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Introduction

After a brief review of facts about finite locally free commutative group
schemes in § 1, we define p-divisible groups in § 2, and discuss their re
lation to formal Lie groups. The § 3 contains some theorems about the
action of Gal(KjK) on the completion C of the algebraic closure K of a
local field K of charactelistic 0, In § 4 these theorems are applied to obtain
information about the Galois module of points of finite order on a p~

divisible group G defined over the ring of integers R in such a field K, and
to prove that G is determined by that Galois module, or, what is the same,
by its generic fiber G x R K.

The ootion ofp-divisible group and the basic theorems of § 2 are the
result ofjoint work with SERRE, and § 3 and § 4 owe much to discussions
with him. Although p-divisible groups are interesting enough in their own
right, our main motivation for studying them has been their applications
to abelian varieties. For some ofthese, and for further results' on p-divisi
ble groups, as well as additional bibliography, see SERRE, [10J and [Ill

This text owes much - probably its very existence - to the efforts of
T. SPRINGER, who wrote a first draft shortly after the conference. In
several places, and particularly in § 3, he has made improvements on the
original oral exposition. I thank him heartily for his help,

§ 1. Finite group schemes

(1.1). Let R be a commutative ring (or a prescheme), By afinite group
oforder mover R we shall mean a group scheme G which is locally free of
rank mover R. Such a G is defined by a locally free (sheaf of)aIgebra(s)
A of rank mover R. The group strncture is described by homomorphisms

"

Jl:A-+A®A, e:A-+R, and an automorphism i:A~A, describing multi
plication, neutral element, and invers~, respectively, These are subject to
a number of rather obvious conditions (see for example [4J or [6J).

Examples. (a) Let r be a finite abstract group of order m. Let A be the
ring of R-valued functions on T, let (Jlf) (8, t)=f(8t), Jet (if) (8)=f(8- 1

),

and let 8f=f(I). Then r=Spec(A) is a finite group of order mover R,
(b) Let A=R [X]/(X" -1), with /l(x)=x@x, where x is the image

of X in A, Then Spec(A) is a finite group of order mover R which is
denoted by flnr; it is t.he kernel of the homomorphism m: Gm-rGm,
where Gm denotes the "multiplicative group", viewed over R.

(c) Let a, bER with ab=2. Put A=R+Rx, with x2 +ax=0, and put
!lx=x@l+l@x+bx@x. Then G•. ,= Spec (A) is the most general group
of order 2 over R whose affine algebra A is free over R. Moreover, Ga,I>
and Go'.b' are isomorphic if and only if there is a unit u in R such that
a' =ua, h' =u-1b.

(1.2). Duality

From now on we assume all groups to be commutative. Then there is
a duality theory, due to CARTIER (see [3], p. 106). Let G=SpecA be a
finite group over R and m:A@A->A define the mUltiplication in A and
Jl:A->A@A the group law. Put A' =Hom'_m"",[~(A,R). We then get
dual homomorphisms

,l:A' ®A' -+A', m':A' -rA' ® A'.

fJ.' defines an algebra s1!ucture on A' and it is easy to check that m' defines
a product on G'=Spec(A'), which makes it into a group scheme. The
order of G' is equal to that of G. G' is called the Cartier dual of G. There
is a canonical isomorphism G..:},(G'Y.

If T is a prescheme over R, then the group G' (T) is canonically iso
morphic to HomT (G, Gm) (homomorphisms of group schemes over T of
G x R T into G ItI x T, G ItI denoting the multiplicative group).

Examples. (a) Let G=ZjmZ be the cyclic group of order n (as in
Example (a) of (1.1». Then G'=Jl,..
(b) If G=G." (Example (c) of (1.1», then G' =G,.•.

(1.3). Short exact sequences

1 The research described here bas been partially supported by NSF.
A sequence

O-+G'~G~G"-+O (1)
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(2.1). Definition

§ 2. p-divisible groups

Let p be a prime number, and h an integer ~O. A p-divisible group G
over R ofheight h is an inductive system

where .
'~-----"(i)- -G;-is-a-finite-group-scheme-over-R-or-ordeT p,.IJ;-- ------------.-.-....,-

(ii) for each v;;'O,

v ~ 0,G =(G" i,),

of finite R-groups is called exact if j is a closed immersion which identifies
G' with the keme1 of j (in the sense of categories), whereas j is faithfully
fiat. If j is given, it is easy to get G' (it is the inverse image of the unit sec
tion of G'). Given i, one can construct G'. This is more delicate (see [4],
Expose V and VI. or [7]).

If (1) is exact, then we have for the orders In, m', m" of G, G', G" the
relation m=m'm'. This follows from the fact (proved loco ci!.) that the
graph of the equivalence relation in G x R G defined by G' is isomorphic
to GxG.G.

Finally, the dual of an exact sequence (1) is also exact.

(1.4). Connected and etale groups

In this section we suppose R is a complete noetherian local ring. If G
is a group of finite order over R, there is a canonical exact sequence

o-+ GO ~ G ~ Get -+ 0 ,

i" p"
0-1' G., -+ G'I'+l -+ G"+1

is exact (i.e., G" can be identified via I" with the kernel of multiplication
by pI' in G'I'+1)'

These ax.ioms for ordinary abelian groups would imply

G,c;;;(Zlp"zl" and G=limG,=(Q,/Zp)".
-+

iV,J1: G" -+ GSt + I,

pSt: G/1+V -+ G/l +"

can be factored through G, and then a consideration of orders shows that
we have an exact sequence

for all!" v;;,O, which ideutify G, with the kernel of multiplication by p'
in all G.+>. It follows that the homomorphism

(2)° G '•. , G J•• , G °~ St---+ {I+V-)- ,,~ ,

wherejSt,,, is the unique homomorphism such that i",St·jSt,,,=p"".
Examples. (a) Let X be an abelian scheme over R of dimension d. Let

X, be the kernel of multiplication by n. Then (Xp '" i,) (i, denoting the
obvious iuclusion) is a p-divisible group X(p), with height h = 2d.

(b) The same construction can be performed for other groups over R.
If one takes X=Gm, the resulting p-divisible group is Gm(p)=(I'p" i,.).
Its height is I.

A honwmorphismf: G-+ H ofp-divisible groups is defined in the obvious
way: if G=(G" i,), H=(H" i,) thenfis a system of homomorphisms.
f":G'I'-+H,, .of R-groups, which is such that l.,.f~=f.'+l·il'for all v~ 1.

By iteration, one gets from the I., closed immersions

;'here GO is connected and Gel is elale over R. lithe corresponding affine
rings are AO

, A, and Aft, then A is a product of local R-algebras, and AO

is the local quotient of A through which the map e:A-+R factors, while
A et is the maximal etale subalgebra of A. The map i is an open and.c1osed
immersion, and GO is the maximal connected subgroup of G. For varying
G, the functorsGI---+ GO, and GI---+Get are exact.

