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1 Introduction, 2 September

1.1 Motivation: Drinfeld, L. Lafforgue and V. Lafforgue

The starting point for this course is Drinfeld’s work [Dri80] on the global
Langlands correspondence over function fields. Fix C/Fq a smooth projec-
tive geometrically connected curve.

Definition 1.1.1. A shtuka of rank n over an Fq-scheme S is a vector bundle
E over C×FqS, together with a meromorphic isomorphism φE : Frob∗S E → E .
This means that φE is defined on an open subset U ⊂ C ×Fq S which is
fiberwise dense in C. Here, FrobS : S → S always refers to the qth power
Frobenius map.

The role of Frobenius is very important in this story. We remark that
geometric Langlands studies the stack BunGLn of rank n vector bundles on
C, even in circumstances where C is a complex curve. Whereas arithmetic
Langlands studies BunGLn together with its Frobenius map, which gives
you moduli spaces of shtukas (which roughly correspond to Frobenius fixed
points).

Suppose we are given a shtuka (E , φE) over S = Spec k, where k is
algebraically closed. We can attach to it the following data:

1. Points x1, . . . , xm ∈ C(k), the points of indeterminacy of φE . We call
these points the legs of the shtuka.

2. For each i = 1, . . . ,m, a conjugacy class of cocharacters µi : Gm →
GLn.

We consider the ordered set of points x1, . . . , xm to be packaged along
with the shtuka. The second item deserves some explanation: let i ∈
{1, . . . ,m}, and let ti be a uniformizing parameter at xi. We have the
completed stalks (Frob∗S E)∧xi and E∧xi . These are free rank n modules over
O∧C,xi

∼= k[[ti]], and their generic fibres are identified using φE . In other words,
we have two k[[ti]]-lattices in the same n-dimensional k((ti))-vector space.

By the theory of elementary divisors, there exists a basis e1, . . . , en of
E∧xi such that tk1

i e1, . . . , t
kn
i en is a basis of Frob∗S Exi , where k1 ≥ · · · ≥ kn.

These integers are well-defined. Another way to package this data is as a
conjugacy class of cocharacters µi : Gm → GLn, which in turn corresponds
to a representation of the Langlands dual group, which is just GLn again.

So now we fix discrete data: an integerm, and a collection of cocharacters
{µ1, . . . , µm}. Then there exists a moduli space Shtm,{µ1,...,µm} whose k-
points classify the following data:
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1. An m-tuple of points (x1, . . . , xm) of C(k), together with

2. A shtuka (E , φE), for which φE is regular outside of {x1, . . . , xm} and
for which the relative positions of E∧xi and (Frob∗S E)∧xi is described by
the cocharacter µi.

Shtm,{µ1,...,µm} is a Deligne-Mumford stack, which is unfortunately not
quasi-compact. Let f : Shtm,{µ1,...,µm} → Cm which maps a shtuka onto its
m-tuple of legs. One can think of Shtm,{µ1,...,µm} as an equal-characteristic
analogue of Shimura varieties. However, an important difference is that
Shimura varieties live over Spec Z (or some open subset thereof), and not
anything like “Spec Z× Spec Z”.

In order to construct Galois representations, we consider the cohomology
of Shtm,{µ1,...,µm}. In this introduction we only consider the middle cohomol-
ogy (middle being relative to the map f). Let d = dim Shtm,{µ1,...,µm}−m,

and consider the cohomology Rdf!Q`, an étale sheaf on Cm. (This is not
constructible, as f is not of finite type, but we can ignore this for now.)

Let η = SpecF be the generic point of C, and let ηm be the generic point
of Cm. The generic fiber of this sheaf is (Rdf!Q`)ηm , which carries an action
of Gal(ηm/ηm). This last group the Galois group of the function field of the
product Cm. This group is bigger than the product of m copies of Gal(η/η),
but we can control this by taking into account the partial Frobenii.

For i = 1, . . . ,m, we have a morphism Fi : C
m → Cm, which is FrobC

on the ith component, and the identity everywhere else. We will see that
there are canonical commuting isomorphisms F ∗i (Rdf!Q`)

∼= Rdf!Q`. We
now apply an important lemma of Drinfeld:

Lemma 1.1.2. For U ⊂ C a dense open subset, let π1(Um/partial Frob.)
classify finite étale covers of Um equipped with partial Frobenii. Then

π1(Um/partial Frob.) ∼= π1(U)× · · · × π1(U) (m copies).

