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1 Motivation: the splitting problem

Suppose f(x) is a monic irreducible polynomial with integer coefficients. If
p is a prime number, then reducing the coefficients of f(x) modulo p gives
a new polynomial fp(x), which may be reducible. We say that f(x) is split
modulo p if fp(x) is the product of distinct linear factors.

This article is concerned with the following simple question.

Question A. Given an irreducible polynomial f(x) with integer coefficients,
is there a rule which, given a prime p, determines whether f(x) is split
modulo p?

This motivating question is lifted almost verbatim from B. Wyman’s
1972 article, [Wym72], of which the present article is merely an updated
version. It may surprise the reader to learn that a large swath of modern
number theory known as the Langlands program is dedicated to variations
on the theme of Question A.

We ought to clarify what is meant by a “rule” in Question A. We are
not looking for an algorithm to factor a polynomial modulo a prime. Rather
we are seeking a systematic connection to some other part of mathematics.
Such a rule will be called a reciprocity law. Our search for reciprocity laws
can be rephrased as the study of a single group, the absolute Galois group
of the field of rational numbers, written Gal(Q/Q). The representation
theory of Gal(Q/Q) has been particularly fruitful in answering instances of
Question A. In this article we will review reciprocity laws in three successive
epochs:

1. The solution of Question A in the case of f(x) = x2 + 1 is due to
Fermat. The solution for a general quadratic polynomial was conjec-
tured by Euler and first proved by Gauss; this is the famous quadratic
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reciprocity law. Thereafter, many other reciprocity laws followed, due
to Eisenstein, Kummer, Hilbert, Artin, and others, leading up to the
formulation of class field theory in the early 20th century. These reci-
procity laws are abelian. They only apply to those instances of Ques-
tion A where the polynomial f(x) is solvable.

2. In the second half of the 20th century, a remarkable link was found be-
tween modular forms and 2-dimensional representations of Gal(Q/Q),
due to Eichler, Shimura, and especially Deligne. This made it possible
to find reciprocity laws for certain quintic f(x) which are not solvable.

3. The 21st century has seen an explosion of results which link repre-
sentations of Gal(Q/Q) to the geometry of arithmetic manifolds. We
highlight Scholze’s recent work [Sch13], which employs techniques in-
vented within the past three years.

2 Fermat, Gauss, and solvable reciprocity laws

Which positive integers n are the sum of two squares? Fermat settled this
question in 1640. Using his method of “descent”, he showed that if a prime
number p divides a sum of two squares, neither of which is divisible by
p, then p is itself a sum of two squares. Also one sees from the identity
(a2 + b2)(c2 + d2) = (ad− bc)2 + (ac+ bd)2 that the property of being a sum
of two squares is preserved under multiplication. From there it is simple to
check that n is a sum of two squares if and only if n = p1 · · · pkm2, where
each of the primes p1, . . . , pk is a sum of two squares.

Thus we are reduced to the case that n = p is prime. We wish to
determine when the congruence a2 + b2 ≡ 0 (mod p) has a solution for
a, b 6≡ 0 (mod p). Recall that the ring Z/pZ of integers modulo p is a
field. After dividing by b2 and relabeling, this becomes x2 + 1 ≡ 0 (mod p).
Solving it is equivalent to Question A for f(x) = x2 + 1.

Theorem 2.1. Let p be an odd prime. Then x2 + 1 ≡ 0 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

Proof. Suppose x2 + 1 ≡ 0 (mod p). Then xp−1 = (x2)(p−1)/2 ≡ (−1)(p−1)/2

(mod p). But by Fermat’s Little Theorem, xp−1 ≡ 1 (mod p), implying that
(−1)(p−1)/2 = 1 and therefore p ≡ 1 (mod 4).

