j ==> . ei
. >~.

ql _ q' 1 - qJ _ q,-l

or, equivalently

qej ;::: ei+!.

FIGURE 1. The Newton polygon of [1l"](x)

COROLLARY 23.21. The map ll> is surjective over f<..

PROOF. By Proposition 23.11, if!Q is in the image of the map CPt then so is
!Q' T, where T is the matrix (23.10). By Corollary 23.15 every element of Dw
is in the image of (l. It therefore suffices to show that Dw is a "fundamental
domain" for T in the sense that the TMtranslates of Dw cover r- 1 . But it is

easy to check that if!Q = [cPo, __ . ,cPn-I], and i is chosen so that

The condition that Fe:.. be in the domain D is expressed by the series of in­
equalities

i .ei + ... + ei ::; -, t = 1, __ ., n.
n

It it useful to introduce

Si=(el-~)+... +(ei-~)~O' 1iEZ,

and express this condition as

i
V(<i>,) +;:; (23.23) Si::;O i= 1, ... ,n.

is minimized, then!Q -T i E Dw. 0

LEMMA 23.22. Suppose that Q E F';'tor~ is a canonical element, and that T is
the isogeny given by (23.20). If 0 =F (3 E F.;,/ors' then

V(T(iJ)) = qV(iJ). 0

The elements killed by 11" in F.;,(A) are the roots of the power series (1l"](x).
Their valuations can be read off of the Newton polygon of [1r](x), which turns

out to be the convex hull of the collection of points

Since el + ... + en = 1, the value of Si depends only on i modulo n.
Now suppose that F£, is obtained from F.;, by madding out a canonical sub­

group, and let

T:F.;,_F£,

be the map given by (23.20). Write ui, ei, s~ for the moduli and associated
invariants of F£•.

LEMMA 23.24. If qen > €l then

{(q',V(u;))li=O, ... ,n, uo=~, un =l}

Let V 1(Ui) be y-coordinate of the point on the Newton polygon of [1l"](x) lying
above qi. There is an inequality

V(u,) 2: V'(Ui).

e~ = CHI

If qen ::; el then

e~ = qen .

i E Z.
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These equations all have the same Newton polygon. It is the convex hull of the
collection of points

{(o'q~l),(q;,V'(U;))ll';i,;n}.

("I~l) and (q",O).

To analyze these remaining roots, first note that the line connecting the points
(qfl-l, V/(u.n_d) and (qfl, V'(un)) = (qfl, 0) intersects the y-axis at the point
y = qen/(q - 1). There are two cases to consider.

If qen > el> then the common Newton polygon of the equations (23.25) is the
line connecting the points

';(~(")) ,; ° for all i.

(p;, Yew;))

Wo =11"

Wi=~ i=I, ... ,n-1

W n = 1,

PROOF. For a point:Y!. = [oPo, ... , ,pOll E pn-l(K), set

and let V' (Wi) be the point on the convex hull of the set

lying above pi. Define

ei(:Y!.) = V/(w,J - V'(Wi_d, i = 1, ... n

ei+n (:Y!.) = ei (:Y!.)

';(!11) ~ e,(w + ... e;(!I1) i E Z.

If~ E D then ei(ep(;~;J) = ei_
Since i)(;f)) E Dw we have

°i' i E A/(,,).["J(x) - [iJ(o) =°(23.25)

PROOF. It follows from (23.20) that for i > 0, the image in F~, (A) of the
qi+ 1 _ qi elements killed by 11" with valuation ei/(qi+1 -:- qi) is a. set-of qi _ qi-l

elements with valuation ei/(qi - qi-I). This accounts for qn-l of the elements
in frF:<.,. The remaining qR - qn-l elements are the image under T of the roots
of the q - 1 equations

The qn roots of each equation all have valuation el/(qn(q - 1)). Their image
in WF!£, is a set of (q _l)qn-l elements with valuation el/(qn _ qn-l). This
acCOilllts for the case qen ;::: el of the lemma.

When qen S el then the common Newton polygon of (23.25) contains the
segment connecting (qn-l, V/(ttn-tl) and (qn,O). It follows that the minimum
valuation of the elements in 7CF:r:' is qen/(qn - q..-l). This gives, then, the
equation

e~ = qe...

By Lemma 23.26 F!. is isogenous to a deformation F!£" with ;fi E D by an
isogeny deforming tPm for some m. Then

S;(,,') = S; (~(,,')) = Sm+' (~(,,)) - Sm (~(,,)).

