p-Divisible Groups !

I, T. TaTe

Introduction

- After a brief review of facts about finite locally free commutative group
schemes in § 1, we define p-divisible groups in § 2, and discuss their re-
lation o formal Lie groups. The § 3 contains some theorems about the
action of Gal(K/K) on the completion C of the algebraic closure K of a
local field X of charactezistic 0. In § 4 these theorems are applied to obfain
information about the Galois module of points of finite order on a p-
divisible group & defined over the ring of integers R in such a field K, and
to prove that G is determined by that Galois module, or, what is the same,
by its generic fiber G'x p K. _

The notion of p-divisible group and the basic theorems of § 2 are the
result of joint work with SERRE, and § 3 and § 4 owe much to discussions
with him. Although p-divisible groups are interesting enough in their own
right, our main motivation for studying them has been their applications
to abelian varieties. For some of these, and for further results on p-divisi-
ble groups, as well as additional bibliography, see SERRE, [70] and [{]].

This text owes much — probably its very existenice — to the efforts of
T. SPRINGER, who wrote a first draft shortly after the conference. In
several places, and particularly in § 3, he has made improvements on the
original ora] exposition. I thank him heartily for his help.

§ 1. Finite group schemes

(1.1). Let R be a commutative ring (or a prescheme). By a finite group
of order m over R we shall mean a group scheme G which is locally fres of
rank /n over R. Such a Gis defined by a locally free (sheaf of) algebra(s)
A of rank rz over R. The group structure is described by homomorphisms

1 The research described here has been partialE;' supported b)i NSF.
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u:A—+A®A, s:A=+R, and an antomorphizm 7:.4—+A4, describing multi-
plication, neutral element, and inverse, respectively, These are subject to
a number of rather obvious conditions (see for example [¢] or [6]).

"Examples. (a) Let I” be a finite abstract group of order m. Let A be the
ring of R-valued functions on I, fet (/") (s, )=F(s¢), et (i Y (&) =1 (s},
and let ef=f (1). Then I'=Spec{A) is a finite group of order m over R,

(b) Let A=R[X]/(X™ - 1), with u(x)=x@®x, where x is the image
of X in A. Then Spec(4) is a finite group of order m over R which is
denoted by p,; it is the kernel of the homomorphism m: G,—G,,
where G,, denotes the “multiplicative group”, viewed over R.

(c) Let a, beR with ab=2. Put A=R+ Rx, with x> +ax=0, and put
pr=x@1+1@x+bx®x. Then G, ,=Spec(A4) is the most general grouvp
of order 2 over R whose affine algebra A4 is free over R. Moreover, G,
and 7, ;. are isomorphic if and only if there is a vnit # in R such that
a =ua, b =u"th.

(1.2). Duality

From now on we assume all groups to be commutative. Then there is
a duality theory, due to CARTIER {see {3], p. 106). Let G=Specd be a
finite group over R and m:A@®A— A define the multiplication in A and
prA—+A®A the group law. Put A'=Hompg ,que:(4, R). We then get
dual homomorphisms

EiA@A A, mid-4A@A4.
{" defines an algebra structure on A’ and it is easy to check that m’ defines
a product on G'=S8pec{4’), which makes it into a group scheme. The
order of G’ is equal to that of G. G' is called the Cartier dual of G. There
is a canonical isomorphism G-(G'Y.

If Tis a prescheme over R, then the group G’ (") is canonically iso-
morphic to Homy (G, G,,} (homomerphisms of group schemes over T of
G xpTinto G, x T, G,, denoting the multiplicative group).

Examples. (a) Let G=Z[mZ be the cyclic group of order » (as in
Example (a) of (1.1)). Then G'=p,,

(b) If G=0G, ; (Example (¢) of (1.1)), then G' =G, .

(1.3). Shert exact sequences

A sequence 0n G 5626 =0 (1)
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of finite R-groups is called exact if i is a closed immersion which identifies
G' with the kernel of j (in the sense of categories), whereas j is faithfully
flat. If j is given, it is easy to get G (it is the inverse image of the unit sec-
tion of ¢"). Given i, one can construct G". This is more delicate {sce [4],
Exposé V and VI or [7]).

If (1} is exact, then we have for the orders m, m', m" of G, G', G the
relation m=rm'm". This follows from the fact (proved loc. cit.} that the
graph of the equivalence relation in G x , G defined by G' is isomorphic
o GxgeG

Finally, the dual of an exact sequence (1) is also exact.

(L.4). Comnected and étale groups

In this section we suppose R is a complete noetherian local ring. If G
1s a group of finite order over R, there is a canonical exact sequence

0-G"56LA6" =0,

where GO is connected and G is étale over R. If the corresponding affine
rings are A%, A, and A%, then A is a product of local R-algebras, and A°
is the local quotient of A through which the map &: 4— R factors, while
A*® is the maximal étale subalgebra of 4. The map 7 is an open and closed
immersion, and G is the maximal connected subgroup of G. For varying
G, the functors G G°, and G G are exact.

G is connected if G®=G. In that case, the order of G is a power of the
characteristic exponent of the residue field k of R, i.e., is 1 if char (k)=0,
and is a power of p if char=p>0. This follows from the theory of finite
group schemes over k {or even over k).

G is étale if G=G". The functor G— G(£) is an equivalence of the
category of étale R-groups of finite order and finite a-modules on which
7 operates continuously, where z= Gal (k/k) is the fumdamental group of
R. Given such a n-module I', the étale finite R-group I'" corresponding to
itis given by I'==5Spec 4, where A is the ring of all functions ' R,, which
commute with m, and where R,, is a “maximal local étale integral exten-
sion” of R (i.e., a maximal unramified extension of R in the old terminol-
ogy, if R is a complete discrete valuation ting), and where 1 operates on
R, in the unique way compatible with its operation on the residue field
extension &, /k (the residue field %k, of R, being a separable algebraic
closure of k). For general (not necessarily étale) G, we have G%=G (k).
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§ 2. p-divisible groups

{2.1). Definition

Let p be a prime number, and # an integer 20 A p-dz'visr.‘bfe group G
over R of height b is an inductive system

T G={(G,i), v=0,
where

-{1)--@is~a-finite-group scheme over R-of order p*;
(i) for each v=0,

fu i
0—G, = Gray =Gy

is exact (i.e., G, can be identified via i, with the kernel of multiplication
by p"in G,4y). -
These axioms for ordinary abelian groups would imply

G, =(Z[p'Z)' and G=1mG,=(Q,Z,).