G is connected if GO = G. In that case, the order of G is a power of the
characteristic exponent of the residue field k of R, i.e., is I ifchar(k)=O,
and is a power ofp if char Ie = p > 0. This follows from the theory of finite
group schemes over k (or even over k).

Gis etale if G=G". The functor Gf-> G(k:) is an equivalence of the
category of etale R-groups of finite order aud finite n-modules ou which
n operates continuously, where n=Ga1(k:lk) is the fundamental group of
R. Given such an-module r, the etale finite R-group r corresponding to
it is given by r=SpecA, where A is the ring of all functions r-+Ret which
commute with n, and where Ret is a "maximal local eWe ~ntegral exten~

sion" of R (I.e., a maximal unramified extension of R in the old terminol
ogy, if R is a complete discrete valuation ring), and where 11; operates on
R er in the unique way compatible with its operation on the residue field
extension k,,11e (the residue field Ie", of R", being a separable algebraic
closure of k). For general (not necessarily etale) G, we have G"=G(k:).
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Question: Are there any p-divisible groups over Z other than products
of powers of Gm(p) and of QplZp1

(2.2). Relations with formal Lie groups

In this section we assume R complete, noetherian, local, with residue
field k of characteristic p > O. For our present purposes, an n~dimensional

formal Lie group rover R can be defined as a suitable homomorphism of
the ring .91 = R[[X" ... , X;,JJ of formal power series over R in n variables

Xj into d@RJd, the ring of formal power series in 2n variables Yi,2].
Such a homomorphism can be described by a family fey, Z)=(fi(Y, Z)),
of n power series in 2n variables, jj being the image of Xi'

The following axioms are imposed
(i) X=f(X, o)=f(o, X),
(ii) f(X,f(Y, Z))~f(f(X, Y), Z),
(iii) f(X, Y)=f(Y, X), (since we consider only commutative groups).
We write X. Y=f(X, Y}. It follows from the axioms thatX. Y=X+ Y +

terms in higher powers of the variables.
Put J/J (X) = X... ·.X (p times). This determines a homomorphism

J/J:d-+d, which corresponds to multiplication by pin r. r is said to be
divisible ifp:r-+r is an isogeny. This means that J/J makes .91 into afree
module of finite rank over itself.

We can then repeat the constnlction of Example (a) in (2.1), obtaining
a p-divisible group r(p)=(rp., i,) of height Ii over R, where p' is the
degree of the isogeny p:r-+r. (This degree is a power of.p because it is
equal to the order of the finite R-group rp=Kerp, which is connected
.(see 1.4).) More generally, for arbitrary v, we have (r (P),= f p'= SpecA"
where A,=dIJ" and where J,=J/J'(I) .91 is the ideal in .91 generated by

'the elements JjJ' (X,), I,,;; i,,;;n. (Here I=Jo denotes the ideal generated
by the variables Xi)' Clearly, each A, is a local ring; hence rep) is a con
nected p-divisible group (i.e., each f (p), is connected).

Proposition 1: Let R be a complete noetherian local ring whose residue
field k is of characteristic p>O. Then r t-+r(p) is an equivalence between
the category of divisible commutative formal Lie groups over R and the
category of connected p-divisible groups over R.

Remark. We can only sketch the proof here, omitting many technical
details. The techniques involved are amply covered in Gabriel's exposes

VII" and VII. of [4].
Let r be a divisible formal group over R. Let m be the maximal ideal

of R so that, with the previous notations,mJi'+1= M, say, is the maximal
ideal of d.

Lemma O. The ideals ml'd+Jv constitute a fundamental system of
neighborhootk of 0 in the M-adic topology ofd.

Indeed, dl(m'A+J,)=A,/m'A, is an Arlin riug, so the ideals in ques
tion are M-adically open. On the other hand, they are arbitrarily small,
because we have

lfrlX,) = pX, + (terms of degree" 2),

hence J/J(I)c;pI+I2 c;(rnd+I) I=MI, and consequently, by induction
on 11, we have JlI=l/tV(I) dcM Y

/.

From Lemma 0 it follows that the map .91-+ lim (dIJ,) = lim (A,) is
. <- <-

bijective, because .s.I is M-adically complete. From this bijectivity it is
easy to see that the functor r -+r (p) is fully faithful.

To complete the proof of Prop. I we must show tilat any given con·
nected p-divisible group Gover R is isomorphic to some r (p). Let
G~(G" i,) and G, = Spec (A,). The inclusions i,: G,-+G,+, make (A,) into
a projective system. Put A = lim All' The group law on G defines a homo-

<- .

morphism A-+A®RA, which will have the required properties for a for
mal Lie group, once we know that A is isomorphic to R[[X" ... , XpJJ for
some n. Then it also follows easily that the formal Lie group r is divisible
and that G is isomorphic to r (p).

To prove that A is an algebra of formal power series over R, one first
observes that A is fi.t over R. (Indeed the R-module A is isomorphic to
a countable direct product of copies of R, because the A'I' are free of finite
type over R, and the maps A'I'+l-+A'I' surjective.) This being so, one is
reduCed by standard procedures to the case in which R=k is a field of
characteristic p > 0, In that case, the injective limits of finite commutative
group schemes of p-power order over k form an abelian category, and a
p-divisible group over k is just an object in that category on which p is
surjective with finite kernel. There is an exact functor Gf---+. G(p) from that
category to itself which preserves the order of the finite objects, and there
are homomorphisms of functors F (Frobenius) and V (Verschiebung)
such that the following diagram is commutative for any G in the category:

p
Il .u""'-I' y / '-.! (5)

""riP//'" p ~olP)
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(See [3]. p. 98. or [4]. expose VII. or [6]. p. 18. 19.) If G is p-divisible of
height It, then so is G(p), and the diagram shows then that F and V are
surjective, with finite kernels of order ~p'r.

Suppose now that G is the connected p-divisible group over k we were
considering before this general discussion. For each 1', let Hv be the kernel
of P":G--+G(p"J. Then we have H1.cGV ' and also GvcHN for sufficiently
large N (depending on 1'), because Gv is finite and connected. Thus, we
have A = lim A v = lim Bv, where Hl'=SpecBv. Let Iv be the augmentation

+- +-

(i.e., the maximal) ideal ofB"let I = lim I, be the augmentation ideal of A.
+-

and let xl,"'j X n be elements of I whose images form a k-base for [1 II; .
Then the images of the Xi in E v generate [vfor each 1', because I'l'll~--+Idli

is bijective. (Since Hl is the kernel ofF in Hv, the kernel ofI" --+11 is generated
by the p-th powers of the elements of I" so that kernel is in I;.) Now
consider the homomorphisms u'l':k[X1, "', XilJ--+Bv which send Xi to the
image of Xi in BI " These are surjective. by the above; on the other hand,
Keruv contains the elements X~" because F V kills H'l" But rank(BI')=
(rank(BI »)'. since Fis surjective. and rank (B,) =p". by the structure theory
of finite groups killed by F. Since tbe ideal (Xr, .... Xn is of codimension
p" in k [X), it follows that that ideal is the kernel of u" and hence that
the nv induce an isomorphism u: k[[Xl , "', XnJJ":;'A, This completes our
sketch of the proof of Proposition I.

