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Abstract

Let p be a prime number. In this article we present a theorem,
suggested by Peter Scholze, which states that Gal(Qp/Qp) is the étale
fundamental group of a certain object Z which is defined over an al-
gebraically closed field. This object is the quotient of the “punctured
perfectoid open disk” by an action of the group Q×p . The proof of this
fact combines two themes: the tilting equivalence for perfectoid spaces,
and the Fargues-Fontaine curve.

1 Introduction

Let p be a prime number. In this article we present a theorem, sug-
gested by Peter Scholze, which states that Gal(Qp/Qp) is the étale
fundamental group of certain object Z which is defined over an alge-
braically closed field. As a consequence, representations of Gal(Qp/Qp)
correspond to local systems on Z.

The precise theorem involves perfectoid spaces [Sch12]. Let C/Qp

be complete and algebraically closed. Let D be the open unit disk
centered at 1, considered as a rigid space over C, and given the struc-
ture of a Zp-module where the composition law is multiplication, and
a ∈ Zp acts by x 7→ xa. Let

D̃ = lim←−
x 7→xp

D.

Then D̃ is no longer a classical rigid space, but it does exist in Huber’s
category of adic spaces, and is in fact a perfectoid space. Note that D̃
has the structure of a Qp-vector space. Let D̃∗ = D̃\ {1}; this admits
an action of Q×p .
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Theorem A. The category of Q×p -equivariant finite étale covers of D̃∗

is equivalent to the category of finite étale Qp-algebras.

The object Z of the first paragraph is then the quotient Z =
D̃∗/Q×p . This quotient doesn’t belong to the category of adic spaces.
Instead there is a sheaf-theoretic interpretation, which makes Z into
something like an algebraic space. The category PerfC of perfec-
toid spaces over C carries a topology, the pro-étale topology, in which
(roughly speaking) a cover of an object X is a surjective morphism
from an inverse limit lim←−Xi, with each Xi → X an étale morphism.
See §4.2 for details. Each object in PerfC becomes a sheaf on PerfC
via the Yoneda embedding (Proposition 4.2.5).

In this larger category of sheaves on PerfC , there is a notion of
finite étale morphism, which agrees with the usual notion when the
target is representable. The category of finite étale morphisms onto a
given sheaf X on PerfC becomes (after choosing a base point) a Galois
category, with associated étale fundamental group πét

1 (X).

Theorem B. Let Z be the quotient D̃∗/Q×p , where the quotient is
taken in the category of sheaves on PerfC . There is an equivalence of
categories between finite étale morphisms to Z and étale Qp-algebras.
Thus πét

1 (Z) ∼= Gal(Qp/Qp).

Theorems A and B can be generalized to a finite extension E/Qp.
Let π ∈ E be a uniformizer, and let H be the corresponding Lubin-
Tate formal OE-module. Then D gets replaced by the generic fiber
Had
C ; this is the open unit disc centered at 0, considered as an adic

space over C. Had
C is endowed with the OE-module structure coming

from H. Form the universal cover H̃ad
C = lim←−H

ad
C , where the inverse

limit is taken with respect to multiplication by π in H. Then H̃ad
C is

an E-vector space object in the category of perfectoid spaces over C.
Let H̃ad,∗

C = H̃ad
C \ {0}. Form the quotient

ZE = H̃ad,∗
C /E×

in the category of sheaves on PerfC . Then the categories of finite étale
covers of ZE and SpecE are equivalent, so that πét

1 (ZE) ∼= Gal(E/E).
The proof of Theorem A hinges on a combination of two themes:

the fundamental curve of p-adic Hodge theory, due to Fargues-Fontaine,
and the tilting equivalence, due to Scholze. Let us sketch the proof in
the case E = Qp. Let C[ be the tilt of C, a perfectoid field in charac-
teristic p. Consider the punctured open disc D∗

C[ (with parameter t)

and let D̃∗
C[ = lim←−x 7→xp

D∗
C[ . Then D̃∗

C[ is simultaneously a perfectoid
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space over two perfectoid fields:

Spa Fp((t
1/p∞))

D̃∗
C[

88rrrrrrrrrrr

&&LLLLLLLLLLL

SpaC[

Scholze shows that if K is any perfectoid field, there is an equivalence of
categories (the tilting equivalence) X 7→ X[ between perfectoid spaces
over K and K[, and that the categories of finite étale covers of X and
X[ are equivalent. Considered as a perfectoid space over C[, D̃∗

C[ has

an obvious “un-tilt”, namely D̃∗C . But D̃∗
C[ is also a perfectoid space

over Fp((t
1/p∞)), which is the tilt of the cyclotomic field Q̂p(µp∞).

Thus D̃∗
C[ also has an un-tilt to a perfectoid space over Q̂p(µp∞), and

this is where the Fargues-Fontaine curve comes in.
The construction of the Fargues-Fontaine curve X is reviewed in

§3. X is an integral noetherian scheme of dimension 1 over Qp, whose
closed points parametrize un-tilts of C[ modulo Frobenius. For our
purposes we need the adic version X , which is the quotient of another
adic space Y by a Frobenius automorphism φ. The extension of scalars
Y⊗̂Q̂p(µp∞) is a perfectoid space; by a direct calculation (Proposition

3.5.4) we show that its tilt is isomorphic to D̃∗
C[ . In this isomorphism,

the action of Gal(Qp(µp∞)/Qp) ∼= Z×p on the field of scalars Q̂p(µp∞)

corresponds to the geometric action of Z×p on D̃∗
C[ , and the automor-

pism φ corresponds (up to absolute Frobenius) to the action of p on

D̃∗
C[ .

Therefore under the tilting equivalence, finite étale covers of D̃∗C
and Y⊗̂Q̂p(µp∞) are identified. The same goes for finite étale covers

of D̃∗C/p
Z and X⊗̂Q̂p(µp∞). Now we apply the key fact that X is geo-

metrically simply connected. The same statement is proved in [FF11]
for the algebraic curve X; we have adapted the proof for X in Propo-
sition 3.4.3. Thus finite étale covers of D̃∗C/p

Z are equivalent to finite
étale Qp(µp∞)-algebras. Now we can descend to Qp: Z×p -equivariant

finite étale covers of D̃∗C/p
Z are equivalent to finite étale Qp-algebras,

which is Theorem A.
To derive Theorem B from Theorem A, we prove a descent state-

ment for finite étale morphisms relative to pro-étale covers in PerfC ,
Proposition 4.2.4. That is, whenever Y ′ → X ′ is a finite étale mor-
phism in PerfC equipped with a descent datum relative to X ′ → X,
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then Y ′ → X ′ descends to a finite étale morphism Y → X. The same
descent statement holds in the category of sheaves on PerfC , Proposi-
tion 4.2.9. As a corollary, whenever Y → X is a pro-étale G-torsor in
the category of sheaves on PerfC , where G is a profinite group, there is
an equivalence of categories between G-equivariant finite étale covers
of Y and finite étale covers of X. After checking that D̃∗C/p

Z → Z is
a pro-étale Z×p -torsor, we can conclude Theorem B.

This entire article is an elaboration of comments made to me by
Peter Scholze. I also thank Laurent Fargues and Kiran Kedlaya for
many helpful remarks. The author is supported by NSF Award DMS-
1303312.

2 Generalities on perfectoid spaces

Perfectoid spaces and the tilting equivalence play a crucial role in this
article, so we review some foundational results on them here. The main
result of this section is Theorem 2.5.5, which concerns affine formal
schemes Spf R over Spf OK (where K is a perfectoid field). Under
certain hypotheses on R, the adic generic fiber of Spf R is a perfectoid
space over K. Theorem 2.5.5 shows that the tilt of this perfectoid
space is the adic generic fiber of Spf R[, where R[ = lim←−x 7→xp

R.
This result will immediately allow us to identify the tilt of the

Fargues-Fontaine curve in Proposition 3.2.1, which plays an important
role in the proof of our main theorem. Proposition 3.2.1 had already
been proved in [Far13] “by hand”, so the reader who is only interested
in the main theorem can proceed directly to §3.

2.1 Review of adic spaces

The category of adic spaces is introduced in [Hub94]. We quickly
review the main definitions.

Definition 2.1.1. A topological ring R is Huber (f-adic in [Hub94])
if it contains an open subring R0 whose topology is generated by a
finitely generated ideal I ⊂ R0. Such an R0 (resp., an I) is called
a ring of definition (resp., ideal of definition) of R. A Huber pair
(affinoid ring in [Hub94]) is a pair (R,R+), where R is a Huber ring and
R+ ⊂ R is an open and integrally closed subring consisting of power-
bounded elements. A morphism of Huber pairs (R,R+) → (S, S+) is
a continuous homomorphism R→ S which sends R+ → S+.

Let (R,R+) be a Huber pair, and let R0 (resp., I) be a ring of
definition (resp., ideal of definition) of R. Huber defines a topological
space X = Spa(R,R+) whose points x are equivalence classes of con-
tinuous valuations f 7→ |f(x)| on R which are ≤ 1 for all f ∈ R+. The
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topology on X is generated by rational subsets

U

(
T1

s1
, . . . ,

Tn
sn

)
=

{
x ∈ X

∣∣∣∣ |fi(x)| ≤ |si(x)| 6= 0, fi ∈ Ti
}

where for each i = 1, . . . , n, Ti ⊂ R is a finite subset which generates
an open ideal in R, and si ∈ R. Given such data T1, . . . , Tn, s1, . . . , sn,
one can give R[T1/s1, . . . , Tn/sn] ⊂ R[1/s1, . . . , 1/sn] a ring topology
making R0[T1/s1, . . . , Tn/sn] an open subring equipped with the I-adic
topology. Let R 〈T1/s1, . . . , Tn/sn〉 be the completion of R[T1/s1, . . .
, Tn/sn]. Then one defines the structure presheaf (OX ,O+

X) on X =
Spa(R,R+). If U = U(T1/s1, . . . , Tn/sn), thenOX(U) = R〈T1/s1, . . . ,
Tn/sn〉 and O+

X(U) is the completion of the integral closure of the sub-
ring R+[T1/s1, . . . , Tn/sn] ⊂ OX(U). For each x ∈ X, the stalk OX,x
is a local ring; the continuous valuation f 7→ |f(x)| on R extends in a
natural way to a continuous valuation on OX,x.