A homomorphism f: G— H of p-divisible groups is defined in the obvious
way! if G=(G,,1,), H=(H,, i,) then f is a system of homomorphisms _
f,:G,—~H, of R-groups, which is such that i,:f,=£,,, i, forall v=1.

By iteration, one gets from the i, closed immersions

tyut Gy = Gy

for all p, v 0, which identify G, with the kernel of multiplication by p"
in all &, .. It follows that the homomorphism

.

.
p . G#+v—’ G,u+v

can be factored through G, and then a consideration of orders shows that
we have an exact sequence

0—+G, 2%, ,, 2% G, >0, @

where j, , is the unique homomorphism such that , ,-j, ,=p".
Examples. (a) Let X be an abelian scheme over R of dimension d. Let
X, be the kernel of multiplication by n. Then (X, i,} (i, denoting the
obvious inclusion) is a p-divisible group X(p), with height h=24d.
(b} The same construction can be performed for other groups over R.
If one takes X=G,, the resulting p-divisible group is G, (p)=(n,, i,}.
Hs height is 1.-



162 ) J. Tare

Question: Are there any p-divisible groups over Z other than produéts
of powers of G, (p) and of Q,/Z,?

(2.2). Relations with formal Lie groups

In this section we assume R complete, noetherian, local, with residue
field k of characteristic p>0. For our present purposes, an n-dimensional
formal Lie group I over R can be defined as a suitable homomorphism of
the ring & = R[[X;, -, X,]] of formal power series over R in n variables

X; into & ® ¥, the ring of formal power series in 2n variables Y, Z
Such a homomorphism can be deseribed by a family 7 (Y, Z)=(fi(Y, 2)),
. of n power series in 2» variables, f; being the image of X,
. The following axioms are imposed

@ X=/(X 0)=f (0. X), .

i) /(X1 (% Z)=f{f (X, 1), Z),

(i} £ (X, Y)=1(Y, X), (since we consider only commutative groups).

We write X+ ¥=1 (X, ¥). It follows from the axioms that X+ Y=3"+ ¥+
terms in higher powers of the variables,

Put ¢ (X)=X#---+X (p times). This determines 2 homomorphism
a7 -+ of , which corresponds to multiplication by p in I'. I' is said to be
divisible if p:'—T is an isogeny. This means that § makes & into a free
module of finite rank over itself.

We can then repeat the construction of Example (a) in (2.1), obtaining
a p-divisible group I (p)=(I"p», 1,) of height /1 over R, where p" is the
degree of the isogeny p:I'—TI". (This degree is a power of p because it is
equal to the order of the finite R-group I',=Kerp, which is connected

-(see 1.4).) More generally, for arbitraty v, we have (I'(p)),=T »=SpecA,,
where A, =.7]J,, and where J,=y"(I) & is the ideal in & generated by

““the elements Y’ (X)), 1<i<n. (Here I=J; denotes the ideal generated
by the variables X;). Clearly, each A4, is a local ring; hence I'(p) is a con-
nected p-divisible group (i.e., each I' (p), is connected).

Proposition 1. Let R be a complete noetherian local ring whose residue
field k is of characteristic p>0. Then I' =T (p)} is an equivalence between
the category of divisible commutative formal Lie groups over R and the
category of connected p-divisible groups over R,

Remark. We can only sketch the proof here, omitting many technical
details. The techniques involved are amply covered in Gabriel's exposés
VII, and VI, of [4].

" Let I' be a divisible formal group over R. Let m be the maximal ideal
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of R so that, with the previous notations, m&f 4 J== M, say, is the maximal
ideal of . ]

Lemma 0. The ideals m's/+J, constitute a fundamental system of
neighborhoods of O in the M-adic topology of <.

Indeed, & {(m"4+J,)=A,/fm"4, is an Artin 1ing, so the ideals in ques-
tion are M-adjcally open. On the other hand, they are arbitrarily small,
because we have

1w (X;) = pX; + (terms of degree =2},

hence i (I)=pl+I* c(wsf +1) I=MI, and consequently, by induction
on v, we have J,=y"(I) &/ = M L.
From Lemma 0 it follows that the map =/— lim (=) ],)= lim (4,)is

bijective, because < is M-adically complete, From this bijectivity it is
easy to see that the functor ' (p) is fully faithful.

To complete the proof of Prop. 1 we must show that any given con-
nected p-divisible group G over R is isomorphic to some I'(p). Let
G=(G,, 1,) and G,=8pec(4,). The inclusions 7,: G,— G, ,, make (4,) into
a projective system. Put 4= liin 4,. The group law on G defines a homo-

morphism A+A4AB rA, which will have the required properties for a for-

- mal Lie group, once we know that 4 is isomorphic to R[[X,, -+, X,]] for

some n. Then it also follows easily that the formal Lie group I' is divisibie
and that & is isomorphic to I'(p).

To prove that 4 is an algebra of formal power series over R, one first
observes that A4 is flat over R. (Indeed the R-module 4 is isomerphic to
a countable direct product of copies of R, because the 4, are free of finite
type over R, and the maps 4,.,— A, surjective.) This being so, one is

“reduced by standard procedures to the case in which R=Fk is a field of

characteristic p>> (0. In that case, the injective limits of finite commutative
group schemes of p-power order over k form an abelian category, and a
p-divisible group over k is just an object in that category on which p is
sutjective with finite kernel. There is an exact functor G— G** from that
category to itself which preserves the order of the finite objects, and there
are homomorphisms of functors F (Frobenius) and ¥ (Verschiebung)
such that the folowing diagram is commutative for any G in the category:

\ﬂ(/’}//’ \ 7z, )
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{See [3], p. 98, or [4], exposé VII, or [6], p. 18, 19.) If & is p-divisible of
height k, then so is G, and the diagram shows then that F and V are
surjective, with finite kernels of order <p", .
Suppose now that G is the connected p-divisible group over k we were
considering before this general discussion. For each v, let H, be the kernel
of F*:G—+G'", Then we have H,cG,, and also G,=H, for sufficiently
large N (depending on v), because G, is finite and connected. Thus, we
have A= 1}{21 A,= lir_rx B,,where H,=SpecB,. Let I, be the augmentation

(i.e., the maximal) ideal of B,, let = IE I, be the augmentation ideal of 4,

and let x,,---, x, be elements of 7 whose images form a k-base for I, T2
Then the images of the x; in B, generate I, for each v, becanse I{I3— I, /12
is bijective. (Since H, is the kernel of Fin H,, the kernel of I,— I, is generated
by the p-th powers of the elements of I,, so that kernel is in J12)) Now
consider the homomorphisms u,:k[X), -, X,]— B, which send X; to the
image of x; in B,. These are surjective, by the above; on the other hand,
Kerw, contains the elements X% because F' kills H,. But rank(B,)=
(rank (B,))", since Fis surjective, and rank (B, )= p", by the structure theory
of finite groups killed by F. Since theideal (X4, .--, X!")is of codimension
7™ in k[X], it follows that that ideal is the kernel of u,, and hence that
the », induce an isomorphism u:k[{X], -, X,]]> 4. This completes our
sketch of the proof of Proposition 1.