IfG=(Gv , iv) is now any p~div.isible group over our complete noetherian
local R, the connected components G~ determine a connected p-divisible
group GO. From the exact sequences

o-.. G~ -4 G,. -+ G:r
--+ 0

(discH')"'. This fact. together with thefactthat disc (H)= I if H is etale.
allows us, via (4), to reduce the case of an arbitrary G to that of a con~

nected G",r(p). As in the proof of Prop. 1 above we have then A,=-""'jJ,.
Consider sf as a free module of rank p'~I' over itself by means of ffJ = 1jJ".
We change the notation, and consider st' as an algebra (via cp) over an
other copy .91' of d. Denoting by I' the augmentation ideal in .91' (gener
ated by the Xn, we have Av~sf.II'.s;{, so it suffices to prove that the dis
·criminant ideal of.s£ over .:;I' is generated by the desired power of p.

To do tbis, consider the modules ?fformal differentials Q and {J' of.9l,
resp. .91'. They are free modules over .91 (resp. .91') generated by the
differentials of the variables dXi, resp. dX/, 1~ i~n. The homomorphism
cp:&lI-+,rd induces an J#"-linear map dcp:Q'-+Q. Choosing bases in Q,

resp. 12', we get a basis element 8, resp. 8'. of AIIQ, resp. An,Q'. Let
drp(B')=aB, with aEd. Then one has

Lemma 1. The discriminant ideal oJd over .91' isgenerated by N"I-" (a).
Granting this lemma. the proof of Prop. 2 is finished as fonows. Choose

a basis (Wl) of Q consisting of translation-invariant differentials, i.e.,

differentials sucb that if fJ.:d-+de;'d defines the formal group struc
ture dfJ.:D-+D(jJD satisfies dfJ.(w,)~Wl(jJWi' Using the corresponding ba
sis (wD in tbe copy D' of D we have. by tbe definition of rp as arising from
the homomorphismp":f--+r, that do/(wD=i"wj, whence a=p"n. Propo~
sition 2 tben fonows by Lemma I.

As to a proof of that lemma, it can be based on the existence of a trace
map Tr:AnQ--+A"Q' with the following properties:

(i) Tr is d'-linear.
(ii) The map a f4(B f4Tr(aB») establishes an isomorphism of .91'

modules
one gets an exact sequence

a--+ GO --+ G--+ Gel 4 0, (4)

.91 2, Hom". (A"D. A"D').

(iii) If BEQ' and aEd. then
where Gf!t is an etale p-divisible group. The dimension, n, of the formal
Lie group corresponding to GO is, by definition, the dimension of G.

Proposition 2. The discriminant ideal of Al' over R is generated by pllVphV
,

where h=ht(G) and n=dim(G).
In general. for a fillite group H=SpecB over R.let disc(H) denote the

discriminant ideal of Baver R. IfO--+H'--+ H--+H"--+O is an exact sequence
of finite groups over R (cf. 1.3) of orders m'. m. and m'. thell by the
transitivity of discriminants one proves easily that disc(H)=(discH't-

Tr (a· drp(B») = (Tr",,,. (a») B.

Such a trace map exists whenever .91 '" .91' '" R[[Xl' .... X,,]] and rp :.91' -+ d
is an R-algebra homomorphism making .PI a free ..s::{'-module of finite
rank; see for example Hartshorne's notes on Residues altd Duality,

Springer lecture notes 20. 1966, at least for the corresponding "non
formal" situation.
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(2.4). Poiuts; tbe Galois modules <peG) and T(G)
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Let G~(G" i.) be ap-divisible group over R, For each 1', let G;, be the
Cartier dual of G (ef, 1.2). The exact sequences (2) in (2.1) with 1,=1
shows that we have injective homomorphisms

i~:G~-+G~+l'

where i, is the dual of the map G.+1 ->G. induced by multiplication by p.
It is easy to check that the system G' =(G;, I;) satisfies the axioms of (2,1),
and is therefore a p-divisible group, called the dual of G. Clearly, G' and
G have the same height. Of course, ~his notion of dual makes sense over
any base ring (or prescheme) R, In case R is complete local noetherian
with residue characteristic p. as in 2.2, so that the dimension of G is deR

fined (cf, the lines before Prop, 2), we have the following all-important
Proposition 3. Let nand n' be the dimension of G and its dual G', Then

n+n' =h, the height of G and G'.
The dimension and height of G do not change if we reduce G mod the

maximal ideal of R. Hence we are reduced atonce to the case in which
R=k, a field of characteristic p. From diagram (3) we get an exact se
quence

0--+ Kef F -+ Kerp --+ Ker V --+ O.

Now Kerp=G1 has order ii, and KerF has order p", (Fis injective on
Gel, so the kernel of F in G is the same as that of F in the connected com
ponent GO, Viewing GO as a formal Lie group on 11. parameters, we see
that the order of KerF is p'l, as remarked in the proof of Prop. I.) Since
Fand Vare dual with respect to Cal1ier duality one checks that Ker V is
the Cartier dual of the Cokernel of the map F: G;->G;") =(G\,,))', and
consequently Ker V has order pn'. Now the assertion follows from the
mu1~plicativity of orders in an exact sequence.

Examples. a) The p-divisible group Gm (p) has h =11 = I, and is dual to
the etale p-divisible group QpjZ, which has h = I, n =0:

b) Let X be au abelian scheme of dimension 11 over R. If the dual
abelian scheme X' exists, then we have (X(P))' ",X' (p), Both X(p) and
X' (p) have height 211 and dimension n, The connected component X(p)"
of X(p) is the formal completion of X along the zero section, and can
have any height between nand 2n, For example, if X is an elliptic curve
(11= 1), then the height of X(p)O is 1 or 2 according as the "Hasse invari
ant" of X(p) is non-zero or zero,

Let R be a complete discreie valuation ring, with residue field k = Rjm
of characteristic p>O, and let K be the field of fractions of R (very saoa
we shall assume k perfect and K of characteristic 0). Let L be the com
pletion of a (possibly infinite) algebraic extension of K and let S be the
ring of ~ntegers in L. Thus S is a complete rank 1 valuation ring. but the
valuation on S may not be discrete.