It is important to note that OX is not necessarily a sheaf. Let
us call a Huber pair (R,R+) sheafy if OX is a sheaf. Huber shows
that (R,R+) is sheafy when R is “strongly noetherian”, meaning that
R 〈X1, . . . , Xn〉 is noetherian for all n ≥ 0. In brief, an adic space is
a topological space X equipped with a sheaf of complete topological
rings OX whose stalks come with distinguished continuous valuations,
such that X is locally isomorphic to Spa(R,R+) for a sheafy Huber
pair (R,R+). We refer to [Hub94] for the precise definition.

In §2 of [SW13] we constructed a larger category of “general” adic
spaces, whose objects are sheaves on the category of complete Huber
pairs. (This category can be given the structure of a site, in which
the coverings of (R,R+) correspond to coverings of Spa(R,R+) by
rational subsets.) If (R,R+) is a (not necessarily sheafy) affinoid ring,
then Spa(R,R+) belongs to this larger category. If X is an adic space
in the general sense, let us call X an honest adic space if it belongs to
the category of adic spaces in the sense of Huber; i.e. if it is locally
Spa(R,R+) for a sheafy (R,R+).

If R is a Huber ring, write R◦ for its subring of power-bounded ele-
ments. Then (R,R◦) is a Huber pair, and we write SpaR = Spa(R,R◦).

2.2 The adic generic fiber of a formal scheme over
SpfOK

LetK be a nonarchimedean field, and let$ ∈ K be a pseudo-uniformizer
(a topologically nilpotent unit). Let OK be the valuation ring of K.
Suppose R is an OK-algebra which is separated and complete with
respect to the topology induced by a finitely generated ideal. Then
Spf R is a formal scheme over Spf OK . Also R = R◦, and (R,R) is
a Huber pair over (OK ,OK). One can form the adic space SpaR,
which is fibered over the two-point space Spa(OK ,OK). By [SW13,
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Proposition 2.2.1], Spf R 7→ SpaR extends to a fully faithful functor
M 7→ Mad from the category of formal schemes over Spf OK locally
admitting a finitely generated ideal of definition, to the category of
adic spaces over (OK ,OK).

Let η = Spa(K,OK) be the generic point of Spa(OK ,OK). The
adic generic fiber of Spf R is (SpaR)η = (SpaR)\ {$ = 0}. Suppose
that the elements f1, . . . , fn ∈ R generate an ideal of definition for
R. Then for every x ∈ (SpaR)\ {$ = 0}, and each i = 1, . . . , n,
we have |fi(x)|m → 0 as m → ∞, whereas |$(x)| 6= 0. There-

fore there exists N ≥ 1 such that |fi(x)|N ≤ |$| 6= 0, and thus
x ∈ U(fN1 /$, . . . , f

N
n /$). Note that (fN1 , . . . , f

N
n ) is also an ideal

of definition of R. We have proved:

Lemma 2.2.1. The adic generic fiber (SpaR)\ {$ = 0} is covered by
rational subsets U(f1/$, . . . , fn/$), where (f1, . . . , fn) runs through
tuples of elements which generate an ideal of definition of R.

Example 2.2.2. The formal open unit disc is Spf OKJT K. Its adic
generic fiber is covered by rational subsets Un = U((Tn, $)/$) =
{|T |n ≤ |$| 6= 0} for n = 1, 2, . . . . This is the adic open unit disc over
K. Note that Un = Spa(Rn, R

+
n ), where Rn = OKJT K 〈Tn/$〉 [1/$],

and R+
n is the integral closure of OKJT K 〈Tn/$〉 in Rn.

2.3 Perfectoid algebras and perfectoid spaces

We review here some definitions from [Sch12] concerning perfectoid
algebras and perfectoid spaces.

Definition 2.3.1. A perfectoid field is a complete nonarchimedean
field K with non-discrete rank 1 value group and characteristic p
residue field, such that the pth power Frobenius map Φ: OK/p →
OK/p is surjective.

Remark 2.3.2. It will be convenient to use the symbol Φ to denote
the pth power Frobenius map A/I → A/J whenever A is a ring and
I, J ⊂ A are ideals such that J contains p and Ip ⊂ J .

Let K be a perfectoid field with absolute value | | and valuation
ring OK = K◦. One can always find an element $ ∈ OK such that
|p| ≤ |$| < 1, with pth root $1/p ∈ OK . Then Φ: OK/$1/p → OK/$
is an isomorphism.

If M is an OK-module, we say that M is almost zero if for all
m ∈ M , we have $1/pnm = 0 for all n. The category of Oa

K-modules
is obtained as the quotient of the category of OK-modules by the thick
subcategory of modules which are almost zero. Let M 7→ Ma be the
localization functor from OK-modules to Oa

K-modules; this admits a
right adjoint M 7→ M∗. One can define the category of Oa

K-algebras,
as well as A-algebras, where A is an Oa

K-algebra.
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Definition 2.3.3. A Huber ring R is uniform if the subring R◦ ⊂ R
of power-bounded elements is bounded.

Definition 2.3.4. Let K be a perfectoid field.

1. A perfectoid K-algebra is Banach K-algebra R such that R is
uniform and such that Φ: R◦/$ → R◦/$ is surjective.

2. A perfectoid Oa
K-algebra is a $-adically complete flat Oa

K-algebra
A such that Φ: A/$1/p → A/$ is an isomorphism.

3. A perfectoid Oa
K/$-algebra is a flat Oa

K-algebra A such that
Φ: A/$1/p → A is an isomorphism.

Lemma 2.3.5 ([Sch12, Proposition 5.9]). Suppose K has characteris-
tic p, and let R be a uniform Banach K-algebra. Then R is a perfectoid
K-algebra if and only if R is perfect.

Definition 2.3.6. A perfectoid space over K is an honest adic space
overK which can be covered by rational subsets of the form Spa(R,R+),
where R is a perfectoid K-algebra.

2.4 Tilting

The following is a review of §5 of [Sch12].
Let K be a perfectoid field of characteristic 0. For a perfectoid

K-algebra R, the tilt R[ is a ring whose underlying topological multi-
plicative semigroup is the set of sequences (f0, f1, . . . ) of elements of
R satisfying fpi = fi−1 for all i ≥ 1. The addition law on R[ is defined
by (fi) + (gi) = (hi), where

hi = lim
n→∞

(fn+i + gn+i)
pn .

Then R[ is a ring of characteristic p. If f = (f0, f1, . . . ) ∈ R[ we write
f ] = f0.

In particular if R = K, then K[ is a perfectoid field of characteristic
p. After replacing $ ∈ K with an element of the same norm, one can
find $[ ∈ K[ such that $ = ($[)]. In general, R[ is a perfectoid
K[-algebra, and R[◦/$[ ∼= R◦/$. We remark that we could also have
defined R[ as R◦ a [

∗ [1/$], where

R◦ a [ = lim←−
Φ

R◦ a/$;

the two definitions of R[ are equivalent by [Sch12, Proposition 5.17].

Theorem 2.4.1 ([Sch12, Theorem 5.2]). The functor R 7→ R[ is an
equivalence between the category of perfectoid K-algebras and the cat-
egory of perfectoid K[-algebras. In fact, all of the following categories
are equivalent:
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1. Perfectoid K-algebras,

2. Perfectoid Oa
K-algebras,

3. Perfectoid Oa
K/$-algebras,

4. Perfectoid Oa
K[/$

[-algebras,

5. Perfectoid Oa
K[-algebras,

6. Perfectoid K[-algebras.

In Theorem 2.4.1, the equivalence between (1) and (2) is R 7→ R◦ a

in one direction, and A 7→ A∗[1/$] in the other. The equivalence be-
tween (2) and (3) follows from the vanishing of the cotangent complex
for a perfectoid Oa

K/$-algebra, which contains obstructions for lifting
Oa
K/$-algebras to Oa

K . The equivalence between (3) and (4) is imme-
diate from OK/$ ∼= OK[/$[. The remaining equivalences involving
K[ are parallel to the ones involving K.

Definition 2.4.2. A perfectoid affinoid K-algebra is a Huber pair
(R,R+), where R is a perfectoid K-algebra.

Lemma 2.4.3 ([Sch12, Lemma 6.2]). The categories of perfectoid affi-
noid K-algebras and perfectoid affinoid K[-algebras are equivalent. If
(R,R+) corresponds to (R[, R[+) under this equivalence, then R[+/$[ ∼=
R+/$.

Theorem 2.4.4 ([Sch12], Theorem 6.3). Let (R,R+) be a perfectoid
affinoid K-algebra. Then (R,R+) is sheafy. Let R[+ ⊂ R[ be the
subring consisting of sequences in R+. There is a homeomorphism∣∣Spa(R,R+)

∣∣ → ∣∣∣Spa(R[, R[+)
∣∣∣

x 7→ x[,

defined by the relation
∣∣f(x[)

∣∣ =
∣∣f ](x)

∣∣ for f ∈ R[. Furthermore, ra-

tional subsets of Spa(R,R+) and Spa(R[, R[+) are identified. Finally,
the categories of finite étale algebras over R and R[ are equivalent.

2.5 Formal schemes over OK with perfectoid generic
fiber

Let K be a perfectoid field, and let $ ∈ K be an element with |p| ≤
|$| < 1. Assume that $ = ($[)] for some $[ ∈ OK[ , so that $1/pn ∈
OK for all n ≥ 1.

Definition 2.5.1. Let S be a ring in characteristic p. S is semiperfect
if the Frobenius map Φ: S → S is surjective. If S is semiperfect, let
S[ = lim←−Φ

S, a perfect ring which surjects onto S.