If G=(G,, 1) is now any p-divisible group over our complete noetherian
local R, the connected components G° determine a connected p-divisible
group G°. From the exact sequences :

0-Gl>G,+ G =0
-one gets an exact sequence
0G5 G- G0, C)

where G is an étale p-divisible group. The dimension, #, of the formal
Lie group corresponding to G° is, by definition, the dimension of .

Proposition 2, The discriminant ideal of A, over R is generated by p*",
where h=ht (G) and n=dim{G).

In general, for a finite group H=SpecB over R, let d]SC(H } denote the
discriminant ideat of B over R. If 0— H’— H— H"—0 is an exact sequence
of finite groups over R (cf. 1.3) of orders »', m, and m", then by the
transitivity of discriminants one proves easily that disc(H)=(disc )™
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(diécH Y. This fact, together with the fact that disc (H)=1if H is étale,
allows us, via {4), to reduce the case of an arbitrary G to that of a con-
nected G=TI"{p). Asin the proof of Prop. 1 ahove we have then A, =.//[J,.
Consider & as a free module of Tank p™ over itself by means of @ =y
We change the notation, and consider & as an algebra (via @) over an-
other copy &' of &, Denoting by I’ the angmentation ideal in %" (gener-
ated by the X/), we have A,~7{I'e#, 50 it suffices to prove that the dis-

.criminant ideal of ./ over &' is generated by the desired power of p.

To do this, consider the modules of formal differentials 2 and &' of &,
resp. &', They are free modules over &7 (resp. #7”) generated by the
differentials of the variables dX, resp. dX/, 1 <i<n The homomorphism
@' o induces an &'-lincar map de:Q'—£. Choosing bases in £,
resp. £, we get a basis element 8, resp. 8, of A™Q, resp. A"Q’. Let
dip (8")=a8, with ae«/. Then one has

Lemma 1. The discriminant ideal of o over s' is generated by N 4 ;.0 (a).
Granting this lemma, the proof of Prop. 2 is finished as follows. Choose
a basis (w;)} of 2 consisting of translation-invariant differentials, ie.,

differentials such that if p:.sef— s/ ® a7 defines the formal group struc-
ture du:Q—+ Q@1 satisfies du{w) =0, v, Using the corresponding ba-
sis (e7) in the copy £’ of 2 we have, by the definition of ¢ as arising from
the homomorphism p*:I'—T, that dp (w}}=p'w;, whence a=p™. Propo-
sition 2 then follows by Lemma 1.

As to a proof of that lemma, it can be based on the existence of a trace
map Tr: A"Q- A"Q’ with the following properties:

(i) Tris &/ -linear.

(i) The map aw{(P—Tr(af)) establishes an isomorphism of &'-
modules

s 5 Hom. (AR, A"Q').
(iii) If fef’ and ges?, then

Tr(a- dtp(ﬂ)) = (T (a)) 0.

Such a trace map exists whenever & ~ o’ ~ R[[ Xy, ..., X, ] and @i’ — o7
is an R-algebra homomorphism making & a free &/ -module of finize
rank; see for example Hartshorne’s notes on Residues and Duality,
Springer lecture notes 20, 1966, at least for the corresponding “non-
formal™ situation.
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(2.3). Duality for p-divisible groups -

Let ¢=(G,, i,) be a p-divisible group over R. For each v, let G be the
Cartier dual of G (cf. 1.2). The exact sequences (2} in (2.1) with p=1
shows that we have injective homomorphisms

ey r
IV'GU-*Gv+Is

where i, is the dual of the map G, +{—G, induced by muitiplication by p,
It is easy to check that the system G’ ={G,, i,) satisfies the axioms of (2.1),
and is therefore a p-divisible group, called the dual of G. Clearly, G’ and
(7 have the same height. Of course, this notion of dual makes sense over
any base ring (or prescheme) R. In case R is complete local noetherian
with residue characteristic p, as in 2.2, so that the dimension of G is de-
fined (cf. the lines before Prop. 2), we have the following all-important

Proposition 3. Let n and n' be the dimension of G and its dual G'. Then
n+n' =h, the height of G and G'.

The dimension and height of G do not change if we reduce ¢ mod the
maximal idea] of R, Hence we are reduced at once to the case in which
R=Fk, a field of characteristic p. From diagram {3} we get an exact se-
quence ' '

0-KerF—+Kerp—KerV —0.

Now Kerp =G, has order p*, and Ker F has order p". (F is injective on
G*®, 5o the kernel of Fin  is the same as that of Fin the connected com-
ponent G° Viewing G® as a formal Lie group on » parameters, we see
. that the order of Ker F is p", as remarked in the proof of Prop. 1.) Since
Fand V are dual with respect to Cartier duality one checks that Ker ' is
the Cartier dual of the Cokernel of the map F:G,—G "' =(GPY, and
consequently XerV has order p". Now the assertion follows from the
multiplicativity of orders in an exact sequence.

Ekamples. a) The p-divisible group G, {p) has i1==n=1, and is dual to
the étale p-divisible group Qp/Z, which has /=1, n=0 '

b) Let X be an abelian scheme of dimension r over R. If the dual
abelian scheme X' exists, then we have (X' (p)) =X (p). Both X(p) and
X’ (p) have height 2n and dimension ». The connected component X (p)°
of X(p) is the formal completion of X" along the zero section, and can
have any height between » and 2n. For example, if X is an elliptic curve
(n=1), then the height of X(p)® is 1 or 2 according as the “Hasse invari-
ant™ of X{p) is non-zero or zero. :
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(2.4). Points; the Galois modules & () and T{G)

Let R be & complete discrete valuation ring, with residue field k= R/m
of characteristic p>0, and let K be the field of fractions of R (very soon
we shall assume % perfect and K of characteristic 0). Let L be the com-
pletion of a (possibly infinite) algebraic extension of X and let S be the
ring of integers in L. Thus 5 is a complete rank 1 valuation ring, but the

" valuation on § may not be discrete.