Let G be ap-divisible group over R. We defiue the group G(S) ofpoinIs
of G with l'a/ues In S by

G(S) ~ lim G(Sjm'S),
~,

where m is the maximal ideal of R, and where

G(Sjm'S) = lim G,(S/m'S).
->,

Clearly, G(S) is a Zp-module. From the definition of p-divisible groups,
G,(S/m'S) is the kernel of multiplication by p' in G(Sjm'S). Thus tbe
keroel of multiplication by p'in G(S) is lim G.(Sjm'S)", G.(S), and the

~,
torsion subgroup of G(S) is given by

G(S)"" '" lim G.(S) ,
->,

If Gis etale over R, then the maps G. (S/m'+tS)-> G. (S/m'S) are bijective
·fo~·all i, and co~s;quently G(S) is a torsioll group if Gis etale,

In general, if G. =SpecA, and A = lim A" and A,",AjJ. as in § 2, then
+-•

a point xEG(S) can be identified with a bomomorphism A-+S which is
continuous with respect to the valuation topology in S and the topology
defined by the ideals mlA +J" in A. In particular. if G is connected, corre
sponding to a formal Lie group r, so that A",R[[Xl>'''' X,]], then it
follows from the above remark and Lemma 0 that G(S) is the group of
points :X=(x1 , ... , xn) of r with coordinates XI lying in the maximal ideal
of S, Thus, if Gis cOllnected, then G(S) is an analytic group over L.

Now consider the exact sequence (4), and let A"' and AO denote the
algebras of G" and GO.
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Proposition 4. 1r the residue field k of R is perfect, thgn the map G--> G"
has a formal section, and consequently the sequence

0--> GO(S) --> G(S) --> G"(S) --> 0

is exact.
Proof. If R =k, then the exact sequence (4) splits canonically, and we

have A",Ao®RA""'A"[[X1, ... , X,]] in that case. By flatness we con
clude A"'A"[[X]] in the general case.

Corollary 1. If xEG(8), then there exists afi"ite extensia" field I: of
L and an element YEG(S'). where Sf is the ring afintegers in~, such that
py=x.

Indeed, by Prop. 4, it suffices to prove this for G" and GO separately.
For GO it follows from the fact that ~he map p: G°-+-Go makes AO a free
AO-module of finite rank (cf. § 2). For G" we are reduced to a statement
over the residue fie1eL and the result follows because the maps Gv +1-tG,
induced by multiplication by p are surjective.

Corollary 2. If L ;s algebraically closed, then G(S) is divisible.
From now on we suppose that k is perfect and the characteristic ofK

is O. This characteristic 0 assumption will be absolutely crucial in all that
follows;because (i) there is then a logarithm map which will show that
G(8) is locally isomorphic to E, where" =dimG, and (2) the G, x RK are
then automatically etale, so we will know that G,(8) (which is isomorphic
to G,(L) since G, is finite and fiat over R) is isomorphic to (Z/p'Z)" for
sufficiently large L (dependin.g on ,,),

The logarilbm. The tangent space te of G at the origin is, by definition,
the tangent space of the formal Lie group r corresponding to GO at the
origin. We write to (L) to denote its points with coordinates in L. Such a
point is an R-linear map T:A°-->L such that r(Jg) =f(o) T(g)+g(o) T(J)

for all f, gEAO ",R[[X" ... , X.]], or, equivalently, is simply an R-Iinear
map of 1°/(1°)' into L, where 1° =(X1, ... , X.) is the augmentation ideal
in AO (namely the map induced by the restriction of T to 1°). Thus, te (L)
is a vector space of dimension n=dimG over L. The logarithm map:
log: G(8)-->tG (L) is defined as follows:

(log x) (f) = lim (f(piX) - f(O))
1-+ <Xl pi '

for xEG (8) andfEAo; note that for large i we will have p'xEGo (8), be
cause G"(8) is a torsion group. Altern.tively, we can identify 1°/(1°)'

with the space of invariant differential forms w on r, and define, for
XEGO(S) which is all that really matters,

(Iogx) (w) = Q(X) ,

where Q(X)EK[[X" ... , X,,]] is such that Q(O)=O and dQ=w, see SERRE
[12]. Using either of these definitions of log, one proves easily that it is a
Zp-homomorphism, and a local isomorphism. More precisely, that if
cP-1<lpl, the logarithm gives an isomorphism between the group of
points x = (x,) in GO(S) such that Ix,l,,;c for all i and the group of points
TEte(L) such that IT(X,)I";c for all i. From these facts it follows that the
kernel of log is the torsion subgroup of G(S), and that its cokernel is a
torsion group. Thus, the log induces an isomorphism

G(8) ® Qp':' te(L).
z,

It also follows that log G(8) is contained in a finitely generated 8-sub
module of tG(L) if the valuation on 8 is discrete, whereas logG(8) = te (L)
if L is algebraically closed.

Examples. I.) If G=G,,(p), then G(8) is the group of units congruent
to I in 8, te(L) is L, and the logarithm is the ordinary p-adic logarithm.

2.) If Xis an abelian scheme over R, and G=X(p), then we can iden
tify G(8) with the subgroup of XeS) consisting of the points x whose
reduction mod the maximal ideal of 8 is of finite p-power order, GO (8)
being identified with the kernel of the reduction map. The logarithm is
then the map which has been studied by LUTZ (for elliptic curves) and by
MATTUCK in general.

The Galois modules <P und T. Let K be the algebraic closure of K, and
~ = Gal (K/K). PLit

<P(G)=limG,(K), with respect to the maps 1,:G,<:;:G'+1'
~,

T(G)=limG,(K), withrespecttothemaps j,:G.. 1 -+G•.,
Since char(K) =0, the G,®RK are etale, and it follows from the definition
of p-divisible groups that </i(G) and T(G) are Zp-modules isomorphic
respectively, to (Qp/Zp)" and to Z:, where h=height(G), on which ~ acts
continuously_ We have canonical isomorphisms:

<P(G) '" T(G)®(Qp/Zp) and T(G) ",Homz,CQp/Zp, <P(G)),
z,

12 Local Fields
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so knowledge of <p(G) is equivalent to ihat ofT(G),_and knowledge of
either is equivalent to knowledge of the general fiber G® R K of the p
divisihle group G.

In the notation of the preceding paragraphs, the map G, (S)~G,(L)
is bijective, so that, <P (G) is the torsion subgroup of G(S) if L is the com
pletion of K.

Examples. 1.) If G=G,,,(p), then <p(G) is the group of roots of nnity
of p-' power order in K.

2.) If X is an abelian scheme of dimension n over R, and G=X(p),
~ then T(G) = Tp(X), the p-adic representation space of rank h =2n intro
,duced by WElL.

I

§ 3. The completion of the algebraic closure of K

R denotes a discrete valuation ring, which is complete, of characteristic
O. Its residue field k is assumed to be perfect of characteristic p > O. Let K
denote the quotient field of R, K its algebraic closure and C the comple
tion of K. C is known to be algebraically closed (see [1], p. 42). The abso
lute value on"K is canonically extended to C. Let n be a uniformizing ele
ment of K. For xeC we define its order 0("') by

Ixl = 1"1"",
we put o(p)=e.