If R is a topological OK-algebra with R/$ semiperfect, then write
R[ = (R/$)[, a perfect topological OK[ -algebra. Note that R[/$[ →
R/$ is surjective.
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Lemma 2.5.2. Suppose that an OK-algebra R is $-adically separated
and complete, and that R/$ is semiperfect. The natural map

lim←−
x 7→xp

R→ lim←−
Φ

R/$ = R[

is an isomorphism of multiplicative monoids.

Proof. Injectivity follows from R being $-adically separated, and sur-
jectivity follows from R being $-adically complete, cf. the argument
in [Sch12, Lemma 3.4].

Given f ∈ R[, we may use Lemma 2.5.2 to identify f with a se-
quence (f0, f1, . . . ) ∈ lim←−x 7→xp

R. Let f ] = f0. Then f 7→ f ] is a

continuous map of multiplicative monoids R[ → R. Note that the
image of f under R[ → R[/$[ → R/$ equals f ] (mod $).

Proposition 2.5.3. Let R be a topological OK-algebra which is sepa-
rated and complete for the topology induced by a finitely generated ideal
of definition. Assume that:

1. $R ⊂ R is closed,

2. R/$ is semiperfect,

3. If f ∈ R satisfies fp
n ∈ $R for some n ≥ 1, then f ∈ $1/pnR.

Then R[ is also separated and complete for the topology induced by
a finitely generated ideal of definition, and it satisfies the same con-
ditions (1)-(3) (with R[ and $[ replacing R and $.) Furthermore
if f1, . . . , fn ∈ R[ generate an ideal of definition, then the elements
f ]1, . . . , f

]
n, $ generate an ideal of definition of R.

Remark 2.5.4. A systematic setting in which Prop. 2.5.3 holds has
been developed in [GR15, Defn. 14.1.14 and Prop. 14.1.22].

Proof. We denote by prr : R[ → R/$ the projection onto the rth
coordinate: prr(x0, x1, . . . ) = xr. Thus we have prr(x) = pr0(x1/pr ).
Note that condition (3) implies that ker pr0(x) = $[R[. Indeed, if
f = (f0, f1, . . . ) ∈ R[ and pr0(f0, f1, . . . ) = 0, then for all n ≥ 1,
fp

n

n ∈ $R, and so by condition (3) fn ∈ $1/pnR, which means that
f ∈ $[R[.

Let J = (g1, . . . , gm) be an ideal of definition for R, and let J
denote its image in R/$. We claim that R/$ is J-adically separated
and complete. Completeness follows from the completeness of R, and
separatedness is the statement that

⋂
k≥1(Jk + $R) = $R, which is

equivalent to condition (1).
By condition (2), the projection pr0 : R[ → R/$ is surjective, and

we can find elements g[1, . . . , g
[
m ∈ R[ which lift g1, . . . , gm (mod $).

For ease of notation we assume that gm = 0 and g[m = $[. We claim
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that J[ = (g[1, . . . , g
[
m) induces the topology on R[. By definition of

the inverse limit topology, a system of neighborhoods of the origin

in R[ is given by
{

pr−1
r (J

k
)
}
r,k≥0

. We will show that each of these

neighborhoods contains some (J
[
)N , and vice versa.

Given r, k ≥ 0, let N be large enough so that (J[)N is contained in
((g[1)kp

r

, . . . , (g[m)kp
r

). We have prr(g
[
i )
kpr = gki (mod $), and there-

fore (J[)N ⊂ pr−1
r (J

k
).

In the other direction, let N ≥ 1. Let r be large enough so that pr ≥
N . Suppose x ∈ pr−1

r (J). Write prr(x) =
∑m
i=1 gihi with hi ∈ R/$.

Let h[i ∈ R[ lift hi, and let y =
∑m
i=1 g

[
ih
[
i ∈ J[. Then pr0(x1/pr −y) =

prr(x) − pr0(y) = 0. Therefore x1/pr − y ∈ $[R[, and so x1/pr ∈ J[,
which implies x ∈ (J[)p

r ⊂ JN . We conclude that pr−1
r (J) ⊂ (J[)N .

Thus J[ is an ideal of definition for R[. We claim that R[ is J[-
adically separated and complete, which is to say that the map α : R[ →
lim←−R

[/(J[)N is an isomorphism.

For injectivity of α: Suppose x ∈ R[ lies in the kernel. Let
k, r ≥ 1 be arbitrary. Let N be large enough so that (J[)N is con-
tained in ((g[1)kp

r

, . . . , (g[m)kp
r

). Since x ∈ (J[)N we can write x =∑m
i=1(g[i )

kprhi, with hi ∈ R[. Then prr(x) =
∑n
i=1 g

k
i prr(hi) ∈ J

k
.

Since k was arbitrary, andR/$ is J-adically separated, we have prr(x) =
0. Since r was arbitrary, x = 0.

For surjectivity of α: The mod $[ reduction of α is surjective, since
we have an isomorphism R[/$[ ∼= R/$ carrying the image of J[ onto
J , and R/$ is J-adically complete. By an inductive argument, we are
reduced to showing that R[ is $[-adically complete. This follows from
the isomorphism of inverse systems

R[ = lim←−
Φ

R[/$[ ∼= lim←−
N

R[/($[)N ,

which sends (x0, x1, x2, . . . ) to (x0, x
p
1, x

p2

2 , . . . ).
Now suppose that I = (f1, . . . , fn) ⊂ R[ is an ideal of definition.

We claim that I] = (f ]1, . . . , f
]
n, $

]) is an ideal of definition for R.
Since J is an ideal of definition of R, this claim means that there
exists N ≥ 1 such that (I])N ⊂ J and JN ⊂ I]. The existence of an N
for which (I])N ⊂ J follows from the fact that the fi are topologically
nilpotent, and f 7→ f ] is continuous. For the other containment, it
suffices to show that gNi ∈ I] for large N . Let r ≥ 1 be large enough
so that (g[i )

pr ∈ I for i = 1, . . . ,m (this can be done because the g[i
are topologically nilpotent and I is an ideal of definition). Since R[ is
perfect,

g[i ∈ (f
1/pr

1 , . . . , f1/pr

n ).
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Since gi ≡ g[]i (mod $), we have

gi ∈ ((f ]1)1/pr , . . . , (f ]n)1/pr , $).

From here it is easy to see that some power of gi lies in I] = (f ]1, . . . , f
]
n, $).

Now we can check conditions (1)-(3) for R[. The map R[ → R
sending f 7→ f ] is continuous and pulls back $R to $[R[, which is
therefore closed. R[/$[ is semiperfect because R[ is perfect. Finally if

f = (f0, f1, . . . ) ∈ R[ satisfies fp
n ∈ $[R[, then we have fp

n

i ∈ $1/piR

for all i ≥ 0, so that fi ∈ $1/pn+i

R and therefore f ∈ ($[)1/pnR[.

We now come to the main theorem of the section.

Theorem 2.5.5. Let R be an OK-algebra which is separated and com-
plete for the topology induced by a finitely generated ideal. Assume
conditions (1) and (2) of Proposition 2.5.3. Also assume that R is
$-torsion free and that R is integrally closed in R[1/$] (this implies
condition (3) of Proposition 2.5.3). Then (SpaR)\ {$ = 0} is a per-
fectoid space over K, with tilt (SpaR[)\

{
$[ = 0

}
.

Example 2.5.6. Let R = OKJT 1/p∞K be the ($,T )-adic completion
of OK [T 1/p∞ ]; then R[ = OK[JT 1/p∞K. Then (SpaR)\ {$ = 0} is the
“perfectoid open unit disc” over K. It is the union of rational subsets
U((Tn, $)/$) = Spa(Rn, R

+
n ) for n = 1, 2, . . . , where Rn = R 〈Tn/$〉.

We have R+
n = R◦n = R

〈
(Tn/$)1/p∞

〉
. In this case it is easy to verify

Theorem 2.5.5: the tilt of (SpaR)\ {$ = 0} is the perfectoid open unit
disc over K[, which is (SpaR[)\

{
$[ = 0

}
.

Remark 2.5.7. It is possible to remove the condition that R is inte-
grally closed in R[1/$], but keeping it simplifies the proof considerably.

Proof. Condition (2) implies that the pth power map R/$1/p → R/$
is surjective, and condition (3) implies that it is injective. Let R$
be the ring R endowed with the $-adic topology. Then R$ is $-
adically separated and complete, and so by definition Ra

$ is a perfectoid
Oa
K-algebra. Therefore by Theorem 2.4.1 R$[1/$] is a perfectoid K-

algebra. Since R is integrally closed in R[1/$], we may define X =
Spa(R$[1/$], R$), a perfectoid affinoid over K.

Let X0 ⊂ X be the subset consisting of those x ∈ X for which
f 7→ |f(x)| is continuous for the original topology on R. Let f1, . . . , fn
generate an ideal of definition for R. Then for all x ∈ X0, there exists
N ≥ 1 such that

∣∣fNi (x)
∣∣ ≤ |$(x)| for i = 1, . . . , n, so that x lies

in the rational subset U((fN1 , . . . , f
N
n )/$) ⊂ X. Conversely if x ∈

U((fN1 , . . . , f
N
n )/$), then for all ε > 0, the ideal {f ∈ R| |f(x)| < ε} is

open, since it contains the ideal (fM1 , . . . , fMn ) for M sufficiently large.
Thus x ∈ X0.
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This shows that X0 ⊂ X is open, and is thus a perfectoid space
over K. We claim that there is an isomorphism of adic spaces X0

∼=
(SpaR)\ {$ = 0} which sends x to x. This map is bijective, because
any x ∈ SpaR with |$(x)| 6= 0 induces a continuous valuation on
R$[1/$] which lies in X0. It is a homeomorphism because it carries
the rational subset U((fN1 , . . . , f

N
n )/$) in X0 onto the same rational

subset in SpaR. Finally, it is an isomorphism of adic spaces, because
on either side the sections of the structure sheaf on U((fN1 , . . . , f

N
n )/$)

are R
〈
fN1 /$, . . . , f

N
n /$

〉
[1/$].