Now choose j > 0 so that j + m =. 0 mod n, and let Fi£" be obtained from
F!., by madding out a canonical subgroup j more times. It then follows from
Lemma 23.24 that

This completes the proof. D

PROPOSITION 23.28. Let F!£, and Fi£. be two deformations of F ® k over A
and b E (Bn ® K)· an isogeny of F ® k. Then

Si(~fI) = Sd~(~/))

=sm+'+; (~(,,)) - 'm+; (~(i))

= S; (~(,,)) ,; 0.

if and only iJ there is an isogeny ({J : F:r;J -t F:r; over A with rp == b (mod
mY· In particular, the stabilizer of ~(;f)- is the image of (End(F!.) I&> Kt in
(End(F 0 k) 0 K)·, and ~u.) = ~(,,') if ond only if the formal A-modules F~,

and FI!. are "*-isogenous" over A.

in pn-l(K)~(,,)b = ~(t)be the isogeny obtained by madding out a canonical subgroup i times. Then
ej = eHi, and sj = Sj+i - Si by Lemma 23.24. Since Sf was chosen to be
maximal, we have sj S 0 for all j. This completes the proof. 0

COROLLARY 23_27_ IJ ep(~) E Dw , then Fi£. is *-isogeno'US to a deformation
in D.

PROOF. By madding out canonical subgroups a few times, if necessary, we
can suppose that qe.. ~ el' Now choose i so that Si is maximized, and let

This acCOilllts for the case qe.. S el and completes the proof 0

COROLLARY 23.26. Every deformation ~ E X ® K(A) is isogenotJ.S to one
in D, by an isogeny deforming ,pm form some m. The resulting deformation
satisfies qen ;::: eo·

Fi£. -+ F!£,
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exists in Sn, and defines a Kn-derivation of Sn' The map l' ......- D'Y defines a
representation of Lie algebras

The isomorphism of (24.1) gives rise to a l~cocycle on GaJ(Kn/ K} with values
in Aut(g 0 K n ) = PGLn(Kn), taking the generator u to the automorphism
"conjugation by 'P". Let t be the Lie aJgebra of the torus T(An } = A~; then t. is
a Cartan subalgebra of di~ension n in 9 which is split over K n· Finally, let J be
the l-dimensional Lie algebra of the center Z(An ) = A"'.

If I is an element of g, viewed as an n x n matrix over K n via the derivative
of the representation (22.9), then the element 1 + lI"m1' lies in the group G(An }

for m sufficiently large. This gives us a working replacement for the exponential
map when A has characteristic p. A corollary of the existence of an etale G-map
from X 0 K to projective space is the following

PROPOSITION 24.2. If If! is a rigid .function in Sn = K n{{!!o}} and l' is an
element of g, the limit

PROOF. The "only if" assertion has been proved above. For the "if' assertion,
first write b = lPfflbo with bo E EX. By madding out canonical subgroups m times
from F~ we reduce to the case b E B X

• By acting on Fit by b we then reduce to
the case b = 1. By madding out canonical subgroups from both F~ and F£ and
using Corollary 23.26 we reduce to the case

<I> (iL) ~ <1>(,,) E Dw·

By Corollary 23.27 the groups Fx and FZI are *,-isogenous to deformations FII

and FyI respectively, with y, y' E-n. Butthen y = yl by Corollary 23.15. ThiS
completes the proof. 0 - - - -

The interpretation of points of projective space as *-isogeny classes of de­
formations over flat, local A-algebras allows one to reconstruct the etale lIlap

~ : X 131 K - pn-l €I K as follows. The rigid analytic space X 120 K has a
tower of finite Galois covers X m ® K with Galois groups GLn (A/1fmA); these
are obtained by adjoining the 1l"ffl-torsion points on the universal deformation F
over X 0 K [CargO, p. 19]. Let

r
D",(<p} = J~OQ

(1 + ~m"l)'P - 'P
~m

Q E A~.
lTi(a) . tij,

a(t'i) = "i(a)

(3 , l:ie(E) 0 roeE) ~ ne(F) 0 ro(F') '" Tx.(24.3)

(24.4)

9 0 K n --+ DerKn (Sn) = JrJ(X 0 K n, Tx 0 K n)

with kernel = J 0 Kn and image isomorphic to pgln(Kn). The image is stable
under the action of G(An) on sections of the tangent bundle.

PROOF. The corresponding facts are clear for the derivative of the G-action
on the projective space P(W}. Since the mapping clJ : X ® K --+ peW} is etale,
there is no obstruction to lifting the resulting vector fields to X 0 K. 0

In fact, one can show that the K-Lie subalgebra of pg 0 K n which acts as
K-derivations of the algebra S = K{i!!l} is isomorphic to pgln over K! Indeed,
let (eo, CI,'" ,Cr.-I) be the fiat basis of Lie(E} 0 S described in §21 and let
(co· ,CI" ,'" ,Cn_l-) be the dual basis of RigExt(F, Ga } 0 S = weE} 0 S. The
K~subspacespanned by the vectors Cj ®ci in Lie(E) ®w(E) 0 S has dimension
n 2

; over K n the group G(An} acts via the adjoint representation, and stabilizes
the line spanned by L:~:olCi 13 Ci" .