Conversely, suppose p ≡ 1 (mod 4). Let x = ((p − 1)/2)!. We have
x2 ≡ (−1)(p−1)/2(p− 1)! (mod p) (by pairing up n with −n in the product),
which by Wilson’s theorem is ≡ −1 (mod p).
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Another way of phrasing Thm. 2.1 is that x2+1 splits modulo a prime p if
and only if p ≡ 1 (mod 4). (Note that modulo 2, (x2 +1) ≡ (x+1)2 contains
a repeated root, and so is not split as we have defined it. Given f(x), the
primes p for which fp(x) has a repeated factor all divide the discriminant of
f(x), and hence are finite in number.)

Thm. 2.1 demonstrates the simplest possible sort of reciprocity law,
which namely one where the factorization of f(x) modulo p is determined by
a congruence condition on p. This is also the case for x2 +x+1, which splits
modulo p if and only if p ≡ 1 (mod 3). (Sketch of proof: if p ≡ 1 (mod 3),
and g is a generator of the cyclic group (Z/pZ)×, then x = g(p−1)/3 is a
root.) In fact one has a congruence condition whenever f(x) is a quadratic
polynomial:

Theorem 2.2 (Quadratic Reciprocity). Let f(x) = x2 + bx + c be an ir-
reducible polynomial, so that d = b2 − 4c is not a square. Then for p not
dividing d, the splitting behavior of f(x) modulo p is determined by the con-
gruence class of p modulo d.

Note that f(x) factors modulo p if and only if d is congruent to a square
modulo p. One introduces the Legendre symbol

(
d
p

)
for any odd prime

p and any integer d prime to p, defined to be 1 if d is a square modulo
p and −1 otherwise. Thus for instance Thm. 2.1 is the statement that(
−1
p

)
= (−1)(p−1)/2. In elementary number theory texts one learns a more

precise version of Thm. 2.2: if q 6= p is an odd prime then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

which implies that the splitting behavior of x2− q modulo p depends on the
congruence class of p modulo 4q. The symmetry between p and q explains
the term “reciprocity” for such laws.

Let us return for a moment to Fermat’s theorem on sums of squares.
Could it apply to the representation of integers by other quadratic forms,
such as a2 +5b2? Thm. 2.2 shows that a prime p 6= 2, 5 divides an integer of
the form x2 + 5 if and only if p satisfies a congruence condition modulo 20,
which happens to be the condition that p ≡ 1, 3, 7, 9 (mod 20). But such
primes (for instance 7) are not necessarily of the form a2 + 5b2. It turns out
that Fermat’s method of descent fails in this context; phrased in modern
terms, the culprit is the failure of Z[

√
−5] to be a principal ideal domain. In

fact p = a2 + 5b2 if and only if p ≡ 1, 9 (mod 20). For a fascinating account
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of the problem of classifying primes of the form x2 + ny2, see Cox’s book of
the same title, [Cox89].

What about polynomials f(x) of higher degree? A little experimentation
will reveal that the factorization behavior of a “random” cubic will be influ-
enced, but not completely determined by, a congruence condition modulo p.
There are special cases: for instance the polynomial x3 + x2 − 2x+ 1 splits
modulo p if and only if p ≡ ±1 (mod 7). So when is the splitting behavior
of a polynomial determined by congruence conditions?

For a clue, let m ≥ 1 and consider the polynomial xm − 1. It splits
modulo p if and only if the multiplicative group (Z/pZ)× contains m distinct
elements of order dividing m. Since (Z/pZ)× is a cyclic group of order p−1,
this happens exactly when p ≡ 1 (mod m). This logic extends to show
that the splitting behavior of f(x) is determined by congruence conditions
whenever f(x) is a cyclotomic polynomial, that is, an irreducible divisor of
some xm−1. Using some algebraic number theory, one even gets congruence
conditions for those f(x) whose roots are contained in a cyclotomic field
Q(ζm), where ζm = exp(2πi/m). (The roots of x3 +x2−2x+1, for instance,
are 2 cos(2πk/7), where k = 1, 2, 3.)

What would a reciprocity law look like if it isn’t a congruence condition?
As with the quadratic reciprocity law, the following theorem was conjectured
by Euler and proved by Gauss.