We had defined R[ = lim←−Φ
R/$. Let R[$ be the ring R[ endowed

with the $[-adic topology. The tilt of the perfectoid Oa
K-algebra Ra

$

is lim←−Φ
Ra
$/$ = R[a$ , which shows that R[$[1/$[] is a perfectoid alge-

bra. By [Sch12, Lemma 6.2], R[ is integrally closed in R[[1/$[] and
X[ = Spa(R[$[1/$[], R[$). As before, let (X[)0 ⊂ X[ be the subset
consisting of those x ∈ X[ for which f 7→ |f(x)| is continuous for the
original topology on R[. Since R[ satisfies the same hypotheses as R,
the argument above shows that (X[)0

∼= SpaR[\
{
$[ = 0

}
.

We claim that the tilt of X0 is (X[)0. This will follow from the
claim that the homeomorphism |X| ∼→

∣∣X[
∣∣ carries X0 onto X[

0. In-

deed, choose generators f1, . . . , fn ∈ R[ for the ideal of definition. By
Proposition 2.5.3, f ]1, . . . , f

]
n generate an ideal of definition for R. Then

x ∈ X belongs to X0 if and only if
∣∣∣f ]i (x)

∣∣∣ < 1 for i = 1, . . . , n. But∣∣∣f ]i (x)
∣∣∣ =

∣∣fi(x[)∣∣, so this is true if and only if x[ belongs to (X[)0.

This finishes the proof.

3 The adic Fargues-Fontaine curve

3.1 The adic spaces YF,E and XF,E

Here we review the construction of the adic Fargues-Fontaine curve.
The construction requires the following two inputs:

• A finite extension E/Qp, with uniformizer π and residue field
Fq/Fp,

• An algebraically closed nonarchimedean field F whose residue
field contains Fq.

Let | | be a valuation inducing the topology on F , and let $F ∈ F
be a pseudo-uniformizer. For a ∈ Q we let $a

F denote any element of
F with |$a

F | = |$F |a.
Let W (OF ) denote the ring of Witt vectors ofOF . Let WOE

(OF ) =
W (OF )⊗W (Fq) OE . Thus a typical element of WOE

(OF ) is a series

x =
∑

n�−∞
[xn]πn,

12



where xn ∈ OF . We equip WOE
(OF ) with the (π, [$F ])-adic topology.

Definition 3.1.1. Let YF,E = SpaWOE
(OF )\ {π[$F ] = 0}.

We claim that YF,E is the union of rational subsets

U

(
{π, [$a

F ]}
[$a

F ]
,

{
π, [$b

F ]
}

π

)
=
{∣∣[$b

F ]
∣∣ ≤ |π| ≤ |[$a

F ]|
}

(3.1.1)

as a and b range through positive rational numbers with a ≤ b. In-
deed, suppose x ∈ SpaWOE

(OF ) satisfies |π[$F ](x)| 6= 0. Since
[$F ] ∈WOE

(OF ) is topologically nilpotent,
∣∣[$F ]b(x)

∣∣→ 0 as b→∞.

Since |π(x)| 6= 0, there exists b > 0 with
∣∣[$b

F ](x)
∣∣ ≤ |π(x)|. Similar

reasoning shows that there exists a > 0 with |π(x)| ≤ |[$a
F ](x)|.

For a subinterval I = [a, b] ⊂ (0,∞) with a, b ∈ Q, let YIF,E be the

rational subset defined in Eq. (3.1.1). Explicitly, YIF,E = Spa(BI , B
+
I ),

where BI and B+
I are obtained as follows. Let R be the π-adic com-

pletion of WOE
(OF )

[
π

[$a
F ] ,

[$b
F ]
π

]
. Then BI = R[1/π], and B+

I is the

integral closure of R in BI . We have

YF,E = lim−→
I

YIF,E = lim−→
I

Spa(BI , B
+
I ).

This shows that our definition of YF,E agrees with the definition in
[Far13], Définition 2.5.

Theorem 3.1.2 ([Ked, Theorem 3.10]). BI is strongly noetherian.
(In particular YF,E is an honest adic space.)

Since F is perfect, the qth power map φ : F → F is an automor-
phism. We use the same symbol φ to denote the induced automorphism
of YF,E . Note that φ(YIF,E) = YqIF,E . For I narrow enough, I and qI
are disjoint. Thus φ is totally discontinuous.

Definition 3.1.3. The adic space XF,E is the quotient of YF,E by the
automorphism φ.

LetB = H0(YF,E ,OYF,E
). We remark that the (schematic) Fargues-

Fontaine curve XF,E defined in [FF11] is defined as ProjP , where
P =

⊕
Bφ=πn

. (There is no schematic version of YF,E .)

3.2 The adic Fargues-Fontaine curve in equal char-
acteristic

Analogous spaces YF,E and XF,E can be constructed when E = Fq((π))
is a local field in positive characteristic. The construction is very sim-
ilar, except that WOE

(OF ) is replaced by OF ⊗̂FqOE = OF JπK. Put

YF,E = SpaOF JπK\ {π$F = 0} .

13



This is nothing but the punctured rigid open disc D∗F , with parameter
π. As before, XF,E is defined as the quotient of YF,E by the automor-
phism φ coming from the Frobenius on F . Note that since φ does not
act F -linearly, XF,E does not make sense as a rigid space over F .

Suppose once again that E has characteristic 0. Let K be a perfec-
toid field containing E, and let $K ∈ K be an element with |$K | = |π|,
such that $K = $[]

K for some $[
K ∈ K[. Let YF,E⊗̂EK be the base

change to K of YF,E . That is:

YF,E⊗̂EK = Spa(WOE
(OF )⊗̂OE

OK)\ {[$F ]⊗$K = 0} .

Proposition 3.2.1 ([Far13, Theorem 2.2 and Theorem 2.7]). The adic
space YF,E⊗̂EK is perfectoid, and(

YF,E⊗̂EK
)[ ∼= Spa(OF ⊗̂Fq

OK[)\
{
$F ⊗$[

K = 0
}
.

Proof. This follows from Theorem 2.5.5 applied to the OK-algebra

R = WOE
(OF )⊗̂OE

OK .

The ring R/$K = OF ⊗̂FqOK/$K is semiperfect, and

R[ = lim←−
Φ

R/$K
∼= OF ⊗̂Fq

OK[/$[
K .

It is easy to check that the hypotheses of Theorem 2.5.5 are satisfied.
Therefore X = (SpaR)\ {$K = 0} is a perfectoid space over K with
tilt X[ = (SpaR)\

{
$[
K = 0

}
. Under the homeomorphism |X| ∼=

∣∣X[
∣∣,

the locus {[$F ] 6= 0} in X gets identified with {$F 6= 0}. The latter is
YF,E⊗̂EK and the former is Spa(OF ⊗̂Fq

OK[)\
{
$F ⊗$[

K = 0
}

.

As a special case, let En be the field obtained by adjoining the πn-
torsion in a Lubin-Tate formal group over E, and let E∞ =

⋃
n≥1En.

Then Ê∞ is a perfectoid field. Let L(E) be the imperfect field of norms
for the arithmetically profinite extension E∞/E. As a multiplicative
monoid we have

L(E) = lim←−En,

where the inverse limit is taken with respect to the norm maps En+1 →
En. L(E) ∼= Fq((t)) is a local field, and Ê∞ ∼= Fq((t

1/q∞)) is the
completed perfection of L(E).

It follows from Theorem 3.2.1 that we have an isomorphism(
YF,E⊗̂EÊ∞

)[ ∼= YF,L(E)⊗̂L(E)Ê
[
∞. (3.2.1)
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3.3 Classification of vector bundles

From now on we fix E of characteristic 0 and we abbreviate Y = YF,E ,
X = XF,E . Since X is the quotient of Y by the totally discontinuous
action of φZ, a vector bundle on X is the same thing as pair (E , φE),
where E is a vector bundle on Y and φE : φ∗E ∼→ E is an isomorphism.

Let k be the residue field of F , and let L = WOE
(k)[1/π]. Note

that Y is fibered over SpaL, and the automorphism φ of Y lies over
the automorphism φ of L. Recall that an isocrystal over L is a finite-
dimensional L-vector space M equipped with an isomorphism φM :
φ∗M

∼→M . The category of isocrystals over L is semisimple, and there
is a bijection λ 7→ M(λ) between rational numbers and isomorphism
classes of simple objects. Explicitly, if λ = d/h for relatively prime d
and h with h > 0, then M(λ) = Le1 ⊕ · · · ⊕ Leh, with

φM(λ)(ei) =

{
ei+1, i = 1, 2, . . . , h− 1

πde1, i = h.
.

For an isocrystal M over L we let EM be the vector bundle on
X corresponding to the pair (OY ⊗L M,φ ⊗ φM ). For λ ∈ Q we let
O(λ) = EM(−λ).

Theorem 3.3.1 ([Far13, Theorem 3.1]). Every vector bundle E on X
is isomorphic to a vector bundle of the form

⊕n
i=1O(λi), for a unique

sequence of rational numbers (“slopes”) λ1 ≤ · · · ≤ λn.

Remark 3.3.2. Before [Ked] appeared, it was not known that the
rings BI were strongly noetherian, which makes it difficult to define a
good notion of coherent sheaf or vector bundle on X . Fargues gives
ad hoc definitions of these, and shows that the categories of coherent
sheaves on X and its schematic version X are equivalent (“GAGA for
the curve”, [Far13, Theorem 3.5]). The classification of vector bundles
on X is the main theorem of [FF11]. A posteriori, Fargues’ definition
of vector bundles agrees with the expected one. We also remark that a
generalization of the GAGA principle has been proved in [KL, Theorem
8.7.7] in the context of the relative Fargues-Fontaine curve. Finally, the
analogue of Theorem 3.3.1 for the equal characteristic curve appears
in [HP04].

Proposition 3.3.3. Let λ ∈ Q. Then H0(X ,O(λ)) 6= 0 if and only if
λ ≥ 0.

Proof. GAGA for the curve shows that H0(X ,O(λ)) ∼= H0(X,O(λ)),
and then [FF11, Theorem 12.2(2)] shows that this is nonzero if and
only if λ ≥ 0.
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3.4 X is geometrically simply connected

Let us recall the following definition from [Sch12, Definition 7.1].