The lemma shows that if F is a local system on Um, which comes
equipped with isomorphisms F ∗i F ∼= F , then the action of Gal(ηm/ηm)
on Fηm factors through Gal(η/η)m.

Pedantic note: We can’t literally apply this lemma to our sheaf Rdf!Q`

(because it isn’t constructible), but once you take care of this, you really do
get a space with an action of Gal(η/η)m.

One can add level structures to these spaces of shtukas, parametrized
by finite closed subschemes N ⊂ C (that is, effective divisors). A level N
structure on (E , φE) is then a trivialization of the pullback of E to N in a
way which is compatible with φE (we will review the precise definition later).
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As a result we get a family of stacks Shtm,{µ1,...,µm},N and morphisms

fN : Shtm,{µ1,...,µm},N → (C\N)m.

The stack Shtm,{µ1,...,µm},N carries an action of GLn(ON ), by altering the
trivialization of E on N .

Passing to the limit, you get a big representation of GLn(AF ) × GF ×
· · · × GF on lim−→N

Rd(fN )!Q`, where GF is the absolute Galois group of F .
Roughly, the way one expects this space to decompose is as follows:

lim−→
N

Rd(fN )!Q` =
⊕
π

π ⊗ r1 ◦ σ(π)⊗ · · · ⊗ rm ◦ σ(π),

where

• π runs over cuspidal automorphic representations of GLn(AF ),

• σ(π) : GF → GLn(Q`) is the corresponding L-parameter, and

• ri : GLn → GLni is the highest weight representation corresponding
to µi.

Drinfeld (n = 2, [Dri80]) and L. Lafforgue (general n, [Laf02]) considered
the case of m = 2, with µ1 and µ2 corresponding to the n-tuples (1, 0, · · · , 0)
and (0, · · · , 0,−1) respectively. These cocharacters correspond to the tauto-
logical representation r1 : GLn → GLn and its dual r2. Then they were able
to prove the claimed decomposition, and in doing so constructed a bijection
π 7→ σ(π) between cuspidal automorphic representations of GLn(AF ) and
irreducible n-dimensional representations of GF .

V. Lafforgue [Laf] considered general reductive groups G in place of GLn.
He didn’t quite prove this conjecture, but he did construct L-parameters
for all cuspidal automorphic representations of G, using all of the spaces
Shtm,{µ1,...,µn} simultaneously in a crucial way. This overcomes a problem in
defining L-parameters σ(π) using Shimura varieties associated to the datum
(G,µ): there you can only “see” r ◦ σ(π), where r is the heighest weight
representation corresponding to a single minuscule cocharacter µ.

1.2 The possibility of shtukas in mixed characteristic

Of course, it would be great to do something similar for number fields. But
the first immediate problem is that such a space of shtukas would live over
a product like Spec Z× Spec Z, where the product is over F1 somehow.
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The first aim of this course is to describe the completion of Spec Z ×
Spec Z at (p, p), which we will give a rigorous definition for.

Open problem: Describe the completion of Spec Z× Spec Z along the
diagonal. Alas, we may not be able to hope for more than this. As far as
we know, Spec Fp × Spec F` ⊂ Spec Z× Spec Z does not make sense.

What we will actually do is construct something like Spa Qp × Spa Qp.
It lives in a world of nonarchimedean analytic geometry.

It may help to spell out the equal characteristic analogue of this, where
nothing terribly esoteric happens. The product

Spa Fp((t))×SpaFp Spa Fp((t))

exists as an adic space, namely a punctured open unit disc. Indeed for all
nonarchimedean fields K/Fp, we have

Spa Fp((t))×SpaFp SpaK = D∗K = {x|0 < |x| < 1} .

In particular Spa Fp((t))×SpaFp Spa Fp((u)) is a punctured unit disc in two
different ways: one where u is a parameter and t is in the field of constants,
and one where the reverse happens.

There is a local version of Drinfeld’s lemma, which we present for m = 2.
We have the punctured disc D∗Fp((t)) with parameter u, which comes with
a Frobenius action φ, which takes t to t and u to up. This is a totally
discontinuous action, so we can take the quotient X = D∗Fp((t))/φ

Z.