Consider the projections tij = j3(Ci 0 ci} of these elements to rigid sections
of the tangent bundle of X, under the map of equivariant bundles.

Then L:7:o1tii = 0 and the vector tij span a Lie algebra of dimension n2 -lover
K which is isomorphic to pgI".. (The isomorphism takes tij to the matrix with
a single 1 in the (i + l)th row and (j + l)th column). Over K n , the elements t ij
are eigenvectors for the torus T(An }:

m

9 0 K n '" gln(Kn).

X oo 0 K = liEJ- X m 13' K

{(g, b) E GLn(K) x (Bn 0 K)' , o,dr(detg) = o'dr(Nb))

(24.1)

(23.30)

24. The group action: differentiability

The group G(An) = B; has the structure of a K~analytic Lie group of dimen­
sion n 2 , which is a closed subgroup of GLn(Kn ) via the representation (22.9).
Its Lie algebra 9 = Lie(B;) is a form of gln over K:

(23.29)

where

acts on Xoo®Kn ([Del], [Car90, pp. 20-21]). In particular, the product group

(23.31) GL~(K} x B~ acts on X oo 0 K n ,

GL~(K) = {g E GLn(K) ,detg E A'l·

One can show that, just as X 0 K is the quotient of X oo 0 K by GLn(A},
the projective space pn-l 0 K arises as the quotient of X oo 0 K by the larger
group GL~(K). The fibres of the map clJ are thus identified with the cosets
GLn(A) \ GL~(K}, which form a subset of the vertices of the building associated
to PGLn(K).

which is a pro-rigid analytic space over K, with an action of GLn(A). The group
scheme G also acts on X oo 0 K, and one obtains an action of the product group
GLn(A) x B; on X oo 0 Kn, with the elements (Ca, a) : a E A"'} acting trivially.

In fact, Deligne observed that the larger group
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(25.9)

Appendix

25. Formulaire when n = 2

We give some explicit formulae to illustrate the general theory of the group
action on X, in the simplest non-trivial case when n = 2. Then A2 = A $ A(2
with (2 a primitive (q2 - 1) root of unit. We write

Similarly, 4>1 vanishes at 0: = 0 as well as

[

q(q + 1) points awith ord.,.(a) = q(q~l)

q3(q + 1) points awith ord.,.(a) = q3(:+l)

acts on the basis {CO,Cl} of Lie(E) ® S by the matrix

We have B2 = A2 ill A2 /P with c.p2 = 1r, 'Pa = alp for a E A2 . The element

Let U = UI, so K {{:gJ} = K {{u}} is the algebra of rigid functions on the open
unit disc. The functions

(

a ,,(.i)
C = C(b) ~ 13 ii·

1O(u) = 4>,(u)/4>o(u)(25.11)

The zeroes 0: of 4>0 and cPI' which are all simple, correspond to "quasi-canonical"
liftings Fa of F 0 fe, in the sense of [Gro86], with 0 = A2 • They are the
inverse images of the points [Oll] and [I, OJ on pI under the mapping cJ)C~) =
[4>0(",),4>,(",)1, X 0K ~ P'0K.

The function ((u) = detT = rPo(u)¢~(U)-rPl('U)4>~(u) has expansion beginning

(25.10) {(u) = 1 _ !Iuq+1 + q2uQ2 -1 + ....
~

Its coefficients are all integral, and ( has no zeroes on X. When char(A) = p we
have{=L

The ratio:

of Bi

for a E A 2 •

b~a+~13

u(a) = ii

(25.3)

(25.1)

(25.2)

(25.4) 4>o(u) = CO(go) 4>,(u) = c,(go) is a. meromorphic function on X, which is regular, and univalent on the affinoid:

(25.7)

can be calculated from the coefficients of the universal logarithm 9o{X):

" u 1+q -tq2
4>,(u) =u+uq +--- +...

"
_ ~ q2a 1 '"' q2<1-+q7b+l+q2C+7
-LJ'U +- L.J u +.

OSa 1f O$aSbSc

(25.6)
u1+Q u1+q3 UQ2+q3 Ul+q+q2+q3

4>o(u) =1+-+--+--+ + ...
1r 11" 1r 1(2

_IlL q24 +q2h+ L 1 L q24 +qu+ I +q2<+2 +q2d+3- +- u +- u + ...
" ,,'O:::':::a$b O:::':::a$b$c:$d

b(1O)

1
Y(q) ~ (a Em, ord.(a) ~ - }.

q
(25.12)

(25.13) ow + rrp
f3w+a

as rigid analytic parameters on Y(q) . Indeed:

If b =a + rp{3 lies in Bi, then

to, ~ 4>o(u)' .8/au
«u)

J 4>,(u)'(25.14) , t
lO

= __ .8/8u
«u)

too ~ 4>o(u)4>,(u) .8/au.
«u)

of K{{u}} span a 3-dimensional Lie algebra (isomorphic to pgl2) over K. They
describe the differentiated form of the PC-action on X ® K, and over K 2 are
eigenvectors for elements a in the torus PT(A2 ) = A;/A", with eigenvalues
o./tilo/a, and 1 respectively.