Definition 3.4.1. Let K be a nonarchimedean field. A morphism
(R,R+)→ (S, S+) of affinoid K-algebras is called finite étale if S is a
finite étale R-algebra with the induced topology, and S+ is the integral
closure of R+ in S. A morphism f : X → Y of adic spaces over K is
called finite étale if there is a cover of Y by open affinoids V ⊂ Y
such that the preimage U = f−1(V ) is affinoid, and the associated
morphism of affinoid K-algebras

(OY (V ),O+
Y (V ))→ (OX(U),O+

X(U))

is finite étale.

If R → S is finite étale, then S is flat and of finite presenta-
tion, hence locally free (“locally” referring to the Zariski topology on
SpecR). Thus there exist f1, . . . , fn ∈ R which generate the unit
ideal, such that S[1/fi] is a free R[1/fi]-module for all i. Since fi
is invertible in R 〈f1/fi, . . . , fn/fi〉, we find that S 〈f1/fi, . . . , fn/fi〉
is a free R 〈f1/fi, . . . , fn/fi〉-module for all i. The rational subsets
U(f1/fi, . . . , fn/fi) cover SpaR. We conclude that R → S is locally
free for the topology on SpaR as well.

Globalizing, we see that if f : Y → X is a finite étale morphism of
adic spaces over K, then f∗OY is a locally freeOX -module. It therefore
makes sense to talk about the degree of f as a locally constant function
on X.

Lemma 3.4.2. Let f : Y → X be a finite étale morphism of adic
spaces of degree d, and let F = f∗OY . Then(

d∧
F

)⊗2

∼= OX .

Proof. If R is a ring, and if S is a finite étale R-algebra, then the trace
map

trS/R : S ⊗R S → R

is perfect, so that S is self-dual as an R-module. Globalizing, we get
that F ∼= F∗ = Hom(F ,OX). Taking top exterior powers shows that∧d F ∼= ∧d F∗ =

(∧d F)∗ is a self-dual line bundle, so that the tensor

square of
∧d F must be trivial.

Theorem 3.4.3. The functor E′ 7→ X ⊗E′ is an equivalence between
the category of finite étale E-algebras and the category of finite étale
covers of X .
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Proof. It suffices to show that if f : Y → X is a finite étale cover of
degree n with Y geometrically irreducible, then n = 1. Given such a
cover, let F = f∗OY . This is a sheaf of OX -algebras, so we have a
multiplication morphism µ : F ⊗ F → F .

By Theorem 3.3.1, F ∼=
⊕n

i=1O(λi), for a collection of slopes λi ∈
Q (possibly with multiplicity). Assume that λ1 ≥ · · · ≥ λn.

The proof now follows that of [FF11], Theorem 18.1. After replac-
ing E with a finite unramified extension we may assume that λi ∈ Z
for all i. We claim that λ1 ≤ 0. Assume otherwise, so that λ1 > 0.
The restriction of µ to O(λ1)⊗O(λ1) is the direct sum of morphisms

µ1,1,k : O(λ1)⊗O(λ1)→ O(λk)

for k = 1, . . . , n. The morphism µ1,1,k is tantamount to a global section
of O(λk)⊗O(−λ1)⊗2, whose slopes are all negative. Proposition 3.3.3
shows that µ1,1,k = 0. Thus the multiplication map O(λ1)⊗O(λ1)→ 0
is 0. This means that H0(Y,OY ) contains zero divisors, which is a
contradiction because Y is irreducible.

Thus λ1 ≤ 0, and thus λi ≤ 0 for all i. By Lemma 3.4.2, (
∧n F)

⊗2 ∼=
OX , from which we deduce

∑n
i=1 λi = 0. This shows that λi = 0 for

all i, and therefore F ∼= OnX . We find that E′ = H0(Y,OY ) is an étale
E-algebra of degree n. Since Y is geometrically irreducible, E′ ⊗E E′′
must be a field for every separable field extension E′′/E, which implies
that E′ = E and n = 1.

Corollary 3.4.4. Let K/E be an algebraic extension. The functor

K ′ 7→ X⊗̂K̂ ′ is an equivalence between the category of finite étale K-
algebras and the category of finite étale covers of X⊗̂K̂. In particular,

every finite étale cover of X⊗̂Ê is split.

Proof. The result will follow from Thm. 3.4.3 as soon as we can show
that every finite étale cover of X⊗̂K̂ descends to some X ⊗E′, where
E′/E is finite subextension of K. Since X is quasi-compact, we can
reduce this to the following statement about affinoids: if (Ri, R

+
i ) is a

filtered directed system of affinoid algebras, and (R,R+) is the com-
pletion of lim−→(Ri, R

+
i ), then every finite étale cover of Spa(R,R+) de-

scends to some Spa(Ri, R
+
i ). This is [Sch12, Lemma 7.5(i)].

3.5 Proof of Theorem A

As in the introduction, let HE be the Lubin-Tate formal OE-module
attached to the uniformizer π. Let us recall the construction of HE .
Choose a power series f(T ) ∈ TOEJT K with f(T ) ≡ T q (mod π).
Then HE is the unique formal OE-module satisfying [π]HE

(T ) = f(T ).
We think of HE as the formal scheme Spf OEJT K endowed with an OE-
module structure. Let t = t1, t2, . . . be a compatible family of roots

17



of f(T ), f(f(T )), . . . , and let En = E(tn). For each n ≥ 1, HE [πn] is
a free (OE/πn)-module of rank 1, and the action of Galois induces an
isomorphism Gal(En/E) ∼= (OE/πn)×.

Let HE,0 = HE ⊗OE
Fq.

Lemma 3.5.1. For all n ≥ 2 we have an isomorphism HE,0[πn−1] ∼=
SpecOEn/t. The inclusion HE,0[πn−1]→ HE,0[πn] corresponds to the
qth power Frobenius map OEn+1

/t→ OEn
/t.

Proof. We haveHE,0[πn−1] = Spec Fq[T ]/f (n−1)(T ) = Spec Fq[T ]/T q
n−1

.

MeanwhileOEn
= OE1

[T ]/(f (n−1)(T )−t), so thatOEn
/t = Fq[T ]/T q

n−1

.
Thus HE,0[πn−1] ∼= SpecOEn/t. The second claim in the lemma fol-
lows from [π]HE,0

(T ) = T q.

Let H̃E be the universal cover:

H̃E = lim←−
π

HE .

Then H̃E is an E-vector space object in the category of formal schemes
over OE . We will call such an object a formal E-vector space.

Let H̃E,0 = H̃E ⊗OE
Fq, a formal E-vector space over Fq. Since

HE,0 = Spf FqJT K and [π]HE,0
(T ) = T q, we have

H̃E,0 = lim←−
π

Spf FqJT K

= Spf

(
lim−→
T 7→T q

FqJT K

)∧
= Spf FqJT 1/q∞K.

In fact we also have H̃E = Spf OEJT 1/q∞K, see [Wei14], Proposition
2.4.2(2).

Lemma 3.5.2. We have an isomorphism of formal E-vector spaces
over Fq:

H̃E,0 = lim−→
π

lim←−
n

HE,0[πn].

Proof. For each n ≥ 1 we have the closed immersion HE,0[πn] →
HE,0. Taking inverse limits gives a map lim←−nHE,0[πn] → H̃E,0, and

taking injective limits gives a map lim−→π
lim←−nHE,0[πn] → H̃E,0. The

corresponding homomorphism of topological rings is

FqJT 1/q∞K→ lim←−
T 7→T q

lim−→Fq[T
1/qn ]/T = lim←−

T 7→T q

Fq[T
1/q∞ ]/T,

which is an isomorphism.
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Proposition 3.5.3. There exists an isomorphism of formal schemes
over Fq:

H̃E,0
∼= Spf OÊ[

∞
.

This isomorphism is E×-equivariant, where the action of E× on OÊ[
∞

is defined as follows: O×E acts through the isomorphism O×E ∼= Gal(E∞/E)
of class field theory, and π ∈ E× acts as the qth power Frobenius map.

Proof. Combining Lemmas 3.5.1 and 3.5.2, we get

H̃E,0
∼= lim−→

π

lim←−
n

HE,0[πn]

∼= lim−→
x7→xq

SpecOE∞/t

∼= Spf OE[
∞
.

The compatibility of this isomorphism with the O×E follows from the
definition of the isomorphism O×E ∼= Gal(E∞/E) of local class field
theory. The compatibility of the action of π follows from the second
statement in Lemma 3.5.1.

Let C be an algebraically closed nonarchimedean field containing
E. Let $C ∈ C be an element with |$C | = |π|; write $C = $[]

C for
some $[

C ∈ C[.
Write H̃ad

E,C for the adic generic fiber of H̃⊗̂OE
OC over Spf OC .

That is:
H̃ad
E,C = SpaOCJT 1/p∞K\ {$C = 0} .

Proposition 3.5.4. H̃ad
E,C is a perfectoid space. Furthermore we have

an isomorphism (
H̃ad
E,C\ {0}

)[ ∼= (Yad
C[,E⊗̂Ê∞

)[
which is equivariant for the action of E× (which acts on E∞ by local
class field theory). The action of π ∈ E× on the left corresponds to
the action of φ−1⊗ 1 on the right, up to composition with the absolute

Frobenius morphism on
(
YC[,E⊗̂Ê∞

)[
.

Proof. Write H̃E⊗̂OE
OC = Spf R. Then R ∼= OCJT 1/p∞K. Then

R[/$C is semiperfect, and letR[ = lim←−Φ
R/$C ; thenR[ ∼= OC[JT 1/p∞K.

Theorem 2.5.5 applies once again; we find that H̃ad
E,C = (SpaR)\ {$C = 0}

is a perfectoid space, with tilt (SpaR[)\
{
$[
C = 0

}
.