Theorem 2.3. The polynomial x4 − 2 splits modulo p if and only if p =
a2 + 64b2 for integers a and b.

Unlike the case of a2 + b2, the representation of p by the quadratic form
a2+64b2 is not determined by a congruence condition on p. But in fact there
is a disguised congruence condition in Thm. 2.3, which was well known to
Gauss. If x4−2 splits modulo p, then the quotient of two of its roots in Z/pZ
must be a square root of −1, so that by Thm. 2.1 we have p ≡ 1 (mod 4).
By Fermat’s theorem p = a2 + b2. Without loss of generality, assume that
a is odd and b is even. We now pass to the ring Z[i] of Gaussian integers,
the subring of C consisting of those a + bi with a, b ∈ Z. In Z[i], p is no
longer prime; we have p = ωω, where ω = a+ bi. Thm. 2.3 says that x4− 2
splits modulo p if and only if ω is congruent to a rational integer modulo
8. Indeed, this condition translates into the statement that b = 8b0 for an
integer b0, in which case p = a2 +64b20. Thus the splitting behavior of x4−2
modulo a prime p ≡ 1 (mod 4) is determined by a congruence condition on
a prime of Z[i] which divides p.

At this point it is appropriate to introduce some basic notions from
algebraic number theory. If f(x) is an irreducible polynomial with rational
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coefficients, then K = Q[x]/f(x) is an algebraic number field. Let OK be
the integral closure of Z in K. It is a basic fact of algebraic number theory
that OK is a Dedekind domain. This means that even though OK may not
have the property of unique factorization into prime elements, it does have
the corresponding property for ideals. As an example, in the ring Z[

√
−5],

the element 6 admits the two factorizations 2 · 3 = (1 +
√
−5)(1 −

√
−5)

into irreducible elements, none of which divide any other. However, the
ideal 6OK admits a factorization into prime ideals in one way only: 6OK =
(2, 1 +

√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5).

If p is a prime number, then pOK = pe11 · · · p
ek
k is a product of powers of

distinct prime ideals. In fact we have ei = 1 for all i unless p belongs to a
finite list of ramified primes. For each i, the quotient OK/pi is a finite field
extension of Fp; the degree of pi is defined as the degree of this extension.
We say that p is split in K if pOK is the product of distinct prime ideals
of degree 1. These concepts all have relative notions with respect to an
extension of number fields L/K.

The “correct” generalization of Question A is then:

Question B. Let L/K be an extension of number fields. Is there a rule for
determining when a prime ideal of K is split in L?

Question B is inextricably linked with Galois theory. Recall that if K
is a field, an extension L/K is Galois if it is normal (meaning that it is
the splitting field of a collection of polynomials with coefficients in K) and
separable (meaning that the minimal polynomial of any element of L over
K has no repeated roots). If L/K is Galois, one defines the Galois group
Gal(L/K) as the group of field automorphisms of L which act as the identity
on K. Its cardinality is the same as the degree of L/K.

As an example, the splitting field of the polynomial x4 − 2 over Q is
L = Q(i, 21/4). The Galois group Gal(L/Q) is the dihedral group of order
8, generated by two elements σ and τ , defined by the table

σ(21/4) = i21/4, τ(21/4) = 21/4,
σ(i) = i, τ(i) = i.

These generators satisfy the relations σ4 = 1, τ2 = 1, and τστ = σ−1.
If L/K is Galois and p is a prime ideal of K which is unramified in L,

let P be a prime ideal of L dividing p. The number of elements of OK/p
is denoted Np. The Galois group Gal((OL/P)/(OK/p)) is cyclic of order
equal to the degree of P|p, with a distinguished generator x 7→ xNp. It turns
out that there exists a unique element FrobP|p ∈ Gal(L/K), the Frobenius
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element, which lifts this generator. That is:

FrobP|p(x) ≡ xNp (mod P)

for all x ∈ OL. If a different prime P′ dividing p is chosen, the resulting
Frobenii FrobP and FrobP′ are conjugate in Gal(L/K). Thus one can talk
about Frobp as a well-defined conjugacy class in Gal(L/K). An important
observation is that

Frobp = 1 if and only if p is split in L.