If I is an ideal in some finite extension of K, o(l) is defined in the obvi
ous way. The relative different of a finite extension MIL is denoted by

bM /L • •

_In the results of this section several constants will appear. We often will
'denote lhelil indiscriminateiy by the same letter.

(3.1). Study of certain totally ramified exteusioos.

Let K oo be an infinite Galois extension of K which is totally ramified
with gronp 'if",Zp. LetK, be the subfield ofK oo which corresponds to the
closed subgroup 'if (n) =p'Zp. Then K"IK is cyclic of degree p'.

Proposition 5. There is a constant c such that

v(bKn{K) = en + c + p -nou ,

where an is bounded.
This follows from standard facts about higher ramification, together

with local class field theory.

We use the high.er ramification groups Wil, with the "upper numbering",
which is compatible with passage to quotients ([8], p. 119, or [2], p. 81).
Suppose that 0'1l=~(i) for Vi <V:::S;Vi +1. We then have V

rl
+1 =vll+e for

large n (recall that e=v(p)). This follows from local class field theory,
more precisely from the description of the images of the CCIl under the
reciprocity mapping. (See [8], p. 235, Cor. 3, for the case of a finite k;
see [9] for the case of an algebraically closed k, to which the case of arbi
trary perfect k can be reduced by passage to the completion of the maxi
mal unramified extension of K; see also the Berkeley Ph. D. thesis of
B. F. WYMAN (June 1966).) Put b,,= bK,,/K' A well-known formula ([8], p.
109) then gives (oW) denoting the order of a group !?)

00

orb,) = J(1 - o(GaI (K"IK)'t ') do.
-1

Now Gal (K,IK)' = 'o"'if(n), whence

o(Gal(KnIKY)=pn-i if Vl<V~VI+l' with j~n,

= 1 otherwise.

The assertion then follows easily.

Corollary 1. v(bKn+JlK.,)=e+p-ltbm where bit is bounded.
Corollary 2. There is a constant a (independent of n) such that for

xeKrr + 1 we have

ITrK".,/K,,(x)l<; Ipl ' -,p ·"lxl.

Let Rn be the ring of integers ofK n and m n its maximal ideal. Let b
Kn

+ JlK
n

=m~+l' Then

TrKn+ JlKIl (m~+1) = 111~ ,

[
i+dJwherej= p (see [8), p. 91, Lemma 4). This implies the asserted in-

equality.

Corollary 3. There Isa constant c (independent ofn) such that for xeKn
we have

ITrK,,/K(x) I <; Ipl'-' Ixl·

Let (J denote a generator of the group 'if.

Lemma 2. There e",isls a constant c>O (independent ofn) such Ihat for
xeKn+1 we have

Ix - p-1 TrK".,/K,,(X)I<; cla""x _ xl.
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Hence

Ix - I (x)1 ,,; dlux - xl·

I (x) = p-. TrK"IK(x).

This is independent of the choice of n.
Proposition 6. There exists a C01Jstant d>O such that we have for all

xeKoo,

for se'C, X€X.
We then have

'x = Xes) (sx),

By Prop. 6 (or by Cor. 3 of Prop. 5) the linear operator t is continuous
on K~ and therefore extends to X by continuity. We have I (X) =K be·
cause K is complete; let X o be the kernel of t on X, a closed subspace of X.

PropoSition 7. a) X is the direct sum of [( and Xo.
b) The operator a-I annihilates K, and is bijective, with a continuous

inverse, 011 Xo.

c) Let..1.. be a unit in K which is == 1 (modn) and which is not a root of
unity. Then 0'-1 is bijective, with a continuous b11'erse, on X.

Proof. (a) Since t is idempotent, X is the direct sum of its range and
its kernel.

(b) For each 11, let KIl,o =KIl nXo be the subspace of K II consisting of
~

the elements whose trace to K is 0, and let K 00, 0 = U K Il, o' We have
Ir:O

Kn=KffiKIl • o, direct sum, for O~n ~ co, and Xo is the closure of Ka;"o in
X. The operator (J - 1 is injective, hence bijective, on each of the finite
dimensional spaces K Il• o, for n< co, and is therefore bijective on their
unionK~.o; let e be its inverse. By Prop. 6 we have leyl,,;dlyl for each
y=(0'-1) x in Koo,o' Hence e extends by continuity to Xo, and this ex
tension is a continuous inverse for 0'-1 on Xo.

(c) Since u-J. is obviously bijective on K for A,!,l, we can, by (a),
restrict our attention to its action on Xo. As operators on X o we have

If lA-II d< I with d as in (b), we have I(i.- I) a (Y)I < IYI for allYEXo and
consequently I -(A-I) e is an automorphism of Xo, its inverse being
given by a geometric series, and consequently, by (*), (J- Ahas a continu
ous inverse on X o. Ifll-II d~ I, we replace uby uP", and 1 by ApR, where
11 is so large that W" - II d< I. We then replace K by K •. Taking into
account the remark following Prop. 6, we find from what precedes that
qP" -..1..P" has a bounded inverse on X, whence also 0"-..1.

We can define, in the obvious way, cohomology groups H' ('if, X) based
on continuous cochains for the canonical topologies on t:t and X, If X is
a continuous character of W into the group of units of K, then we denote
by X(X) the space X with the "twisted" action

a(u - A) = a((u - I) - (i. - I)) = 1- (i. -1) e. (*)

(*)

Proof. Let <= up". Then

with
Ix-t(x)I";c.lux-x! if xEK.,

c
ll
+ 1 = Ip!-ap

-
n

C
Il

,

where a is a constant >0. TItis will imply the assertion. We may take C1

equal to the C of Lemma 2. Then we have for xeK Il +1 , assuming (*) to be
true,

ITrK"..IKJx) - pi (x)1 ,,; c" lu TrK" "IK" (x) - TrK" "IK..(X)I
= c. ITrK., ';K..(ux - x)1 ,,; c" Ipll-.p

·" lux - xl,

by Cor. 2 to Proposition 5. By Lemma 2 we have then

Ix - I (x)1 ,,; Max(Jx - p-I TrK":,IK,, (x)l, Ipl-a.." c. lux - xl)

,,; Max(c" Ipl-·p'''c.) lux - xl = Ipl-·P··c.lux - xl,

which establishes (*) for (11 + I).
Remark. From the proof we see that if we take K n as a groundfield

instead of K we have a corresponding inequality with the same constant d.
Next let X be the completion ofK oo . This is a Banach space over K, on

which 'if acts continuously. The preceding results will enable us to get
some information about the 'if·space X.