Let G be a p-divisible group over R. Wedefinethe group G(S) of points
of G with values in § by
G(S) = lim G{S/m’s),
T

where m is the maximal ideal of R, and where

G(S/m'S) = lim G, (S/m'S).
—

Clearly, G(S) is a Z,-module. From the definition of p-divisible groups,
G,(S/m'S) is the kernel of multiplication by p* in G (S/m'S). Thus the
kernel of miltiplication by p*in G(§) is lim G, (§/m'S)=G,(S), and the

—

i
totsion subgroup of G (&) is given by

G (8)iors = lif: G,(5).

v

If G is étale over R, then the maps G, (Sfm**1S)~ G, (S/m‘S) are bijective.

for all 7, and consequcutly G(S) is a torsion group if G is dtale.
In general, if G,=Specd, and 4 =lim4,, and 4,~A/J, as in § 2, then
—
a point xeG(S) can be identified with a homomorphism 4—+5 which is
continuous with respect to the valuation topology inn . and the topology
defined by the ideals m'A +J, in A. In particular, if G is connected, corre-
sponding to a formal Lie group I, so that A~R[TX;,..., X,1], then it
follows from the above remark and Lemma 0 that G{S) is the group of
points x =(x,, ..., x,) of I with coordinates x, lying in the maximal ideal
of S. Thus, if G is connected, then G(S) is an analytic group over L.
Now consider the exact sequence (4), and let 4% and A° denote the
algebras of G* and G°.
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Proposition 4. If the residue field k of R is perfect, then the map G—G*
has a formal section, and consequently the sequence

0 G*(S)~» G(5)— G"(S)~ 0
is exact,
. Proof. If R=k, then the exact sequence (4) splits canonically, and we

have A~ A°® A% o~ A2 [[Xe ..., X,]] in that case. By flatness we con-
clude A~A"[[X]] in the general case.

Corollary 1. If xeG(S), then there exists a finite extension field Ll of
L and an element YeG(S'), where 8’ is the ring of integers in L, such that
py =

Indeed, by Prop, 4, it suffices to prove this for G* and G° separately.
For GY it follows from the fact that the map p:G°—+G" makes A% a free
A%module of finite rank (cf. § 2). For G we are reduced to a statement
aver the residue field, and the result follows because the maps &, —G,
induced by multiplication by p are surjective.

Corollary 2. If L is algebraically closed, then G(S) is divisible.

From now on we suppose that k is perfect and the characieristic of K
is 0. This characteristic 0 assumption will be absolutely crucial in all that
foliows, because (1) there is then a logarithm map which will show that
G(S5) is locally isomorphic to I, where #n=dimG, and (2) the G, x p K are
then automatically étale, so we will know that G, (§) (which is isomorphic
to G,(L) since G, is finite and flat over R) is isomorphic to (Z/p*Z)* for
sufficiently large L (depending on v).

The logarithm. The tangent space f; of G at the origin is, by definition,
the tangent space of the formal Lie group I' corresponding to G at the

origin, We write ¢, (L) to denote its points with coordinates in L. Such 2 -
point is an R-linear map 1:4°— L such that ¢ (fg) =1 (o) v (g)+g(0) (/)

for ali f, geA°=R[[X,, ..., X,]]. or, equivalently, is simply an R-linear
map of 7°/(I°)* into L, where I°=(X], ..., X,) is the augmentation ideal
in A° (namely the map induced by the restriction of 7 to I°). Thus, # (L)
is a vector space of dimension »=dim& over L. The logarithm map:
log: G(S)—+1; (L) is defined as follows:
1&'x) -1 (o)
(og) (1) = tim (LI
= w P
for xeG(S) and fe4°; note that for large i we will have p'xeG®(S), be-
cause G“(S) is a torsion group. Alternatively, we can identify 7°/(7°)
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with the space of invariant differential forms w on I', and define, for
xeG(S) which is all that really matters,

(logx) (0) = 2(x),

where 2{X)eK[[X,,..., X,]] is such that Q(0)=0 and 2 =w, see SERRE
[12]. Using either of these definitions of log, one proves easily that it is a
Z ~homomorphism, and a local isomorphism. More precisely, that if
¢*"t<|p|, the logarithm gives an isomorphism between the group of
points x =(x;) in G°($) such that |a| < ¢ for ali / and the group of points
15 (L) such that |z(X;)|<e for all i, From these facts it follows that the
kernel of log is the torsion subgroup of G(§), and that its cokernel is a
torsion group. Thus, the log induces an isomorphism

G(S)§Qp;16(L)-

1t also follows that Jog G(S) is contained in a finitely generated S-sub-
module of £, (L) if the valuation on §is discrete, whereas log G{8) =15 (L)
if L is algebraically closed.

Examples. 1.) If G=G,,(p), then G(S) is the group of units congruent
to 1in 8, t5(L) is L, and the logarithm is the ordinary p-adic logarithm.

2,) If X is an abelian scheme over R, and G=2X{p), then we can iden-
tify G{&) with the subgroup of X(§) consisting of the points x whose
reduction mod the maximal ideal of S is of finite p-power order, G°(S)
being identified with the kernel of the reduction map. The logarithm is
then the map which has been studied by Lutz (for elliptic curves) and by
MATTUCK in general.

The Galois modules @ and 7. Let K be the algebraic closure of X, and
& =Gal (K/K). Puit

& (G) = _1&-;1 G,(K), withrespecttothe maps i,:G,G G,.;-

T(G)=1limG,(K), withrespectto the maps j.:G,41—G,.
—

¥

Since char (K) =0, the G,® K are étale, and it follows from the definition
of p-divisible groups that #(G) and T(G) are Z,modules isomorphic
respectively, to (Q,/Z,)" and to Z:;, where i =height(G), on which ¥ acts
continuously. We have canonical isomorphisms:

P(G)=T (G) ;® (pr’z’p) and T(G) = Homzp(QpllZw ¢ (G)) ’

12 Local Fields
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so knowledge of ®(G) is equivalent to fhat of 7'(G),.and knowledge of
either is equivalent to knowledge of the general fiber G@y K of the p-
divisible group G.

In the notation of the preceding paragraphs, the map G,(S)—G,{L)
is bijective, so that, @ (G) is the torsion subgroup of G(§) if L is the com-
pletion of £

Examples. 1) If G=G,, (p), then @ (G} is the group of roots of unity
of psms power order in K.