Class field theory refers to the complete solution of Question B in the
case that Gal(L/K) is abelian. Roughly speaking, it predicts that for a
prime p of K which is unramified in L, the element Frobp ∈ Gal(L/K) is
determined by “congruence conditions” on p, where the modulus is an ideal
f of K divisible only by ramified primes. Rather than making this precise,
we spell out the example relevant to Gauss’ a2 + 64b2 theorem.

Example 2.4. Let K = Q(i) and L = K(21/4), so that Gal(L/K) is a cyclic
group of order 4 generated by σ. Here f = (8). Class field theory shows that
if p = (ω) is a prime of K which is relatively prime to 2, then Frobp is
determined by the image of ω in (Z[i]/8Z[i])×, in the following way. The
group (Z[i]/8Z[i])∗ is generated by the subgroup (Z/8Z)× and the elements
i and 1 + 2i. There exists a unique surjective homomorphism

r : (Z[i]/8Z[i])× → Gal(L/K)

which is trivial on (Z/8Z)× and i, and which sends 1 + 2i to σ. Then
Frobp = r(ω). As a result, Frobp = 1 if and only if p = (p) for p ≡ 3
(mod 4) or else if p = (a+ 8bi) with p = a2 + 64b2 prime.

Class field theory allows us to answer Question B in the case that the
polynomial f(x) is solvable, meaning that its roots lie in a tower of number
fields Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K, with each Ki+1/Ki abelian. A prime
p splits in K if and only if p splits in K1, a prime above p in K1 splits in K2,
and so on, with each splitting being governed by congruences. In Example
2.4, the relevant tower was Q ⊂ Q(i) ⊂ Q(i, 21/4).

It is immensely useful to talk about all of the extensions of Q at once,
as living in an algebraic closure Q. One considers the absolute Galois group
Gal(Q/Q); this is just the automorphism group of the field Q. More to the
point, we have

Gal(Q/Q) = lim←−K Gal(K/Q),
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whereK ranges over finite Galois extensions of Q. Written this way, Gal(Q/Q)
becomes a topological group, whose open subgroups are exactly the sub-
groups Gal(Q/K) consisting of automorphisms which act trivially on a finite
extension K/Q. Focus can then shift from particular number fields K/Q to
representations of the group Gal(Q/Q).

Example 2.5. The group D8 has a two-dimensional representation which

sends σ to
(

1
−1

)
and τ to

(
1

1

)
. The character of this representation

is 2 on the identity of D8, −2 on σ2, and 0 everywhere else. Thus we can
construct a 2-dimensional Galois representation

ρ : Gal(Q/Q)→ GL2(C)

which factors through Gal(Q(i, 21/4)/Q). This will have the property that
for all odd primes p, ρ is unramified at p, meaning that the fixed field of the
kernel of ρ is unramified at p. Consequently ρ(Frobp) is well defined. We
have

tr ρ(Frobp) =


2, p = a2 + 64b2,
−2, p = a2 + 16b2, b odd,
0, otherwise.

(2.1)

3 Elliptic modular forms

The theory of modular forms developed in a context completely unrelated to
the arithmetic questions posed in this article. They arose in relation to the
elliptic functions investigated by Abel and Jacobi in the early 19th century,
which in turn arose in association with finding the arc length of an ellipse.
For an introduction to the subject, we recommend the book [Ser73].

In brief, a modular form is a certain kind of holomorphic function on
the upper half-plane H = {τ |Im τ > 0}, which we view simultaneously as a
complex manifold and as a Riemannian manifold equipped with a hyperbolic
metric. The automorphism group of H is the group of Möbius transforma-

tions z 7→ (az + b)/(cz + d), where
(
a b
c d

)
∈ SL2(R). In brief, a modular

form is a holomorphic function f(τ) on H which transforms in a certain way
under a subgroup of SL2(R).