We prove by induction on n an inequality

p-I

px - TrK""IK,,(x) = px - 2: <'x =
j:O

p-l p-,-l

2: (l-<')x= 2: (I +r+,,·+,i-1)(I-<)x.
i=O i=l

·jpx - TrK IK (x)I"; 1(1 - <) xl,
n.+ I " .

and we may take c=lpl-'.
Now define a K-linear function t on K oo with values in K as follows:

For xEKIlJ put
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(3.3). The actioo of '§ on C

Let '!I denote the Galois group of K{K. Then '§ operates on C by conti
nuity and we can consider the continuous cochain cohomology groups
H' ('!I, C).

Here 1/1 denotes the maximum of the absolute values of the coefficients of

f and by a (-l)-cochain we mean an element yr=L. The coboundary 6y of

such a y is the O~cochail1 TrLIK~'

Proof. By Prop. 9 there exists a (-I)-cochain )'EL such that lyl.::1

and loyl > c- 1 Defme an (r-I)-cochain y u/by the formulas

)'uf=J1, if r=O

(yUj)(s, .... ,s,_,)=('--I)' L s,sz·"s,y,!(s,.s" ... ,s,), if r>O.
s~e G

is easily checked; on dividing by the elementx=oy=TrL/K.YEKwe find

f - og = X -, (y U oj), with g ~ x -, (y Uj).

Since Ix-'I < c, and Iyl':: I, the corollary follows.
Corollary 2. The corollary 1 still holds true if we replace L by K, G by

;It', and consider cochains which are continuous from the Krull topology in

G to the discrete topology in K, provided that, for r =0, the conclusion is
replaced by: there exists an element xEK oo such that If-xl ,::clo/l.

This follows from Cor. 1, because a continuous cocham in ;re with
values in K comes by inflation from some finite Galois L{Koo (cf. SERRE,
Cohomologie Galoisienne, Prop. 8.)

RecaIl that we denote by Cthe completion of K. By H' (.;If, C) we mean
the cohomology groups constructed with standard cochains which are
continuous from the Krull topology in .1't' to the valuation topology in C.

Proposition 10. We have HO(.;If, C)=X, and H'{.;If, C)=O,for r>O.
Proof. This will follow immediately from Corollary 2, once we show

that, for every continuous cochainf on .;tt' with values inC,there.isa
sequence of cochains Iv on :YE with values in K as in Cor. 2, such that
If-I,I-+O. To construct such.t;, let D be the ring of integers in C. Then
C=K+rcvD for each 1', and there exist maps CfJv:C/nvD-+K such that
¥t'lPv=id., where ¥tv:C-+CjnVD is the canonical projection. The rpy are
automatically continuous because CjrrVD is discrete. Putfv ='Pv1/tvf Then
1{!,j,=I, implies I/,-fl'::lnl'·

(oy)f-o(y Uj)=y U W)The identity

The argument used in the proof of Prop. 5 now shows that this tends to
zero with n (the order of magnitude is p-'). The assertion then follows
from familiar results ([8], p. 91, Lemma 4).

Cornllary 1. Let L{K oo be finite Galois with group G. LeI I be an r-co
chain of G with coefficients in L, with r;:;:: 0, and let c> 1. Then there exists

all (r - I )-cochain g 01 G in L suclt that

h

V(bL,/K,) .:: f o (Gal (K"{K)'t' dv.
-,

V(bL"/K.) = f (0 (Gal (K,{Ktt , - o(Gal(L,{K)'t') dv.

-,

(3.2). Finite exteosions ofK oo

L~t Gal(L{K)'-='C, i.e., Gal(Lo{K)'=(I), for v'::h. It foIlows that

00

If - ogl .:: c liifl, and Igl':: clfl·

We Jeeep the notations of (3.1), Let L denote a finite extension of KaJ'
Denote by RL its ring of integers and by mL its maximal ideal. Roo and
m~ have the same meaning for K oo ' Let .;If=Gal(K{K~).

Proposition 9. We have TrL/K. (RL)::om~.
Replacing K by one of the K n we may assume that there is a finite ex~

tension Lo of K, linearly disjoint fromK oo over K, such that L=LoK(see
[8], p. 97, Lemma 6).

We may also suppose that Lo/K is a Galois extension. Put Ln=LoKn.
Then

Proposition 8. (a) H O (\!!'. X) =K, alld H' ('if, X) is a. olle-dimellsiollal
vectm' space over K.

(b) Ifx(\!!') is iiifillite, then HO(\!!" X(X») alld H' ('if. X(X») are 0,

Proof. If Y is a closed subspace of X stable under 'if, then H O (\!!', Y(x»)
is the kernel of CT - Aall Y, and, since a I-cocycle on '{f is determined by

its value at u, H' ('C, Y(X») is a subgroup of the cokeme! of O"-A ou Y.
In particular, both cohomology groups vauish if O"-A is bijective on Y.
Hence by part (b) of Prop. 7 we see that H O ('if. Xo) and H' (\!!', Xo) both
vanish, and consequently (a) follows from part (a) of Prop. 7. Similarly,
(b) follows from part (c) of Prop. 7, because if X(\!!') is infinite, then
A=X(U) is not a root of unity.
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Theorem 1. We have.HO(W, C)=K, andH1 (t§, C) i.§ a one-dimensional
vector space over K.

Proof. Let KrtJ/K be as in 3.1; for example, we can take for K oo a suita
ble subfield of the field generated over Kby all p'-th roots of I, all n. Then
we have an isomorphism

HO(@, C) '" HO(@/£',HO(£" C))

and an exact inflation-restriction sequence

o-> H' (@I£', HO (.Yt', C)) -> H' (@, C) -> H' (.Yt', C),

from which our theorem follows, using Prop. 10 and Prop. 8(a).
Remarks. I. The one-dimensionality of H' (@, C) was not known to

me for arbitrary K at the time of-the conference. It was proved by T.
SPRINGER when he wrote up the first draft of tbese notes.

2. Let R denote the integral closure of R in K, with the discrete topo
logy. The. methods we have used here yield very easily the fact that
H' (@, R) is killed by some power of p (the power depending perhaps on
K), and this fact in turn implies easily the first part of Theorem 1, i.e.,
C· ~K. Meanwhile, ~ankar SEN has shown that H' (@, R) is killed by
p for p odd, and by 41fp=2. From tbis result of SEN it follows easily that
for every closed subgroup ~1 of <9' we have C W1 =K 1 where K l =K'!h, and
where "hat" denotes completion.

3. Recently, James Ax has given a short proof of this last result, by a
direct method which avoids the use of higher ramification theory and of
the intermediate field K~.

Now let x: C/J-+K* be a continuous homomorphism (note that the val~

ues of X are units in K* because @ is compact), and let C (X) denote C
with the twisted action 'x~X(s) sx. Let K~ denote the extension of K
determined by Ker X.