By Proposition 3.5.3 we have an isomorphism H̃E,0
∼= Spf OÊ[

∞
, so

that R/$C
∼= OC/$C⊗̂FqOÊ[

∞
. Therefore R[ ∼= OC[⊗̂FqOÊ[

∞
. After
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removing the “origin” from both sides of the isomorphism between

(SpaR)\ {$C = 0}[ and (SpaR[)\
{
$[
C = 0

}
, we get a series of O×E -

equivariant isomorphisms:(
H̃ad
E,C\ {0}

)[ ∼= Spa
(
OC[⊗̂FqOÊ[

∞

)
\ {$C ⊗ t = 0}

∼=
(
YC[,E⊗̂Ê∞

)[
,

where in the last step we used Proposition 3.2.1.

The adic space Spa
(
OC[⊗̂Fq

OÊ[
∞

)
\
{
$[
C ⊗ t = 0

}
has two qth

power “Frobenii”: one coming from OC[ and the other coming from
OÊ[

∞
. Their composition is the absolute qth power Frobenius. The ac-

tion of π on H̃ad,[
C corresponds to the Frobenius on OÊ[

∞
. This proves

the last claim of the proposition.

Lemma 3.5.5. Let X be a perfectoid space which is fibered over Spa Fq,
and suppose f : X → X is an Fq-linear automorphism. Let Frobq : X →
X be the absolute Frobenius automorphism of X. Then the category of
f -equivariant finite étale covers of X is equivalent to the category of
f ◦ Frobq-equivariant finite étale covers of X.

Proof. First observe that a perfectoid algebra in characteristic p is nec-
essarily perfect ([Sch12], Proposition 5.9), which implies that absolute
Frobenius is an automorphism of any perfectoid space X in charac-
teristic p. Then note that if Y → X is a finite étale cover, then Y is
also perfectoid ([Sch12], Theorem 7.9(iii)), so that Frobq is an auto-
morphism of Y .

The proof of the lemma is now formal: if Y → X is a finite étale
cover and fY : Y → Y lies over f : X → X, then fY ◦ Frobq : Y → Y
lies over f ◦Frobq : X → X. Thus we have a functor from f -equivariant
covers to f ◦ Frobq equivariant covers. Since Frobq is invertible on Y ,
the functor is invertible.

We can now prove the following theorem, which specializes to The-
orem A when E = Qp.

Theorem 3.5.6. There is an equivalence between the category of E×-
equivariant étale covers of H̃ad

E,C\ {0} and the category of finite étale
E-algebras.

Proof. In the following chain of equivalences, “G-cover of X” is an
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abbreviation for “G-equivariant finite étale cover of X”.{
E×-covers of H̃ad

E,C\ {0}
}

∼=
{
E×-covers of H̃ad,[

E,C\ {0}
}

[Sch12], Theorem 7.12

∼=
{
O×E × (φ−1 ◦ Frobq)

Z-covers of YC[,E⊗̂Ê∞
}

Proposition 3.5.4

∼=
{
O×E × φZ-covers of YC[,E⊗̂Ê∞

}
Lemma 3.5.5

∼=
{
O×E -covers of XC[,E⊗̂Ê∞

}
Defn. of XC[,E

∼=
{
O×E -equivariant finite étale Ê∞-algebras

}
Proposition 3.4.3

∼= {Finite étale E-algebras} A 7→ AO
×
E .

Remark 3.5.7. It would also have been possible to prove Theorem
3.5.6 using only the Fargues-Fontaine curve in characteristic p (even
though we are interested in a Galois group of a field of characteristic
0!). Indeed, in the chain of equivalences above, the tilting equivalence

could be applied to YC[,E⊗̂Ê∞, whose tilt is YC[,L(E)⊗̂L(E)Ê
[
∞ (3.2.1).

Then we could have used only the classification of vector bundles on the
characteristic p curve, which already appears in [HP04], and avoided
appealing to [FF11].

4 Sheaves on the pro-étale site

4.1 Descent of finite étale morphisms through étale
covers

Let X be a perfectoid space, and let X ′ → X be a surjective étale
morphism. Let Y ′ → X ′ be a finite étale morphism. A descent datum
for Y ′ → X ′ relative to X ′ → X is an isomorphism φ : Y ′ ×X X ′ ∼=
X ′ ×X Y ′ lying over X ′ ×X X ′ satisfying the cocycle condition. The
descent datum φ is effective if there exists a finite étale morphism
Y → X and an isomorphism Y ′ ∼= Y ×X X ′ such that the composite

Y ′ ×X X ′ ∼= (Y ×X X ′)×X X ′ ∼= X ′ ×X (Y ×X X ′) ∼= X ′ ×X Y ′

equals φ.

Proposition 4.1.1. Descent data for finite étale morphisms relative
to étale surjections of perfectoid spaces are effective.

In other words, ifX is a perfectoid space, then Y 7→ {Y ′/Y finite étale}
is a stack on Xét.

Proof. We claim that it is enough to show that descent data are effec-
tive relative to the following kinds of étale surjections:
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1. X ′ =
∐
iXi → X, where {Xi} is an open cover of X in its

analytic topology, and

2. Finite étale morphisms of affinoids.

This reduction step is explained in the proof of [dJvdP96, Proposition
3.2.2]. (It applies to rigid spaces there, but the proof proceeds verbatim
in our case.)

The effectiveness of a descent datum relative to an open cover {Xi}
in the analytic topology is immediate: a family of finite étale covers
Yi → Xi equipped with gluing data over the Xi ∩Xj glues together to
produce a finite étale cover Y → X.

Now suppose X = Spa(A,A+) is an affinoid perfectoid space, and
X ′ → X is a finite étale cover. By [Sch12, Theorem 7.9(ii)], X ′ =
Spa(A′, (A′)+), where A → A′ is finite étale and (A′)+ is the integral
closure of A+ in A′. (Theorem 7.9(ii) applies to “strongly finite étale
morphisms”, but these are equivalent to finite étale morphisms by The-
orem 7.9.) Suppose that Y ′ → X ′ is a finite étale morphism equipped
with a descent datum relative to X ′ → X. By the same reasoning,
Y ′ = Spa(B′, (B′)+), where A′ → B′ is finite étale and (B′)+ is the
integral closure of (A′)+ in B′. The descent datum for the finite étale
morphism Y ′ → X ′ relative to X ′ → X induces a descent datum for
the finite étale morphism of rings A′ → B′ relative to A → A′, which
is effective by classical descent theorems. Thus B′ ∼= A′ ⊗A B for a
finite étale A→ B. Let B+ be the integral closure of A+ in B, and let
Y = Spa(B,B+). By [Sch12, Theorem 7.9(iii)], B is a perfectoid alge-
bra, and so Y is a perfectoid affinoid. We claim that Y ′ ∼= Y ×X X ′.
This is immediate from B′ ∼= A′×AB and the fact that (B′)+ is the in-
tegal closure of (A′)+⊗A′ B+ in B′ (since both are the integral closure
of A+ in B).

We remark that Proposition 4.1.1 applies not just to perfectoid
spaces but to general analytic adic spaces, using the descent theorems
found in [KL, §2.6].

4.2 Pro-étale morphisms and the pro-étale topol-
ogy on PerfC

Recall that PerfC is the category of perfectoid spaces over the complete
algebraically closed field C/Qp.

Definition 4.2.1. A morphism Spa(B,B+)→ Spa(A,A+) of affinoid
perfectoid spaces is affinoid pro-étale if

(B,B+) =
[
lim−→(Ai, A

+
i )
]∧

for a filtered directed system of pairs (Ai, A
+
i ), where Ai is perfectoid,

and Spa(Ai, A
+
i ) → Spa(A,A+) is étale. A morphism f : Y → X of
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perfectoid spaces is pro-étale if for every y ∈ Y there exists an affinoid
V ⊂ Y containing y and an affinoid U ⊂ X such that f(V ) ⊂ U and
such that f : V → U is affinoid pro-étale. Finally, a morphism f : Y →
X is a pro-étale cover if it is pro-étale and if for all quasi-compact
U ⊂ X there exists a quasi-compact V ⊂ Y such that U = f(V ).

Remark 4.2.2. In the context of Definition 4.2.1, if Xi = Spa(A,A+)
and Y = Spa(B,B+), then Y ∼= lim←−Xi in the category of perfectoid
affinoids over C.

Remark 4.2.3. We can also define what it means for family of mor-
phisms Yi → X to be a pro-étale cover: it just means that

∐
i Yi → X

is a pro-étale cover. Since it usually simplifies notation, we will always
consider covers consisting of only one morphism.

The pro-étale covers endow PerfC with the structure of a site, the
pro-étale site. For a perfectoid space X over C, let Xpro-ét be the
category of morphisms Y → X in PerfC with the pro-étale topology.

Proposition 4.2.4. Descent data are effective for finite étale mor-
phisms in PerfC relative to pro-étale covers.

Proof. Let f : X ′ → X be a pro-étale cover, and let Y ′ → X ′ be a finite
étale morphism equipped with a descent datum relative to X ′ → X.
We want to show that Y ′ → X ′ descends to a finite étale morphism
X ′. We can cover X by affinoids Ui. For each i, there exists a quasi-
compact open U ′i ⊂ X ′ such that f(U ′i) = Ui. Then Y ′ ×X′ U ′i → U ′i
comes equipped with a descent datum relative to U ′i → Ui. If we can
show that these descend to a finite étale morphism Yi → Ui, then the
Yi glue together to form the desired morphism Y → X.