2) If X is an abelian scheme of dimension » over R, and G =X(p),

_then T{G) = T,(X), the p-adic representation space of rank 1=2# infro-

z

. duced by WEIL,

§ 3. The completion of the algebraic closure of X

R denotes a discrete valuation ring, which is compiete, of characteristic
0. s residue field k is assumed to be perfect of characteristic p>0. Let X
denote the quotient field of R, X its algebraic closure and C the comple-
tion of K. Cis known to be algebraically closed (see {1], p. 42). The abso-
lute value on K is canonically extended to C. Let = be a uniformizing ele-
ment of K. For xeC we define its order v (ix) by

' : x| = (",
we put v(p)=c.

If I is an ideal in some finite extension of K, v(7) is defined in the obvi-
ous way. The relative different of a finite extension M/L is denoted by
Du.

In the results of this section several constants will appear. We often will

" denote them indiscriminateiy by the same letter.

(3.1). Study of certain totally ramified extensions.

Let K, be an infinite Galois extension of X which is totally ramified
with group ¥ ~Z,,. Let K, be the subfield of K, which corresponds to the
closed subgroup ¥ (n)=p"Z,. Then K, /K is cyclic of degree p".

Propesition 5, There is a constant ¢ such that

v(banﬂ) =¢gn <4 P_"ﬂ",
where a, is bounded.
This follows from standard facts about higher ramification, together
with local class field theory.
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We use the higher ramification groups %, with the “upper numbering”,
which is compatible with passage to quotients ([8], p. 119, or [2], p. 81).
Suppose that €"=% () for v;<v<v,,,. We then have v,,,=0,+¢ for
large n (recall that e=uv(p)). This follows from Jocal class field theory,
more preciscly from the description of the images of the %* under the
reciprocity mapping. (See [8], p. 235, Cor. 3, for the case of a finite k;
sec [9] for the case of an algebraically closed &, to which the case of Varbi-
trary perfect & can be reduced by passage to the completion of the maxi-
mal unramified extension of K; see also the Berkeley Ph, D, thesis of
B. F. Wyman (June 1966).) Put b, = by . A well-known formula ([§], P
109} then gives {0(¥) denoting the order of a group %)

o(b,) = f(l — o{Gal(K,/K))™") dv.

Now Gal(K,/K)’ =%"% {n), whence

o(Gal(KJKY)=p""" if n << ey, with i<an,
=1 otherwise. '

The assertion then follows easily, .
Corollary L. v(by, , x,)=e+p~"b,, where b, is bounded.

Corollary 2. There is a constant a (independent of n} such that for
xeK, o1 we have

ITrg, 0 x| < IpI* 7" %]
Let R, be the ring of integers of K, and m1, its maximal ideal. Let hn,.“m,.
=mj,,. Then . = . o N
Trg, i, (mn+ J=ml,

. {i+d '

where J=[hp—] (see [8], p. 91, Lemma 4). This implies the asserted in-
equality.

Corollary 3. There isa constant c {independent of n) such that for xeK,
we have

I Teg e ()] < pI"~ (x|

Let o denote a generator of the group €.

Lemma 2. There exists a constant ¢>0 ( independent of n) such thar for
xekK, ,; we have

|x = p™" Trg,, i, () < Clﬂ""x ~ x.
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Proof. Let t=07". Then -

r-1
px — Trg,, uxadx) = px— ‘_Zo Tlx =

p—1 r-1

Z (1-Yyx= Z (I+1+-+7 Y1 —1)x.

i= i=1

Hence
Apx = Trg, e, ) S I - 1) X1

and we may take ¢=|p|~*.
Now define a K-linear function ¢ on K, with values in X as follows:
For xeK,, put
t(x)=p " Trg,x(x).

This is independent of the choice of #.
Proposition 6. There exists a constant d>0 such that we have for all
xeK, '
x—t(x) < dlox — x|.

We prove by induction on # an ineguality

Jx ~ t(x} € e lox — x| if xekK, ™*)
with

luup—.. c

Chep = Ip a1

where @ is a constant > 0. This will imply the assertion. We may take ¢
equal to the ¢ of Lemma 2. Then we have for xeK, 1, assuming (*) to be
{rue,

| Teg, s yx, () = PLH)| < €410 T, i, (%) = T, e, (2
= C"lTrKn+lfKn(ax_x)l s cu]Pll_ﬂp 1U‘x—xl,

by Cor. 2 to Proposition 5. By Lemma 2 we have then

|x - t(x)l = Max(]x h p_I Trk,,;lﬂs" (J")l 3 |P|_ap_"cn10-x - xl)

|—ap'n

< Max(ey, [p| ™ ") lox — x| =|p eylox — x],

which establishes (*) for (n+1).
Remark., From the proof we see that if we take K, as a groundfield
instead of K we have a corresponding inequality with the same constant d.
Next let X be the completion of K. This is a Banach space over K, on
which % acts continuously. The preceding results will enable us to get
some information about the ¥-space X.
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By Prop. 6 (or by Cor. 3 of Prop. 3) the linear operator £ is continuous
on K, and therefore extends to X by continuity. We have 1(X) =X be-
cause K is complete; let X, be the kernel of 7 on X, a closed subspace of X.

Proposition 7, a} X js the direct sum of K and X,.

. b} The operator o — 1 annililates K, and is bijective, with a continuous
inverse, on X,.

c) Let A be a unit in K which is =1 (modn) and which is not a roof of
unity. Thenr o— 1 is bijective, with a contimuous imverse, on X.

Proof. (a) Since 7 is idempotent, X is the direct sum of its range and
its kernel.

(b) For each #», let K, , =K, N X, be the subspace of K, consisting of
the elements whose trace to K is 0, and let K, o= | J K, o. We have

=0
K, =KDEK,, ,, direct sum, for 0<r< o0, and X, is the closure of K, 4 in
X. The operator o—1 is injective, hence bijective, on each of the finite
dimensional spaces K, ,, for #< oo, and is therefore bijective on their
union K, ¢; let g be its inverse. By Prop. 6 we have |ay|<d|y| for each
y=(g~~1)x in K . Henee g extends by continuity to Xo, and this ex-
tension is a continuous inverse for 6 —1 on X,

{¢) Since o—A is obviously bijective on K for A+1, we can, by (a),
restrict our attention to its action on X, As operators on X, we have

ele—N=o((c—1)=(i-1)=1~-(21—-1)¢. '.(*)

If {A— 1| d<1 with d as in (b), we have {(A—1) o (¥) <|y| for all ye X, and

consequently 1 —(1—1) ¢ is an automorphism of X, its inverse being

given by 2 geometric series, and consequently. by ( *) o— A has a continu-

ons inverse on X,. If Iﬁ.— 1l 21, we replace ¢ by 67", and 1 by 2*", where

n is so large that |A"" —1] d<1. We then replace X by X, Takmg into

account the remark following Prop. 6, we find from what precedes that
7" _ 17" hag a bounded inverse on X, whence also o—1.