For a nonzero integer N , let Γ0(N) denote the subgroup of SL2(Z) con-
sisting of matrices which are upper-triangular modulo N .
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Definition 3.1. Let N, k ≥ 1 be integers, and let χ : (Z/NZ)× → C× be a
homomorphism. A modular form of weight k, level N and character χ is a
holomorphic function g on H which satisfies

g

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kg(τ)

for all
(
a b
c d

)
∈ Γ0(N), and which is “holomorphic at the cusps”.

In particular g(τ + 1) = g(τ), so that g is a function of the parameter
q = e2πiτ . “Holomorphic at the cusps” means that the Fourier expansion of
g(τ), a priori a series of the form

∑
n∈Z an(g)qn, has an(g) = 0 for n < 0;

a similar condition is imposed for all functions g((aτ + b)/(cτ + d)) with(
a b
c d

)
∈ SL2(Z). We say g is a cusp form if it is zero at the cusps,

meaning that a0(g) = 0 as well.
Some modular forms known as theta functions arise from sums involving

rings of integers in quadratic fields, such as Z[i]. Suppose f ⊂ Z[i] is an
ideal, and χ : (Z[i]/f)× → C× is a nontrivial homomorphism. Extend χ to
a function on Z[i] by declaring it 0 on elements which are not prime to f.
Then

θχ(τ) =
1
4

∑
α∈Z[i]

χ(α)qN(α)

is a modular form of weight 1 and level 4N(f).

Example 3.2. Let χ : (Z[i]/8Z[i])× → C× be the homomorphism which is
trivial on i and (Z/8Z)×, and which sends 1 + 2i to i. Then θχ is a modular
form of weight 1; for a prime p, its pth Fourier coefficient is

ap(θχ) =

{
χ(a+ bi) + χ(a− bi), p ≡ 1 (mod 4), p = a2 + b2,

0, p ≡ 3 (mod 4) or p = 2

Now if p ≡ 1 (mod 4), we can write p = a2 + b2 with a odd and b even. A
short calculation shows that

ap(θχ) =


2, 8|b
−2, 4|b but 8 - b,
0, 4 - b.
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Referring back to Eq. (2.1), we find that

ap(θχ) = tr ρ(Frobp)

for the Galois representation ρ constructed in Example 2.5. This equation
hints at an extraordinary relationship between modular forms and represen-
tations of Gal(Q/Q).

The space of cusp forms of weight k and level N is finite-dimensional.
For each prime p not dividing N one defines a Hecke operator Tp on this
space, which has the following effect on q-expansions:

Tpg(τ) =
∑
n≥0

apn(g)qn + pk−1
∑
n≥0

an(g)qpn.

(There are similar operators for primes dividing N .) These operators com-
mute with one another, and so it makes sense to attempt to diagonalize
them simultaneously. A modular form is an eigenform if it is an eigenvector
for all Hecke operators. If g =

∑
n≥1 an(g)qn is a cuspidal eigenform with

a1(g) = 1, then the eigenvalue of Tp on g is just ap(g).

Theorem 3.3. Let g(τ) =
∑

n≥1 an(g)qn be a cuspidal eigenform of weight
k and level N with character χ. Let E a number field containing the an(g).

1. Suppose k ≥ 2. Then for all prime ideals λ of OE there exists an odd
irreducible Galois representation

ρg,λ : Gal(Q/Q)→ GL2(OE,λ)

such that for all p prime to Nλ, ρg,λ is unramified at p, and the char-
acteristic polynomial of ρg,λ(Frobp) is x2 − ap(g)x+ χ(p)pk−1.

2. Suppose k = 1. Then there exists an odd irreducible Galois represen-
tation

ρg : Gal(Q/Q)→ GL2(C)

such that for all p prime to N , ρg is unramified at p, and the charac-
teristic polynomial of ρg(Frobp) is x2 − ap(g)x+ χ(p).