Theorem 2. Suppose that there is a finite extension K o of K contained
in K~ such thai Koo/Ko is totally ramified and Gal(K~/Ko)"'Zp. Theil
HO (@, C(X)) ~O alld H' (@, C(X)) =0.

Proof. It is easy to reduce the statement to the case K =Ko, and in that \

case the result follows if we apply Prop. 10 and Prop. 8(b) as in the proof
of Theorem I.

§ 4. Theorems on p"fliyisible groups

We continue now the discussion of (2.4). Let G be a p-divisible group
over our complete dis.crete valuation ring R of mixed characteristic and

let K, C, and D be as in § 3. Let G' be the dual of G. By Cartier duality
we have for each v

G;(D)':; HomD(G, ® D, Gm).

n

Passing to the projective limit as v--+ 00 we obtain an isomorphism

A

T(G')':; HomD(G ®D, Gm(p))
R

where Gm{p} is thep-divisible group attached to GUl , viewed over D This

isomorphism gives us pairings

T(G') x G(D) -> (Gm(p)) (D) '" U

and
T(G') X la(C) -> IGmlp) (C) '" C,

where U den-otes the group of units congruent to 1 in D. These pairings
are compatible with the logarithm map L:G(D)->ta(C) and the ordi
nary p-adic logarithm U->C. The kernel of these logs is the torsion sub
group of their domain, and they are surjective because, C being alge
braically closed, G(D) and U are divisible. Thus we get an exact commu
tative diagram

L
O~<p(G) , G(D) , tG(C)-+O

., t •t d. t (*)
O-+Hom(T', U,"~)-+Hom(T',U)-+Hom(T', C)-+O,

where T' =T(G') is free of rank hover Zp, the Homs in the bottom row
are Zp.homs, and where U,"~"'<p(Gm(P)) is the group of roots of unity

. in U. The vertical arrows are ~-homomorphisms, f§ acting on a homo
morphismfby the rule (sf) (x)=s(f(S-IX)).

Proposition 11. lXO is bijective and a and drt. are injective.
The proof is in a series of steps.

Step 1. <xo is bijective. Indeed, since K is of characteristic 0, Cartier
duality gives a perfect duality of finite @-modules

G,(C) x G;(C)-+ U,o~

for each v. The result follows on passage to the limit as )1-+00, inductivelY

with the G, and projectively with the G'.
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Incidentally, if we pass to the limit projectively with both, we find a
~-isomorphism

T(G) oe Hom(T(G'), H),

where H = T(G", (p)) = lim,. (group of p'-th roots of unity).
<-

Step 2. Ker a and Coker a are vector spaces over Qp. Applying the
snake-lemma to diagram (*) and using Step 1, we find that a and da. have
isomorphic kernels and cokernels. Since da is C-linear, the result follows.

Slep 3. We have G(R)=G(D)~ and tG(K)=tG(C)". This follows from
Theorem 1, i.e., from the fact that K=C'9, which of course implies that
R=D".

Slep 4. a is injective on G(R). Indeed, the kernel of the restriction of a
to G(R) is (Kew)' hy step 3, and is therefore uniquely divisible by p, by
step 2. If G is connected it follows that Kew n G(R) =0, because in that
case, viewing G as a formal Lie group we see that n p'G(R) =0, because
the valuation on R is discrete (if" is a point of G (R), all of whose co
ordinates are =0 (mod,,') then the coordinates ofpx are =0 (mod"I+')).
In the general case we see then that (Kera)n GO(R)=O, where GO is the
connected component of G (use the functorality of (*) with respect to
G°->G, and the fact that T(G')->T«Go)') is surjective). Since Kera
is torsion-free and G(R)/Go (R) is a torsion group, it follows that
Keran G(R)=O as claimed.

Step S. The map drt. is injective on tG(K). From steps 1 and 4 we con
clude that da is injective on L(G(R)); but that group spans ta (K) over Qp.

Slep 6. The map da. is injective. The arrow da can be factored as follows

c_ IG(C) oe to(K) ® c;-+Hom,,(T', G) ® G--+HolJl(T',C).
K K

The left-hand arrow is injective by step 5. The right-hand one is inj~tive

5y
_Step 7. Let W be a vector space over C on which ~ operates semi

lillearly (i.e., stew) =s(c) s(w), for SE'lI, CEG, WE W). Then the C-lin/iar
map

W"®G-+W
K

is injective; In down-to-earth terms, this statement means that if a family
of elements "'iE W'lJ is independent over K, then the family is independent
over C. It can be proved by looking at a "shortest" hypothetical depend
ence relation L CiW~=O, with cj =l for some t, applying elements seq; to

it and using Theorem I, i.e., the fact that K is the fixed field of the group
of automorphisms 'lI of the field C. See SERRE [10], Prop. 4, for a more
general statement.

Proposition .I I now follows from Steps I and 7 and the snake-lemma.
Theorem 3. The maps

G(R)~Hom"(T(G'), U)
and

tG(K)~Hom.(T(G'), G)

induced by ex and drt. are bijective.
Proposition 11 implies the injectivity of these maps, and also, via step

3 above, that we have injections

CokeraRc; (Coker a)" Coker (daR) c; (Cokerda)".

Since Cokera-+Cokerda is bijective, it follows that the map CokeraR -+
Coker daR is injective, so we are reduced to proving that daR is surjective.
Since daR is K-linear and injective, this is a question of dimensions. Let

W' = Hom(T(G'), G) and W = Hom (T(G), G)'

spaces of dimension h=ht(G) over C on which 'lI operates semilineady.
Put

d' = dimK(W')" d = dimK W"

" = dim G = dimKtaCK) II' = dim G' = dimKta,(K).

By the injectivity of daR we already know n::E;d' and n' ~d, and we wish
to show that equality holds. Since n+n' =h, it will suffice to show that
d+d' ,,;;/t. This we do as follows.

Since T(G)oeHom(T(G'), H) (see step I of proof of Prop. II), we have
W' =T(G)®Hom(H, C), so that there is a canonical non-degenerate
~-pairing

WxW'--+Y,

where Y =Hom(H, C). This space Y is isomorphic to G(['), where
x: q;-+Z~ is the character such that sz=zx(.I:) for all roots of unity z of
p-power order. Therefore, by Theorem 2, Y" = HO ('lI, Y) =0, and also
H' (W, Y)=O. Since the spaces W" and (W')" are paired into Y", it fol
lows that W"C and (W,)" G are orthogonal C-subspaces of Wand W'.
Their dimensions are d and d' (step 7 of the proof of Prop. II). Hence
d+d' ::E;h=dimc W, as required.
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Corollary 1. The W-modu/e T(G) determines the di]11ellSion 11 of-(9,
Indeed, T(G) determines T(G') by duality, and n=dimK(tG(K))=

=dimK(Hom.(T(G'), C)) by Theorem 3.
Corollary 2. There is a canonical isomorphism of fll-modules

Hom (T(G), C) '" tG.(C) Eil t;j(C) ® Hom (H, C),
c

where t~ is the cotangent space of G at the origin.