Lemma 1.2.1 (“local Drinfeld lemma”, Fargues-Fontaine, Weinstein). π1(X) ∼=
GFp((t)) ×GFp((t)).

It turns out there is an analogue of this story for Qp. Here is one model
for the product Spa Qp × Spa Qp, specified by picking one of the factors.

Definition 1.2.2. Spa Qp × Spa Qp = D̃∗Qp
/Z∗p, the quotient being taken

in a formal sense.

Here we see one of the Qps appearing as the field of scalars of this object,
but the other copy appears in a strange way.

Here, DQp = {x| |x| < 1} ↪→ Gm is a group, and even a Zp-module , via
x 7→ 1 + x. Let

D̃Qp = lim←−
x 7→(1+x)p−1

DQp

This is a pre-perfectoid space, which carries the structure of a Qp-vector

space. Thus D̃∗Qp
has an action of Q×p , and so we consider the quotient by

Z×p . Note that this does not exist in the category of adic spaces!
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On D̃∗Qp
/Z×p , we have an operator φ, corresponding to p ∈ Q×p . Let

X = (D̃∗Qp
/Z∗p)/φ

Z = D̃∗Qp
/Q×p . Then

π1(X) ∼= GQp ×GQp .

The first aim of the course is to introduce the category of “diamonds”,
which contains these objects. In that category, the description of Spa Qp ×
Spa Qp becomes a proposition, rather than an ad hoc definition.

The second aim is to define spaces of local shtukas in this setup.
Let’s go back to the analogy between function fields and number fields.
In the function field context, we have moduli spaces of shtukas. These

are associated to data (G, {µ1, . . . , µm}) where G is a reductive group and
the µi are conjugacy classes of cocharacters of G (over an algebraic closure).
These live over a product of m copies of the curve.

In the number field context, we have Shimura varieties associated with
data (G,µ), where G is a reductive group and µ is a conjugacy class of
minuscule cocharacters. This lives over one copy of the “curve” Spec Z.
These are moduli spaces of abelian varieties with extra structure.

In this course we look at local analogues of these spaces. For function
fields, these are moduli spaces of local shtukas, as studied by Pink, Hartl,
Viehmann, and others. In the number field case, one has Rapoport-Zink
spaces, where are moduli space of p-divisible groups. It was recently sug-
gested by Rapoport-Viehmann that there should exist local Shuimura vari-
eties which don’t have anything to do with p-divisible groups, but which are
still attached to data of the form (G,µ).

The goal of the entire course is to

1. Define a notion of local shtuka in mixed characteristic.

2. Construct moduli spaces of these for any (G, {µ1, . . . , µm}), for any
collection of cocharacters, living over m copies of Spa Qp, considered
as a diamond.

3. Show that these generalize RZ spaces and specialize to local Shimura
varieties (which should be classical rigid spaces). For this we will have
to relate local shtukas to p-divisible groups.

The hope is to carry out V. Lafforgue’s program to define L-parameters
for smooth representations of p-adic group.

We leave open the problem of defining shtukas over Spec Z, and moduli
spaces of such.
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2 Adic spaces, 4 September

2.1 Overview: formal schemes and their generic fibres

Today we will give a crash course in nonarchmidean geometry, since it plays
such a vital role. The reference is Huber, [Hub93]. See also Wedhorn’s notes
on adic spaces.

Recall that a formal scheme is a topologically ringed space which is
locally of the form Spf A. We are only interested in the case that A is an
adic ring, meaning a topological ring which is separated and complete for
the topology induced by an ideal I ⊂ A, called an ideal of definition. For
an adic ring A, Spf A is the set of open prime ideals of A. This is given a
topology and a sheaf of topological rings much in the same way as is done
for the usual spectrum of a ring. The category of formal schemes contains
the category of schemes as a full subcategory, via a functor which carries
SpecA onto Spf A, where A is considered with its discrete topology.

The goal here is to construct a category which contains formal schemes
and their generic fibers (which are often rigid spaces) as full subcategories.
There is a fully faithful functor X 7→ Xad from the category of formal
schemes1 to the category of adic spaces. Before giving precise definitions,
let us explain a typical example.

The formal scheme Spf Zp is a one-point space (consisting of the open
prime ideal pZp). Its corresponding adic space (Spf Zp)

ad has two points: a
generic point η and a special point s. Thus as a topological space it is the
same as Spec Zp.