These two statements are proved in [Del71] and [DS74], respectively. In
the first statement, OE,λ is the completion of OE with respect to the ideal
λ; the image of ρg,λ is infinite. In the second statement, where k = 1, the
image of ρg is finite. A Galois representation ρ is odd if det ρ(c) = −1, where
c is complex conjugation.
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Example 3.4 (An icosahedral form). The following example is due to Joe
Bühler, [Buh78]. Let

f(x) = x5 + 10x3 − 10x2 + 35x− 18.

The discriminant of f(x) is 2658112, a square number. This means that the
Galois group of f is contained in the icosahedral group A5; in fact it equals
A5. The group A5 doesn’t have any irreducible 2-dimensional representa-
tions, but there exists a 4-fold cover Ã5 which does. It can be shown that
there is an odd irreducible representation ρ : Gal(Q/Q) → GL2(C) whose
image is Ã5, such that in the diagram

GL2(C)

��

Gal(Q/Q)

ρ
88ppppppppppp

Pρ &&NNNNNNNNNNN

PGL2(C)

the fixed field of the kernel of Pρ is the splitting field K of f . Artin’s
conjecture predicts a weight 1 cusp form g(τ) of level 800 and character
χ associated to ρ, where χ is a character of conductor 100 and order 10.
Indeed there is one:

g(τ) = q − iq3 − ijq7 − q9 + jq13 + (i− ij)q19 − jq21 + . . . ,

where i =
√
−1 and j = (1+

√
5)/2. A prime p 6= 2, 5 splits inK if and only if

ρ(Frobp) is a scalar matrix. Since ρ(Frobp) has finite order, it is semisimple,
and therefore it is scalar if and only if its characteristic polynomial has zero
discriminant. But the characteristic polynomial is x2 − ap(g)x+ χ(p), with
discriminant ap(g)2 − 4χ(p). Therefore we have the following answer to
Question B: p splits in K if and only if ap(g)2 = 4χ(p).

Example 3.5 (The Ramanujan ∆-function). The product

∆(τ) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

defines a cuspidal eigenform of weight 12 and level 1, and so Thm. 3.3 as-
sociates to it an `-adic representation ρ∆,` for all primes `. This can be re-
duced modulo ` to obtain a mod ` Galois representation ρ∆,` : Gal(Q/Q)→
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GL2(Z/`Z), whose kernel cuts out a number field which is ramified only at
`. It is a difficult computational problem to compute this number field. For
some small primes ` this has been carried out in [Bos11], at least for the as-
sociated projective representation Pρ∆,` : Gal(Q/Q) → PGL2(Z/`Z). For
instance if ` = 11, the fixed field of the kernel of Pρ∆,` is the splitting field
of

f(x) = x12 − 4x11 + 55x9 − 165x8 + 264x7 − 341x6

+330x5 − 165x4 − 55x3 + 99x2 − 41x− 111.

From this we can conclude the following reciprocity law, valid for almost all
p: if f(x) splits modulo p then τ(p)2 ≡ 4p (mod 11).

4 The cohomology of arithmetic manifolds

Modular forms are holomorphic forms on H which admit symmetries with
respect to a finite-index subgroup Γ0(N) ⊂ SL2(Z). It stands to reason that
they correspond to objects defined on the quotient Y0(N) = Γ0(N)\H, a
(non-compact) Riemann surface. For instance, if f(τ) is a modular form
of weight 2, level N , and trivial character, then f(τ)dτ is invariant under
Γ0(N), and so descends to a differential form on Y0(N). If f(τ) happens
to be a cusp form, then f(τ)dτ extends to a differential form on X0(N),
the smooth compactification of Y0(N). In fact the space of cusp forms of
weight 2 is isomorphic to the space H0(X0(N),Ω1

X0(N)/C) of holomorphic
differential forms on X0(N).