The proof of Theorem 3 above shows that do' aud do map tG• (C) and
talC) injectively onto subspaces of Wand W' which are orthogonal
complements with respect to the pairing to Y. Thus we have an exact
sequence

0-+ fG·(C) ~ W -+ Home (tG(C), Y) = t;j(C) ® Y -+ 0,
c

and to prove the corollary, we must show that this sequence has a unique
splitting compatible with the action of @. The sequence has the form

0-+ C' -+ W -+ C(X-I)"-+O,

where X is the character in the proof of Theorem 3. The existence of a
splitting follows from HI (0/, C(X)) =0; and its unicity from HO (0/, eel))
=0 (cf. Theorem 2).

Remark: In case G=A(p), where A is an abelian scheme over R,
Corollary 2 can be rewritten as

HI (Ac, Qp) ® C '" HI (Ac, Q~c) EilHO (Ac, Q~c) ® Hom(H, C),

where Ac=A~® R C, and wh,re on tbe left we have the etale cohomology
of A c with coefficients in Q;. One can ask whether asimilar Hodge-like
decomposition exists for the etale cohomology with values in C in all
dimensions, for a scheme Xc coming from a scheme X projective and
smooth over R, or perhaps even over K, or for suitable "rigid analytic"
spaces

(4.2.). We can now prove the main result

Theorem 4. Let R be an'integrally closed, noetherian, integral domain,
whose field offractions K is of characteristic O. Let G and H be p~dilJisible

groups O1'er R. A homomorphismf:G®RK-+H®RK of the genera/fibers
extends uniquely to a homomorphism G-+H.

Corollary 1. The map Hom(G, H)-+Hom.(T(G), T(H)) is bijective,
where ~=Gal(KJK).

Corollary 2. If g:G~H is a homomorphism such that its restriction
G® RK....",.H@RKis an isomorphism, then g is an isomorphism.

Since R = n pRPl where P runs over the minimal non-zero primes of R,
and since each Rp is a discrete valuation ring, we are immediately reduced
to the case R is a discrete valuation ring. There exists an extension R' of R
which is a complete discrete valuation ring with algebraically closed resi
dlle field and such that R=R' nK; hence we may assume R is complete
with algebraically closed residue field, k. If chark"p, then Gis etale and
the theorem is obvious. Thus we are reduced to the case of an R of the type
considered in the preceding paragraphs, which we assume from now on.

We first prove Corollary 2. Let G=(G,) and H = (H,), and let A, (resp.
R,,) denote the affine algebra of Gy (resp. H.,). We afe given a coherent
s.ystem of homomorphisms ul':Bv .-".Aw of which we know that their ex
tensions u.,®l :B"®RK.-..4-A"®RK are isomorphisms. Since By is free over
R, it follows that Uv is injective for aU v. To prove surjectivity, we look at
the discriminants of the R-algebras A" and B.,. By Prop. 2, these d.iscrimi~

nants are nOll-zero, and are determined by the heights of G and Ii and
their dimensions. But the height and dimension of a p-divisible group
over R are determined by its general fiber, the height trivially, and the
dimension by Cor. 1 of Theorem 3, since the general fiber of G determines
the ~-modnle T(G). Hence the discriminants of A, and B, are eqnal and
Don-zero, and it follows that Ul' is bijective. This proves Corollary 2.

To derive the theorem from the corollary, we will use
Proposition 12. Suppose F is a p-divisible group -over R, and M a W

submodule of T(F) such that M is a_Zp-direct summand. Then there exists
a p-divisible group rover R and a homomorphism <p: r -+F such that qJ

induces on isomorphism T(r)::. M.
Granting tltis Proposition we prove the theorem, letting F = G x H, and

letting M be tbe graph of the homomorphism T(G)-+ T(H) which corre
sponds to the given homomorphismf:G®RK-+H®RK. By Prop. 12 we
get a p-divisible group rover R and a homomorphism 'P: r -+ G x H such
that the composition prl'rp:r-+G induces an isomorphism T(r)-+T(G),
hence an isomorphism on the general fibers. By Cor. 2, it follows that
pr! . t.p is an isomorphism. Thus pr2' cp 0 (pr! ocp)-l: G-H is a homomor
phism extending! The unicity of such an extension is obvious, and this
concludes the pronf of Theorem 4.

Proof of Prop. 12. The submoduie McT(F) corresponds to a closed
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Ei+v+l/EJ+l -+ Ei+vlE j

p-divisible subgroup E. c F® R K. Let E be the "closure of E. in F". By
this we meari the following: Let B" be the affine R~algebra of F" let A*v
be the affine K-algebra of E*Vl and let u..,:B"@RK-+Ahcorrespond to the
inclusion E*vc;:F... x RK. Put AI' =u"(B,,,), and put E" = SpecA,,_ Then Ev
is a closed subgroup of F" for each V, and the inclusions F,,-+F"+l induce
inclusions E,,-E"+l; we ·put E= lim(Ev). Altbough E itself may not be

-+
p-divisible (see example below), nevertheless Ex RK=E. is p-divisible,
and it follows that E,+dE, is killed by p, hence thatp induces homomor
phisms

which are isomorphisms on the general fiber. Let Dr be the affine algebra
'9f E1+dEJo Then all Dj@RKcan be iden:tified, and the D j constitute an
increasing sequence of orders in a finite separable K-algebra. Hence there
is an to such that D j =D1+ 1 fOf r;;;io. Put Fv=Ejo+vlEio' Thenio induces
a coherent collection of homomorphisms r y---*E,tfEo=Ev,' which are iso
morphisms at the general fiber, and we will therefore be done if we show
that r = urv is p-divisible. For this, we factor the homomorphism pI' in
rv+l as follows

p"
FV+ 1 = Elo+v+dEio---+Elo+lo+1/Eio = r l'+1

t· i'
p

Eio+V+l/Eju+v -+ Bio+l/Eio'

where a: is the canonical projection, y the canonical inclusion. and where
~ is induced by pI', and is therefore an isomorphism by our choice of '-0.
It follows that the ker.nel ofpll in rv+l is the same as Kera=fv, so r is
p-divisible as claimed.

The following example, dne to SERRE, shows that the map <p in Prop.
. ~~<i2-1leed not be a closed immersion. Let X be an elliptic curve over R

whose reduction X has Hasse invariant =1= 0, and suppose .the points of
order p on X are rational.- Then there exist two such points, say x and y,
which are independent, but such that it =Y is of order p, and the sequence

O-+X !:"(XjFpx) x (XjFpy)-+Coker<p-+O

is then exact over K, but ({) is not injective over R, because cpi. =0. Passing
to the associated p-divisible groups, one gets the desired example.
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