Therefore it suffices to assume that X is affinoid and X ′ is quasi-
compact. By definition of pro-étale cover, there exists a cover of X ′

by affinoids V ′i = Spa(Ai, A
+
i ) and for each i an affinoid Vi ⊂ X such

that f(V ′i ) ⊂ Vi and such that f : V ′i → Vi is affinoid pro-étale. Since
X ′ is quasi-compact, we may assume there are only finitely many V ′i ,
say with indices i = 1, . . . , n. For each i write V ′i ∼ lim←−Vij , where
j runs through a directed system Ii, Vij is affinoid and Vij → Vi is
étale. Then for each tuple j = (j1, . . . , jn), Vj =

∏
i Viji is affinoid and

Vj → X is surjective. We have
∏
i Vi
∼= lim←−Vj , where j runs over all

such tuples. Let X ′′ =
∐
i V
′
i . Note that X ′′ → X factors through

X ′ → X. It suffices to solve the descent problem for X ′′ → X.
After replacing X ′ with X ′′, it suffices to assume that X ′ is affinoid

and that X ′ ∼ lim←−Xi, where Xi is affinoid and Xi → X is an étale

surjection. Write X = Spa(A,A+), X ′ = Spa(A′, (A′)+), and Xi =
Spa(Ai, A

+
i ). Then Y ′ = Spa(B′, (B′)+) is affinoid, and A′ → B′ is

finite étale. By [Sch12, Lemma 7.5(i)], the category of finite étale A′-
algebras is the 2-limit of the categories of finite étale Ai-algebras. Thus
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Y ′ → X ′ descends to a finite étale morphism Yi → Xi = Spa(Ai, A
+
i ),

as does the descent datum. By Proposition 4.1.1, Yi descends to a
finite étale morphism Y → X.

Proposition 4.2.5. The presheaf OX on Xpro-ét defined by Y 7→
OY (Y ) is a sheaf.

Proof. Given X ∈ PerfC and a pro-étale cover X ′ → X, we need to
show that the descent complex

0→ OX(X)→ OX(X ′)→ OX(X ′)⊗OX(X) OX(X ′)→ · · ·

is exact. Without loss of generality X = Spa(A,A+) is a perfectoid
affinoid, and X ′ = Spa(A′, (A′)+) with (A′, (A′)+) = [lim−→(Ai, A

+
i )]∧,

with Spa(Ai, A
+
i ) → Spa(A,A+) an étale surjection. Let $ ∈ C be a

pseudo-uniformizer. For all i, the complex

0→ A+ → A+
i → A+

i ⊗A+ A+
i → · · ·

is almost exact, because Hi(Xét,O+
X) is almost zero for i > 0 [Sch12,

Proposition 7.13]. Taking direct limits shows that

0→ A+ → (A′)+ → (A′)+ ⊗A+ (A′)+ → · · ·

is almost exact. Invert $ to get the result.

Proposition 4.2.6. For each X ∈ PerfC , let hX be the presheaf on
PerfC defined by hX(Y ) = Hom(Y,X), Y ∈ PerfC . Then hX is a sheaf
on the pro-étale site.

Proof. Given a pro-étale cover Y ′ → Y , and a morphism Y ′ → X
such that the two pull-backs to Y ′ ×Y Y ′ agree, we need to show
that Y ′ → X factors through a morphism Y → X. We may assume
that X = Spa(A,A+) is affinoid. The morphism Y ′ → X induces
a homomorphism A → OY (Y ′), which by hypothesis factors through
H0(Yét,OY ). By Proposition 4.2.5, H0(Yét,OY ) = OY (Y ); thus we get
a homomorphism A → OY (Y ), which induces the desired morphism
Y → X.

Definition 4.2.7. A morphism Y → X of sheaves on PerfC is finite
étale (resp., pro-étale, a pro-étale cover) if for all objects X ′ ∈ PerfC
and all morphisms hX′ → X, the fiber product hX′ ×X Y is repre-
sentable by an object Y ′ ∈ PerfC , where the morphism Y ′ → X ′

(corresponding to the projection hY ′
∼→ hX′ ×X Y → hX′) is finite

étale (resp., pro-étale, a pro-étale cover).

From now on we will confuse an object X ∈ PerfC with its image
hX under the Yoneda embedding. The following lemma shows that no
ambiguity arises when it comes to finite étale covers.
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Lemma 4.2.8. Let X be an object of PerfC . The categories of finite
étale covers of X and hX are equivalent, via Y 7→ hY .

Proof. Indeed, if Y → hX is a finite étale cover, then by definition
its fiber product by the identity morphism hX → hX is representable.
But this fiber product is just Y → hX , which therefore is representable
by a finite étale cover of X in PerfC .

Lemma 4.2.9. Descent data are effective for finite étale morphisms
relative to pro-étale covers of sheaves on PerfC .

Proof. Let X ′ → X be a pro-étale cover of sheaves on PerfC . Let Y ′ →
X ′ be a finite étale morphism equipped with a descent datum relative
to X ′ → X. Sheaves always descend, so there exists a morphism of
sheaves Y → X such that Y ′ ∼= Y ×X X ′.

We just need to show that Y → X is finite étale. Suppose we
are given a morphism Z → X, with Z representable. We claim that
Y ×X Z is representable by a finite étale cover of Z. Since X ′ → X is
a pro-étale cover, X ′×X Z = Z ′ for a pro-étale cover Z ′ → Z in PerfC .
The pull-back of the finite étale morphism Y ′ → X ′ through Z ′ → X ′

is representable: Y ′ ×X′ Z ′ = W ′, where W ′ → Z ′ is a finite étale
cover. The descent datum for Y ′ → X ′ relative to X ′ → X induces
a descent datum for W ′ → Z ′ relative to Z ′ → Z. Now we apply
Proposition 4.2.4: W ′ → Z ′ descends to a finite étale cover W → Z,
with W ′ = W ×Z Z ′. Furthermore, the morphism of sheaves W ′ → Y ′

descends to a morphism W → Y . In the diagram

W ′ //

��

}}{{
{{

{{
{{

Z ′

��

~~||
||

||
||

Y ′ //

��

X ′

��

W //

}}{{
{{

{{
{{

Z

}}||
||

||
||

Y // X

it is known that every square but the bottom one is cartesian. The
morphism W → Y ×X Z becomes an isomorphism after base change
along the the pro-étale cover X ′ → X; hence it is itself an isomorphism.
This shows that Y → X is finite étale as required.

Lemma 4.2.10. Let X ′ → X be a morphism of sheaves on PerfC .
Assume there exists a pro-étale cover X ′′ → X such that X ′×X X ′′ →
X ′′ is a pro-étale cover. Then descent data are effective for finite étale
covers of X ′ relative to X ′ → X.
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Proof. Let Y ′ → X ′ be a finite étale morphism equipped with a descent
datum relative to X ′ → X. Then Y ′ ×X X ′′ → X ′ ×X X ′′ is a finite
étale morphism equipped with a descent datum relative to X ′×XX ′′ →
X ′′. Since the latter is a pro-étale cover, Lemma 4.2.9 applies to give
a finite étale morphism W → X ′′. But Y ′ ×X X ′′ → X ′ ×X X ′′ also
comes equipped with a descent datum relative to X ′′ → X, which
(by functoriality of descents) induces a descent datum for W → X ′′

relative to X ′′ → X. Lemma 4.2.9 applies to give the required descent
to a finite étale cover Y → X.

4.3 Pro-étale torsors

Let G be a group object in the category of sheaves on PerfC .

Definition 4.3.1. A pro-étale G-torsor is a morphism X ′ → X of
sheaves on PerfC equipped with an action of G on X ′ lying over the
trivial action on X, such that pro-étale locally on X there is an iso-
morphism X ′ ∼= G ×X.

The condition means that there exists a pro-étale cover Y → X
such that X ′ ×X Y ∼= G × Y .

For a profinite group G, let G be the corresponding constant group
object in PerfC . Explicitly, G = Spa(A,A+), where A (resp., A+)
is the ring of continuous functions on G with values in C (resp.,
OC). Then the underlying topological group of G is G itself. For
each open subgroup H ⊂ G, let AH and A+

H be the corresponding
rings of functions which are right-invariant under H; i.e., the func-
tions factoring through the finite quotient G/H. It is easy to see that
(A,A+) = [lim−→H

(AH , A
+
H)]∧. Since Spa(AH , A

+
H) is just G/H copies

of SpaC, this shows that G→ SpaC is a pro-étale cover.
The following proposition shows that if an action of a profinite

group on a perfectoid space is “nontrivial enough”, then the quotient
by that group is a pro-étale torsor.

Proposition 4.3.2. Let G be a profinite group, let X ′ ∈ PerfC , and
let G×X ′ → X ′ be an action. Let X = X ′/G, considered as a sheaf on
PerfC . Assume that for every complete algebraically closed field C ′/C,
the action of G on X ′(C ′) = X ′(Spa(C ′,OC′)) is free. Then X ′ → X
is a pro-étale G-torsor.

We remind the reader that X = X ′/G is the sheafification of the
pre-sheaf Y 7→ hX′(Y )/G(Y ). Thus to give a section of X over Y is
to give a pro-étale cover Y ′ → Y , together with a section of X ′ over
Y ′ modulo the action of G. Two such sections Y ′ → X ′ and Y ′′ →
X ′ determine the same section of X if there is a common refinement
Y ′′′ → X ′ on which the two pull-backs differ by the action of G.
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Proof. First we claim that the morphism G×X ′ → X ′×XX ′ given by
(g, x) 7→ (gx, x) is an isomorphism. It suffices to construct a “division
map” γ : X ′ ×X X ′ → G, which satisfies g(x, y)x = y for (x, y) ∈
X ′×XX ′. (We abuse notation slightly here and throughout the proof.
The equation “g(x, y)x = y” is meant to indicate that the appropriate
diagram commutes.)

Suppose we are given a section of X ′ ×X X ′ over an object Y of
PerfC . This means we have two morphisms f1, f2 : Y → X ′, such that
there exists a pro-étale cover g : Y ′ → Y and a morphism γ : Y ′ → G
such that for all y ∈ Y ′, f2(g(y)) = γ(y)f1(g(y)). We claim that γ is
constant on fibers of Y ′ → Y . This can be checked on geometric fibers,
so without loss of generality we may assume that Y = Spa(C ′,OC′)
for a complete and algebraically closed field C ′/C. Then f1 and f2

determine two elements of X ′(C ′). By hypothesis there can be at
most one γ ∈ G which translates one to the other. This proves the
existence of the morphism γ, and consequently establishes that G ×
X ′ → X ′ ×X X ′ is an isomorphism.