On the other hand, the Hodge decomposition for the compact Riemann
surface X0(N) shows that the singular cohomology H1(X0(N),C) is the di-
rect sum of H0(X0(N),Ω1

X0(N)/C) and its complex conjugate. All of these
spaces come equipped with actions by the Hecke operators Tp. The conclu-
sion is that systems of Hecke eigenvalues coming from weight 2 forms are
present already in the singular cohomology H1(X0(N),C). (There is a simi-
lar statement for forms of higher weight; one replaces the C inH1(X0(N),C)
with a non-constant coefficient system.) Therefore one could have phrased
Thm. 3.3 (at least the part pertaining to forms of weight k ≥ 2) in terms
of Hecke eigenclasses in the singular cohomology of X0(N). (Equivalently,
one can phrase it in terms of the group cohomology H1(Γ0(N),C).)

One might seek to generalize Thm. 3.3 to higher dimension as fol-
lows. The upper halfplane H is the quotient SL2(R)/SO(2), so let us put
Hn = SLn(R)/SO(n); this is a manifold with a left action by SLn(R). Let
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us abuse notation and write Γ0(N) ⊂ SLn(Z) for the subgroup of matri-
ces whose first column is congruent to (∗, 0, . . . , 0) modulo N . Then one
can form the quotient Γ0(N)\Hn, an arithmetic manifold. The cohomol-
ogy Hj(Γ0(N)\Hn,C) admits actions by Hecke operators. For each prime
p - N , there isn’t just one Hecke operator Tp but rather n − 1 operators
Tp,1, . . . , Tp,n−1. These operators commute with one another, and so one
can talk about eigenclasses in Hj(Γ0(N)\Hn,C) for all the Tp,i. Do these
correspond to n-dimensional Galois representations?

The main obstacle to generalizing Thm. 3.3 is this: in the n = 2 case,
H = H2 is a complex manifold and X0(N) is an algebraic curve which
even admits a model over the rational numbers. This fact is critical for
the construction of Galois representations, which live in the `-adic étale
cohomology of X0(N). However if n > 2, Hn isn’t even a complex manifold,
and so no quotient of it is going to be an algebraic variety. (For instance,
H3 has dimension 5, which is odd.) Nonetheless, the following theorem was
announced in 2012:

Theorem 4.1 ([HLTT],[Sch13]). Let g be a Hecke eigenclass in the singular
cohomology Hj(Γ0(N)\Hn,C), and let ap,i(g) be the eigenvalue of Tp,i on
g for p - N prime. Let E be a number field containing all the ap,i(g), and
let λ be a prime of E. Then there exists a continuous semisimple Galois
representation

ρg,λ : Gal(Q/Q)→ GLn(Eλ)

which is associated to g in the sense that for all primes p which are prime
to Nλ, ρg,λ is unramified at Frobp, and the characteristic polynomial of
ρg,λ(Frobp) is

xn +
n−1∑
k=1

(−1)kpk(k−1)/2ap,k(g)xn−k + (−1)npn(n−1)/2.

The results of [HLTT] and [Sch13] are rather stronger than this: they
show that “every cuspidal regular algebraic automorphic representation of
GLn over a totally real or CM field F has an associated Galois representa-
tion”. It would take us rather far afield to define the terms in the preceding
sentence, but suffice it to say that Thm. 4.1 is the special case F = Q.

In fact the results of [Sch13] are stronger still. Thm. 4.1 concerns the sin-
gular cohomology Hj(Γ0(N)\Hn,C) with complex coefficients, but we could
also have considered the integral cohomology Hj(Γ0(N)\Hn,Z), a finitely
generated abelian group equipped with the action of Hecke operators Tp,i.
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When n = 2, Y0(N) = Γ0(N)\H is a surface; the integral cohomology groups
of a surface are known to be torsion-free. But for n > 2, the cohomology
Hj(Γ0(N)\Hn,Z) can contain a large torsion subgroup. This torsion sub-
group is also preserved by the Hecke operators, and one may ask whether
the torsion eigenclasses have corresponding torsion Galois representations.
In fact they do:

Theorem 4.2 ([Sch13]). Let ` be prime, and let g be a Hecke eigenclass
in Hj(Γ0(N)\Hn,F`). Then there exists a continuous semisimple Galois
representation

ρg : Gal(Q/Q)→ GLn(F`)

which is associated to g in the sense of Thm. 4.1.