We can define, in the obvions way, cohomology groups (%, X) based
on continuous cochains for the canonical topologies on € and X If y is
a continuous character of ¥ into the group of units of X, then we denote
by X (x) the space X with the “‘twisted” action

x = x(s) (sx),
for se ¥, xeX.
We then have
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Proposition 8. (a) H°(¥, X)=K, and H' (? X) is a one-dimensional
vector space over K.

(b) I x (%) is infinite, then H (%, X () and HY(®, X(3)) are 0.

Proof. If ¥is a closed subspace of X stable under %, then H° (¢, ¥(x))
is the kernel of c—4 on ¥, and, since a 1-cocycle on ¥ is determined by
its value at o, B (%, ¥()) is a subgroup of the cokernel of 5—1 on ¥.
In particular, both cohomology groups vanish if o—2 is bijective on ¥.
Hence by part (b) of Prop. 7 we see that H°(¥, X,) and ' (%, X,) both
vanish, and consequently (a) follows from part (a) of Prop. 7. Similarly,
(b) follows from part (c} of Prop. 7, because if x(%) is infinite, then
A=yx(o) is not a root of unity.

(3.2). Finite extensions of K

We keep the notations of (3.1). Let L denote a finite extension of K.
Denote by R, its ring of integers and by wi, its maximal ideal. R, and
m,, have the same meaning for K. Let #° =Gal(K/K ).

Proposition 9. We have Try (Rp)>m,.

Replacing K by one of the K, we may assume that there is a finite ex-
tension L, of K| linearly digjoint from K, over K| such that L =L, K {see
[8}, p. 97, Lemma 6).

We may also suppose that Ly/K is a Galois extension. Put L, =LyK,.
Then

5(brx) = J' (o(Gal (K,JK)") ™" — o(Gal(LJK)) ™) do.

-1

- Let Gal(L/K)' =, ie., Gal(Ly/&)"=(1), for v<h. It follows that

"
v(0,5,) < f o(Gal(K,/K)) " dv.

The argument used in the proof of Prop. 5 now shows that this tends to
zero with n (the order of magnitude is p~™). The assertion then follows
from familiar results ([8], p. 91, Lemma 4).

Corollary 1. Let L/K , be finite Galois with group G. Let f be an r-co-
chain of G with coefficients in L, with ¥ 20, and let ¢> 1, Then there exists
an (r—1)-cochain g of G in L such that

I[f—dgl<clofl, and gl <clf]-
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Here | f| denates the maximum of the absoluie values of the coefficients of
/. and by a (~1)-cochain we mean an element ye L. The cobour:dary éy of
such a y is the O-cochain Trp, .

"Proof. By Prop. 9 there exists a (—I)-cochain yeL such that |»|<1
and |dp| > ¢, Define an (r—1)-cochain y U f by the formulas

yuf=yf, if r=0
UL (5gs s Sy =(=1Y E 5185 5,9 (51, 825 0oy 85, i 7 >0

The identity @0 =3 uf)=v U (3)

is easily checked; on dividing by the element x =8y=Try;;_yeK we find

f=dg=x"t(yu&f), with g=x""(yUf).
Since [x Y < ¢, and {¥] <1, the corollary follows.

Corollary 2. The coroliary I still holds true if we replace L by K, G by
3, and consider cochains which are continuous from the Krull topology in
G to the discrete topology in K, provided that, for r=0, the conclusion is
replaced by: there exists an element xeK , such that | f--x|<c|df|.

This follows from Cor. 1, because a continnous cochain in 5 with
values in K comes by inflation from some finite Galois L/K , {cf. SERRE,
Cohomologie Galoisienne, Prop. 8.)

Recall that we denote by C the completion of K. By H"(#, C) we mean
the cohomology groups constructed with standard cochains which are
continuous from the Krull topology in 5 to the valuation topology in C.

Proposition 10. We have H® (o, C)=X, and H™(3F, C)=0, for r>0.

Proof. This will follow immediately from Corollary 2, once we show
that, for every continnous cochain f on 3£ with values in C, there.is.a
sequence of cochains f, on # with values in £ as in Cor. 2, such that
| /—f,|—0. To construct such f,, let D be the ring of integers in C. Then
C=FK+n*D for each v, and there exist maps ¢,:C/r"D—+K such that
V.@,=id., where ,: C~C/x"D is the canonical projection. The ¢, are
automatically continuous because C/x'D is discrete. Put £, =g, /. Then

W, f,=f, implies [f,~f|<[x]"

(3.3). The action of ¥ on C

Let % denote the Galois group of B/K. Then % operates on C by conti-

nuity and we can consider the continuous cochain cohomology groups
H (%, C).
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Theorem 1, We have H°(%, C)=K, and H' (%, C) is a one-dimensional
vector space over K.

Proof. Let K /K be asin 3.1; for example, we can take for X, a suita-
ble subficld of the field generated over K by all p"-th roots of 1, all #. Then
we have an isomorphism

H®(%, €)=~ H(%|s, H°(#, C))
and an exact inflation-restriction sequence
0— HY (@14, H° (o, C)) » B (%, C) = H' (¢, C),

from which our theorem follows, using Prop. 10 and Prop. 8(a).

Remarks. 1. The one-dimensionality of F! (%, C) was not known to
me for arbitrary K at the time of the conference. It was proved by T.
SPRINGER when he wrote up the first draft of these notes.

2. Let R denoie the integral closure of R in K, with the discrete topo-
logy. The. methods we have used here vield very easily the fact that
HY{%, R)is kilied by some power of p (the power depending perhaps on
K), and this fact in turn implies easily the first part of Theorem |, i.e.,
C¥Y =K. Meanwhile, E‘ﬂ:ankar SEN has shown that H' (%, R) is killed by
p for p odd, and by 4 if p=2. From this result of S~ it follows easily that
for every closed subgroup ¢, of % we have C*' =K, where K,=K"!, and
where “hat” denotes completion.

3. Recently, James AX has given a short proof of this last result, by a
direct method which avoids the use of higher ramification theory and of
the intermediate field K.

Now let y: ¥— K* be a continuous homomorphism (note that the val-
ues of y are units in X* because & is compact), and let C(y) denote C
with the twisted action “x=yx(s) sx. Let K, denote the extension of X
determined by Ker .

Theorem 2. Suppose that there is a finite extension Ky of K contained
in K, such that K [K, is totally ramified and Gal(K_/K;)~Z,. Then
H(%, C())=0and H (%, C(1))=0.