~(",b) = ~(d = [4>0(;<),4>,(;<)1· C

= [a4>o("') + 134>, (",), "Mo("') + ii4>, (",)j

so b1O("') = 1O(",b) ~ 4>,(",b)/4>o(",b) is g;ven by (25.13).
The derivations:

U u 1+Q 1 ~
go(X)=X+-Xq+(-+-)X' +

11" 11"2 1r

From a consideration of the Newton polygon, -we find that f/Jo vanishes at:

j
q + 1 points awith ord,..(a) = q~l

q2(q + 1) points awith ord.,.(a) = <r(;+1)

q4(q + 1) points awith ord.,.(o:) = '1"(;+1)'

(25.8)

(25.5)

We find
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z = .p(u).
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I

etale,

Then the rigid function ¢(u) = logF(u)

X(R) = F(P).

a 0 ",(u) = ",(aFu),

.p, X@K ~ A'@K

x t-+ logF(x).

uq uq2

.p(u)=u+-+-+···.
~ ~2

o ---t F ---+ E ---+ G ---+ 0,

{(a,b) E A x A 'a'" b ( mod ,,')).

(25.18)

Assume F is A-typical, for simplicity.
is given by the series

The analog of the map 4' to projective space is the A*·equivariant,
surjective homomorphism of rigid analytic groups over K:

(25.17)

In other words, X is isomorphic to F as a formal scheme with A·-action over A.
The origin of F corresponds to the canonical lifting F x G, and the 1l"8-torsion
points of F(rn.) correspond to the quasi-canorucalliftings of level s. These give
qS-l(q _ 1) points in m, each with ord1l"(a) = q.-l~q_l). Their endomorphism
rings are equal to

(2516)

Thus the rigid analytic space X ® K is again isomorphic to the open unit disc,
but now has a canonical A-module structure_

The endomorphism ring of Fox Go is A X A, whereas the universal deformation
only has endomorphisIDS by A (embedded diagonally). Hence the group A" x

A" = Aut(Fo x Go) acts on X, and the diagonal subgroup aA" acts trivially.
The element a = (a, 1) E A" x A" acts on the ring A[un of formal functions on
X by the formula:

(25.15)

and Ext.k(G, F) = F(?), the A-module of points of F in the maximal ideal P
of R, we have

Finally, we note that the deformation theory of A-divisible modules of di~

mension 1 and height 2, which was developed by Serre and Tate when A = Zp
[LST64] and extended in [Gr086, p. 326}, provides a simple analogous case
to the theory discussed above. Let Fo be a formal A-module of dimension 1
and height lover k = A/rrA, and let F be the unique lifting of Fa to A. Let
Go = KIA be the etale A-module of height lover k with trivial Galois action,
and let G be the unique lifting of Go to A. We let X denote the formal scheme
over A which classifies riaomorphism classes of deformations of the A-divisible
module Fax Go of height 2 to local A-algebra R.

Since any deformation E of Fo x Go lies in an extension
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Constructions of elements in Picard groups

MICHAEL J. HOPKINS, MARK MAHOWALD, AND HAL SADOFSKY

ABSTRACT. We discuss the first author's Picard groups of stable homo­
topy. We give s. detailed description of the calculation of PiC!, and go on
to describe geometric constructions for lifts of the elements of Pic!. We
also construct a 15 cell complex that localizeil to what we speculate is an
interesting element of Pk2 • For all n we describe an algebraic approxllna­
tion to Picn using the Adams-Novikov spectral sequence. We also show
that the p-wc integers embed in the group Pie" for all n and p.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 1. Introduction and statement of results

We begin with the basic definition. The functor

En :X ......... S'I\X

is an automorphism of the category of spectra, which preserves cafibration se­
quences and infinite wedges. If T is another such automorphism, then Brown's
representability theorem applied to 11". (TX) gives a spectrum ST with

TX=STAX

and

Sr-1 I\ST = So.

This motivates the following definition.

DEFINITION 1.1. A syectrum Z is invertible if and only if there is some spec­
trum W such that

ZAW=S".

Pic is the group of isomorphism classes of invertible spectra, with multiplication
given by smash product. Given an isomorphism class ..\ E Pic we will write SA
jor a representative spectrum.
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