In prior years, Ash and others had developed Serre-type conjectures
which predict that every Galois representation ρ : Gal(Q/Q) → GL3(F`)
has a corresponding Hecke eigenclass g in Hj(Γ0(N), V ) for an appropriate
choice of N , j, and an F`[SL3(Z)]-module V . See for instance [ADP02],
which offers a great deal of numerical evidence in the form of pairs (ρ, g),
where ρ and g appear to be associated in the sense that the characteristic
polynomial of ρ(Frobp) is as in Thm. 4.1 for the first few primes p. Thm. 4.2
shows that there really is a ρ′ attached to each g, and then examination of
sufficiently many small primes is enough to prove that ρ = ρ′. In those cases
one has a reciprocity law for the fixed field K of ker ρ: the splitting behavior
of primes in K is governed by the Hecke eigenvalues of the eigenclass g.

Thm. 4.2 is truly spectacular. It links Galois representations with tor-
sion classes in the cohomology of arithmetic manifolds, which don’t neces-
sarily come from automorphic representations (these had been the starting
point for most generalizations of Thm. 3.3). The method of proof is striking.
The first step, an idea suggested by Clozel, is to show that the arithmetic
manifold Γ0(N)\Hn appears “at the boundary” of a Shimura variety ShN ,
which implies that an eigenclass g as in Thm. 4.2 shows up as an eigenclass
in the cohomology H i(ShN ,F`). The next step is to show that there exists a
cuspidal eigenform on some higher level Shimura variety ShN`m whose mod `
eigenvalues match those of g. This required working with a Shimura variety
ShN`∞ at infinite level.

The space ShN`∞ isn’t an algebraic variety or even a manifold. Rather,
it is a fractal-like entity known as a perfectoid space. Perfectoid spaces were
also devised by Scholze in [Sch12] for completely different ends; in this ap-
plication, Scholze proves a comparison theorem for perfectoid spaces which
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links mod ` étale cohomology and coherent cohomology. This comparison
theorem furnishes the required cusp form, and with it the Galois represen-
tation.

Despite these remarkable advances, there are still major unsolved prob-
lems in our search for reciprocity laws. We conclude with a list of open
questions.

• By Thm. 3.3, modular forms of weight 1 correspond to odd 2-dimensional
Galois representations ρ : Gal(Q/Q) → GL2(C). The general philos-
ophy of Langlands predicts that even 2-dimensional Galois represen-
tations ought to correspond to algebraic Maass forms. A Maass form
is an analytic (not holomorphic) function on Γ0(N)\H which is an
eigenvector for the Laplacian −y−2(∂2/∂x2 + ∂2/∂y2); it is algebraic
if the eigenvalue is 1/4. Nobody has any idea how the correspondence
works in either direction, outside of the “solvable” cases.

• If ρ : Gal(Q/Q) → GLn(Q`) is an irreducible Galois representation,
subject to a suitable condition at `, must it arise from an eigenclass
g as in Thm. 4.1? This is a generalization of the Fontaine-Mazur
conjecture, [FM95], which for n = 2 was proved by Kisin, [Kis09],
save some exceptional cases. This is a question of modularity of Galois
representations, of which there is a large amount of literature. We
remark in passing that a special case of modularity was key to Wiles’
attack on Fermat’s Last Theorem.

• If ρ : Gal(Q/Q) → GLn(F`) is an irreducible Galois representation,
must it arise from an eigenclass g as in Thm. 4.2? The case of n = 2
and ρ odd is Serre’s conjecture, proved by Khare and Wintenberger,
[KW09].
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