Proof. It is easy to reduce the statement to the case K=K, and in that
case the result follows if we apply Prop. 10 and Prop. 8(b) as in the proof
of Theorem 1.

§ 4. Theorems on p-divisible groups

We continue now the discussion of (2.4). Let & be a p-divisible group
over our complete discrete valuation ring R of mixed characteristic and
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let K, C, and D be as in § 3. Let G* be the dual of ¢. By Cartier duality
we have for each v

G;(D):) HOI!]D(G‘,@D, Gm)

~ Passing to the projective limit as v— oo We obtain an isomorphism

T(6') > Homy (G ® D, G (7))

where G,,(p) is the p-divisible group attached to G,, viewed over D This
isomorphism gives us pairings

T(G") x G(D) = (G, (p) (Py=U
and
T{G'} x 15(C) = ig,m (C) = C,

where U denotes the group of units congruent to 1 in D. These pairings
are compatible with the logarithm map L:G(D)—£;(C) and the ordi-
nary p-adic logarithm U/— C. The kernel of these logs is the torsion sub-
group of their domain, and they are surjective because, C being alge-
braically closed, G(D) and U are divisible. Thus we get an exact commu-
tative diagram
0 #(G) G(D)—=—15(C)—0
wl el e | *)
0—=Hom(T', U} = Hom (T, U)y—~Hom (T, C) =0,

where T'=T(G') is free of rank & over Z,, the Homs in the botiom row
are Z,-homs, and where U,,,,~®(G,(p)) is the group of roots of unity

“in ¥, The vertical arrows are ¥-homomerphisms, ¥ acting on & homa-

morphism 1 by the rule () (x)=s(f{s71x)).

Proposition 11. &, is bijective and o and du are injective.
The proof is in a series of steps.

Step 1. &, is bijective. Indeed, since K is of characteristic 0, Cartier
duality gives a perfect duality of finite ¥-modules

G,(C) x G,(C) > U,

for each v. The resuit follows on passage to the limit as v— oo, inductively
with the G, and projectively with the G,
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- Incidentally, if we pass to the limit projectively with both, we find a
#-isomorphism
T(G) =~ Hom(T(G'), H),

where H=T{(G,(p))= l'i‘El‘. (group of p'~th roots of unity).

Step 2. Ker a and Coker o are vecior spaces over Q,. Applying the
snake-lemma to diagram (*) and using Step 1, we find that o and da have
isomorphic kernels and cokernels. Since du is C-linear, the result follows.

Step 3. We have G(R)=G (D) and t;(K)=1(C)®. This follows from
Theorem 1, i.c., from the fact that K=C¥, which of course implies that
R=D".

Step 4. « is injective on G(R). Indeed, the kernel of the restriction of o
to G(R)is (Kera)® by step 3, and is therefore uniquely divisible by p, by
step 2. If & is connected it follows that Keran G'(K)=0, because in that
case, viewing (7 as a formal Lie group we see that {7} p"G (R) =0, because
the valuation on R is discrete (if x is a point of G(R), all of whose co-
ordinates are =0 (mod=’) then the coordinates of px are =0 (modn'*1)).
In the general case we see then that (Kera)n G°(R)=0, where G° is the
cennected component of G (use the functorality of (*} with respect to
G-, and the fact that T(G")-»T((G®)) is surjective). Since Kera
is torsion-free and G(R)/G°(R) is 2 torsion group, it follows that
Keran G(R)=0 as claimed.

Step 5. The map du is infective on t;(K). From steps 1 and 4 we con-
clude that dx is injective on L(G(R)); but that group spans ¢; (X) over Q,.

Step 6. The map da is injective. The arrow da can be factored as follows

e 1{C) 2 16(K) © C:—> Homy(T, €) @ C—Hom (T, C).

ﬁa_e left-hand arrow is injective by step 5. The right-hand one is injective
by
Step 7. Ler W be a vector space over C on which % operates semi-
linearly (i.e., s{ew)=s(c} s(w), for se ¥, ceC, we W). Then the C-linear
map
wrRC-Ww
K

is injective. In down-to-earth ferms, this statement means that if a family
of elements w;e W7 is independent over K, then the family is independent

. over C. It can be proved by looking at a “shortest” hypothetical depend-

ence relation ¥ ¢w; =0, with ¢;=1 for some /, applying elements se¥ to
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it and using Theorem 1, i.e., the fact that & is the fixed field of the group
of automorphisms % of the field C. See SERRE [/0)], Prop 4, for a more
general statement.
Proposition 11 now follows from Steps 1 and 7 and the snake-Jemma.
Theorem 3. The maps

G (R}—=2~Homy (T (G"), U)
and :

te (K)-2% Homg (T'(G'), )

induced by o and dx are bijective.
Proposition 11 implies the injectivity of these maps, and also, via step
3 above, that we have injections

Cokeray 5 (Cokero)®  Coker (day) o (Coker de)” .

Since Cokera—Cokerde is bijective, it follows that the map Cokerap,—
Cokerdeay is injective, so we are reduced to proving that day is surjective.
Since duy is K-linear and injective, this is a question of dimensions. Let

W' =Hom(T(G'),C) and W = Hom(T'(G),C),

spaces of dimension & =ht (G) over C on which % operates semilinearly.
Put
d' = dimg (W) d = dim, W*®
n=dimG =dimgtz(K) »n' =dimG = dimgte (K).

By the injectivity of dx, we already know n<d’ and #'<d, and we wish
to show that equality holds. Since #+#%" =/, it will suffice to show tha.t
d+d' <h. This we do as follows.
Since T{G )~ Hom{T(G"), H) (see step | of proof of Prop. 11}, we have
=T(G)®Hom(H, C), so that there is a canonical non-degenerate
@-pairing
WxW-Y,
where Y=Hom(H, C). This space Y is isomorphic to C(x"'), where

x:¥—Z% is the character such that sz=z*' for all roots of unity z of
p-power order. Therefore, by Theorem 2, ¥*=H®(¥, Y)=0, and also

" HY (%, Y}:O. Since the spaces W and (W’)? are paired into ¥, it fol-

lows that ¥ *C and (W')” C are orthogonal C-subspaces of W and W'
Their dimensions are d and 4’ (step 7 of the proof of Prop. Il) Hence
d+d'<h=dim. W, as required.
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Corollary 1. The %-module T(G) determines the dimension n of %

Indeed, T(G) determines T(G') by duality, and »=dim, (IIG(K))=
=dimy (Homy, (7(G "}, C)) by Theorem 3.