Now we claim that X ′ → X is a pro-étale cover. This will finish the
proof of the proposition, because then X ′ → X becomes trivial after
passing to a pro-étale cover, namely X ′ → X itself. Let Y → X be a
morphism from a representable sheaf. We claim that X ′×X Y → Y is
a pro-étale morphism in PerfC . It suffices to assume that Y is affinoid.

The morphism Y → X is given by a pro-étale cover Y ′ → X ′

together with a morphism f : Y ′ → X ′. We have an isomorphism
X ′×X Y ′ → G×Y ′, where the map to G is the composition of X ′×X
Y ′ → X ′×X X ′ with γ, and the map to Y ′ is the projection. Consider
the diagram

X ′ ×X Y ′

��

// Y ′

��
X ′ ×X Y // Y,

in which all objects but X ′ ×X Y are known to be representable. The
top arrow factors as X ′×X Y ′

∼→ G×Y ′ → Y ′. If G is finite, then the
top arrow is a finite étale morphism between affinoids, and then X ′×X
Y is representable by an affinoid finite étale over Y by Proposition
4.2.4. If G is profinite, then

X ′ ×X Y = lim←−
H

X ′/H ×X Y,

where H runs over open normal subgroups of G. The same argument
as above shows that each X ′ ×X X ′/H is representable by an affinoid
which is finite étale over Y , and so X ′ ×X Y → Y pro-étale.

Let G be profinite, and let X ′ → X be a pro-étale G-torsor. Let
X ′′ → X be a pro-étale cover such that X ′ ×X X ′′ ∼= G ×X ′′. Then
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X ′ ×X X ′′ → X ′′ is a pro-étale cover. By Lemma 4.2.10, descent data
are effective for finite étale covers of X ′ relative to X ′ → X.

In particular, suppose f : Y ′ → X ′ is a G-equivariant finite étale
cover. Let (y, x) 7→ g(y, x) be the morphism Y ′×X X ′ → X ′×X X ′

∼→
G×X ′ → G. Then the isomorphism Y ′×X X ′ → X ′×X Y defined by
(y, x) 7→ (f(y), g(y, x)y) defines a descent datum for Y ′ → X ′ relative
to X ′ → X, and so Y ′ → X ′ descends to a finite étale morphism
Y → X. Therefore:

Proposition 4.3.3. Let G be a profinite group. Let X ′ → X be a
pro-étale G-torsor. The following categories are equivalent:

1. Finite étale covers of X, and

2. G-equivariant finite étale covers of X ′.

4.4 The object ZE, and the proof of Theorem B

Let H̃ad,∗
E,C = H̃ad

E,C\ {0}, and form the quotient

ZE = H̃ad,∗
E,C /E

×

as a sheaf on PerfC . For any algebraically closed C ′/C, H̃ad
E,C(C ′) =

H̃E(OC′) is an E-vector space. In particularO×E acts freely on H̃ad,∗
E,C (C ′)/πZ.

By Proposition 4.3.2, H̃ad,∗
E,C /π

Z → ZE is a pro-étale O×E-torsor. Propo-

sition 4.3.3 shows that finite étale covers of ZE are equivalent to O×E-

equivariant finite étale covers of H̃ad,∗
E,C /π

Z, which (since the action of

π is totally discontinuous) are in turn equivalent to E×-equivariant

covers of H̃ad,∗
E,C . Applying Theorem 3.5.6, we deduce the following.

Theorem 4.4.1. The following categories are equivalent:

1. Finite étale covers of ZE, and

2. Étale E-algebras.

4.5 Functoriality in E.

In this final section we establish the functoriality of ZE in E. First
let us check that ZE really only depends on E. The construction de-
pends on the choice of Lubin-Tate formal OE-module H = HE , which
depends in turn on the choice of uniformizer π. If π′ ∈ E is a different
uniformizer, with corresponding OE-module H ′, then H and H ′ be-
come isomorphic after base extension to OÊnr , the ring of integers in
the completion of the maximal unramified extension of E. Such an iso-
morphism is unique up to multiplication by E×. Thus the adic spaces
H̃ad
C and (H̃ ′)ad

C are isomorphic, and we get a canonical isomorphism

(H̃ad
C \ {0})/E

× → (H̃ad
C \ {0})/E

×. Thus ZE only depends on E.
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Now suppose E′/E is an extension of degree d. There is a “norm”
morphism NE′/E : ZE′ → ZE , which makes the following diagram com-
mute:

πét
1 (ZE′)

NE′/E //

∼
��

πét
1 (ZE)

∼
��

Gal(E/E′) // Gal(E/E).

(4.5.1)

This morphism is induced from the determinant morphism on the level
of π-divisible OE-modules. The existence of exterior powers of such
modules is the subject of [Hed10]. Here is the main result we need1

(Theorem 4.34 of [Hed10]): let G be a π-divisible OE-module of height
h (relative to E) and dimension 1 over a noetherian ring R. Then
for all r ≥ 1 there exists a π-divisible OE-module

∧r
OE

G of height(
h
r

)
and dimension

(
h−1
r−1

)
, together with a morphism λ : Gr →

∧r
OE

G
which satisfies the appropriate universal property. In particular the
determinant

∧h
OE

G has height 1 and dimension 1.
Let π′ be a uniformizer of E′, and let H ′ be a Lubin-Tate formal

OE′-module. Then H ′[(π′)∞] is a π′-divisible OE′ -module over OE′
of height 1 and dimension 1. By restriction of scalars, it becomes a
π-divisible OE-module H ′[π∞] of height d and dimension 1. Then∧d
OE

H ′[π∞] is a π-divisible OE-module of height 1 and dimension 1,
so that it is the π-power torsion in a Lubin-Tate formal OE-module∧d

H ′ defined over OE′ . For all n ≥ 1 we have an OE/πn-alternating
morphism

λ : H ′[πn]d →
d∧
H ′[πn]

of π-divisible OE-modules over OE′ . Let H ′0 = H ′⊗OE′/π′. Reducing
mod π′, taking inverse limits with respect to n and applying Lemma
3.5.2 gives a morphism

λ0 : (H̃ ′0)d →
d̃∧
H ′

0

of formal vector spaces over OE′/π′. By the crystalline property of
formal vector spaces ([SW13], Proposition 3.1.3(ii)), this morphism
lifts uniquely to a morphism

λ̃ : (H̃ ′)d →
d̃∧
H ′

1This result requires the residue characteristic to be odd, but we strongly suspect this
is unnecessary. See [SW13], §6.4 for a construction of the determinant map (on the level
of universal covers of formal modules) without any such hypothesis.
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of formal vector space over OE′ .
Since

∧d
H ′ and H are both height 1 and dimension 1, they become

isomorphic after passing to OC . Let α1, . . . , αn be a basis for E′/E,
and define a morphism of formal schemes

H̃ ′OC
→

d̃∧
H ′
OC

∼= H̃OC

x 7→ λ̃(α1x, . . . , αdx)

After passing to the generic fiber we get a well-defined mapNE′/E : ZE′ →
ZE which does not depend on the choice of basis for E′/E.

The commutativity of the diagram in Eq. (4.5.1) is equivalent to
the following proposition.

Proposition 4.5.1. The following diagram commutes:{
Étale E-algebras

}
A 7→A⊗EE

′
//

��

{
Étale E′-algebras

}
��

{Finite étale covers of ZE} // {Finite étale covers of Z ′E} .

Here the bottom arrow is pullback via NE′/E.

Proof. Ultimately, the proposition will follow from the functoriality
of the isomorphism in Lemma 3.5.1. For n ≥ 1, let E′n be the field
obtained by adjoining the πn-torsion in H ′ to E′. (Note that the πn-
torsion is the same as the (π′)en torsion, where e is the ramification
degree of E′/E.) The existence of λ shows that En contains the field

obtained by adjoining the πn-torsion in
∧d

H ′ to En. Namely, let
x ∈ H[πn](OE′n) be a primitive element, in the sense that x generates
H ′[πn](OE′n) as anOE′/πn-module. If α1, . . . , αd is a basis forOE′/OE
then λ(α1x, . . . , αdx) generates

∧
H ′[πn](OE′n) as an OE/πn-module.

Since
∧d

H ′ and H become isomorphic over Ê′,nr, we get a compatible

family of embeddings Ênr
n ↪→ Ê′,nr

n .
By construction, these embeddings are compatible with the isomor-

phisms in Lemma 3.5.1, so that the following diagram commutes:

Spf OE′,nrn /t′
∼ //

��

H̃ ′0[πn−1]⊗ Fq

NE′/E

��
Spf OEnr

n /t ∼
// H̃0[πn−1]⊗ Fq
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Here t′ ∈ OE1
is a uniformizer. From here we get the commutativity

of the following diagram:

Spf
(
O
Ê′,[∞
⊗̂OE′/π

′OC[

)
//

��

H̃ ′,[OC

NE′/E

��
Spf

(
OÊ[

∞
⊗̂FqOC[

)
// H̃[
OC
.

One can now trace this compatibility with the chain of equivalences in
the proof of Theorem 3.5.6 to get the proposition. The details are left
to the reader.
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Études Sci. 116 (2012), 245–313.

[SW13] Peter Scholze and Jared Weinstein, Moduli of p-divisible
groups, Cambridge Journal of Mathematics 1 (2013), no. 2,
145–237.

31



[Wei14] Jared Weinstein, Semistable models for modular curves of
arbitrary level, Preprint, 2014.

32


	Introduction
	Generalities on perfectoid spaces
	Review of adic spaces
	The adic generic fiber of a formal scheme over `39`42`"613A``45`47`"603ASpfOK
	Perfectoid algebras and perfectoid spaces
	Tilting
	Formal schemes over OK with perfectoid generic fiber

	The adic Fargues-Fontaine curve
	The adic spaces YF,E and XF,E
	The adic Fargues-Fontaine curve in equal characteristic
	Classification of vector bundles
	X is geometrically simply connected
	Proof of Theorem A

	Sheaves on the pro-étale site
	Descent of finite étale morphisms through étale covers
	Pro-étale morphisms and the pro-étale topology on `39`42`"613A``45`47`"603APerfC
	Pro-étale torsors
	The object ZE, and the proof of Theorem B
	Functoriality in E.