Corollary 2. There iy a canonical isomorphism of T-modules

Hom (T(G), C) = t5.(C) @ t&{C) ® Hom(H, C),

where 1§ is the cotangent space of G at the origin.

The proof of Theorem 3 above shows that da’ and dx map 1. (C) and
t;(C) injectively onto subspaces of W and W' which are orthogonal
complements with respect to the pairing to ¥. Thus we have an exact
sequence

0= 16.(C) S W Homg(15(C), ¥) = t5(C)® ¥ -0,
C

and to prove the corollary, we must show that this sequence has a unique
splitting compatible with the action of %. The sequence has the form

0= C" W — c(x™'¥—o0,

where y is the character in the proof of Theorem 3. The existence of a
splitting follows from H' (%, C{x))=0; and its unicity from H°(%, C(x))
=0 (cf. Theorem 2).

Remark: In case G=4A(p), where 4 is an abelian scheme over R,
Corollary 2 can be rewritten as

H'(4c, Q,)® C~ H' (4¢, 9, ) @ H (A, 23,) ® Hom(H, C),

where Ae=A4® C, and where on the left we have the étale cohomology '

of A; with coefficients in Q,. One can ask whether a similar Hodge-like
decomposition exists for the étale cohomology with values in C in all
dimensions, for a scheme X, coming from a scheme X projective and
smooth over R, or perhaps even over K, or for suitable “rigid analytic”
spaces

(4.2.). We can now prove the main result

Theorem 4. Let R be anintegrally closed, noetherian, integral domain,
whase field of fractions K is of characteristic 0. Let G and H be p-divisible
groups over R. A homomorphism [:GR g K—H@ g K of the general fibers
extends uniquely to a homomorphism G—H,
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Corellary 1. The map Hom(G, H)—Hom, (T(G), T(H)) is bijective,
where ¥ =Gal(K/K).

Corollary 2, If g:G—H is a homomorphisim such that its restriclion
GCRz K= H®p K is an isomorphism, then g is an isomorphism.

Since R=nzR;p, where P runs over the minimal non-zero primes of R,
and since each Rpis a discrete valuation ring, we are immediately reduced
to the case R is a discrete valuation ring. There exists an extension R of R
which is a complete discrete valuation ring with algebraically closed resi-
due field and such that R=R’'n K; hence we may assurne R is complete
with algebraically closed residue field, k. If chark=p, then G is étale and
the theorem is obvious. Thus we are reduced to the case of an R of the type
considered in the preceding paragraphs, which we assume from now on.

We first prove Corellary 2. Let G=(G,) and H=(H,), and let 4, (resp.
B} denote the affine algebra of ¢, (resp. H,). We are given a coherent
system of homomorphisms u,: B, A4,, of which we know that their ex-
tensions #,&1:B,® g K= A,@ K are isomorphisms. Since B, is free over
R, it follows that w, is injective for all v. To prove surjectivity, we look at
the discriminants of the R-algebras 4, and B,. By Prop, 2, these discrimi-
nants are non-zero, and are determined by the heights of G and H and
their dimensions. But the height and dimension of a p-divisible group
over R are determined by its general fiber, the height trivially, and the
dimension by Cor. 1 of Theorem 3, since the general fiber of G determines
the ¥-module T(G). Hence the discriminants of 4, and B, are equal and
non-zero, and it follows that u, is bijective. This proves Corollary 2.

To derive the theorem from the corollary, we will use

Propesition 12. Suppose F is a p-divisible group over R, and M a %-
submodule of T(F) such that M is a Z ~direct summand. Then there exists
a p-divisible group I" over R and a homamorphzsm @:I—=F such that ¢
induces an isomorphism T(I'}5 M.

Granting this Proposition we prove the theorem, letting F=G x H, and
letting M be the graph of the homomorphism 7(G)— T'(H) which corre-
sponds to the given homomorphism * G®p K- H@® K. By Prop. 12 we
get a p-divisible group I over R and a homomorphism ¢:I'~» G x H such
that the composition pry-¢@: '~ G induces an isomorphism T'(I')—T{(G),
hence an isomorphism on the general fibers. By Cor. 2, it follows that
pr; ¢ is an isomorphism. Thus pr,-¢-(pr; ¢)~':G—H is a homomor-
phism extending f. The unicity of such an extension is obvious, and this
concludes the proof of Theorem 4,

Proof of Prop. 12. The submodule M <T(F} corresponds to a closed
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p-divisible subgroup E, c F®, K. Let E be the “closure of E, in F”’, By
this we mean the {following: Let B, be the affine R-algebra of F,, let 4,,
be the affine K-algebra of E,,, and let u,: B,® , K— A4, correspend ta the
inclusion Ey, g F, % K. Put A,=u,(B,), and put E,=SpecA,. Then E,
is a closed subgroup of F, for each v, and the inclusions F,—F, ;. induce
inclusions E,—~E,,,; we put E= H_T}IJ.(E,). Although E itself may not be

p-divisible (sec example below), nevertheless Ex , K=E, is p-divisible,
and it follows that E;,,/E, is killed by p, hence that p induces homomor-

hisms
P EivvstfEriy — Eig JE;

which are isomorphisms on the general fiber. Let D; be the affine algebra
~of Eyy1/E. Then all 2@, K can be identified, and the D, constitute an
increasing sequence of orders in a finite separable K-algebra. Hence there
is an #, such that D,=D,,, for i> iy, Put I',=E; . ,/E,. Then p” induces
a coherent collection of homomorphisms I",— E,/E, =E,, which are iso-
morphisms at the general fiber, and we will therefore be done if we show
that I'=|_JI, is p-divisible. For this, we facior the homomorphism p" in
I,y as follows .
Fe= E1n+v+1fEioL’Ein+v+1/Eiu =14y
I
Eiptvet/Eigay=> B4/ Epys
where « 1s the canonical projection, y the canonical inclusion, and where
g is induced by p", and is therefore an isorhorphism by our choice of i,
It follows that the kernel of p* in I, is the same as Kera=I, so I" is
p-divisible as claimed.
The following example, dve to SERRE, shows that the map ¢ in Prop.

“~{2need not be a closed immersion. Let X be an elliptic curve over R

whose reduction X has Flasse ipvariant +0, and suppose the points of
order p on X are rational: Then there exist two such points, say x and y,
which are independent, but such that £ =jis of order p, and the sequence

0—+X L(X{pr) x (X/F_y)--Coker g —0

is then exact over X, but ¢ is not injective over R, because @ =0. Passing
to the associated p-divisible groups, one gets the desired example,
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