If X is a formal scheme over Spf Zp, then we can define the generic fibre
of X by setting

Xη = Xad ×(Spf Zp)ad {η} .

For instance if X = Spf Zp[[T ]] is the formal open unit disc over Zp, then Xη

is the “adic open disc” over Qp. It contains as points all Gal(Qp/Qp)-orbits

of elements x ∈ Qp with |x| < 1 (and many more exotic points besides these).
The construction is in very much the same spirit as Berthelot’s generic fibre
functor, for which the reference is Berthelot’s paper Cohomologie rigide et
cohomologie rigide à supports propres.

Just as schemes are built out of affine schemes associated to rings, adic
spaces are built out of affinoid adic spaces associated to pairs of rings

1At least, this functor is well-defined on formal schemes X whose topology is locally
defined by a finitely generated ideal. Everything is fine for locally noetherian formal
schemes, but many of the objects we will consider are not at all noetherian.
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(A,A+). The affinoid adic space associated to such a pair is written Spa(A,A+),
the adic spectrum.

Today we will define which pairs (A,A+) are allowed, and define Spa(A,A+)
as a topological space.

2.2 Huber rings

Definition 2.2.1. A topological ring A is Huber2 if A admits an open sub-
ring A0 ⊂ A which is adic with respect to a finitely generated ideal of
definition. That is, there exists a finitely generated ideal I ⊂ A0 such that
{In|n ≥ 0} forms a basis of open neighborhoods of 0. Any such A0 is called
a ring of definition of A.

Note that A is not assumed to be I-adically complete. One can always
take the I-adic completion Â and the theory remains essentially unchanged:
Â is f -adic, and Â0 ⊂ Â is just the closure of A0, which is lim←−A0/I

n.
We now give three examples to indicate that adic spaces encompass

schemes, formal schemes, and rigid spaces, respectively.

1. (Schemes) Any discrete ring A is Huber, with any A0 ⊂ A allowed
(take I = 0 as an ideal of definition).

2. (Formal schemes) An adic ring A is Huber if it has a finitely generated
ideal of definition. In that case, A0 = A is a ring of definition.

3. (Rigid spaces) Let A0 be any ring, let g ∈ A0 be a nonzero-divisor, and
let A = A0[g−1], equipped with the topology making {gnA0} a basis
of open neighborhoods of 0. This is Huber, with ring of definition A0

and ideal of definition gA0. For example, if A is a Banach algebra over
a nonarchimedean field K, we can take A0 ⊂ A to be the unit ball,
and g ∈ K an nonzero element with |g| < 1. Then A is a Huber ring
of this type.

The Banach algebras relevant to rigid analytic geometry arise as quo-
tients of the Tate algebra A = Qp〈T1, . . . , Tn〉, consisting of power series in
T1, . . . , Tn whose coefficients tend to 0. This is a Banach Qp-algebra with
unit ball A0 = Zp〈T1, . . . , Tn〉.

Definition 2.2.2. A subset S of a topological ring A is bounded if for all
open neighborhoods U of 0 there exists an open neighborhood V of 0 such
that V S ⊂ U .

2We propose to use the term Huber ring to replace Huber’s terminology f-adic ring.
The latter poses a slight threat of confusion since there is no variable f .
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In verifying this condition for subsets of Huber rings, you are allowed to
shrink U , and without loss of generality you may assume that U is closed
under addition, because after all {In} forms a basis of open neighborhoods
of 0.

Lemma 2.2.3. A subring A0 of a Huber ring A is a ring of definition if
and only if it is open and bounded.

Proof. If A0 is a ring of definition, it is open (by definition). Let U be
an open neighborhood of 0 in A. Without loss of generality U = In, with
n� 0. But then of course V = In suffices.

The converse is left as an easy exercise.

Definition 2.2.4. A Huber ring A is Tate if it contains a topologically
nilpotent unit g ∈ A.

Proposition 2.2.5. 1. If A = A0[g−1] is as in Example 3, then A is
Tate.

2. If A is Tate with topologically nilpotent unit g, and A0 ⊂ A is any
ring of definition, then there exists n large enough so that gn ∈ A0,
and then A0 is gn-adic. Furthermore A = A0[(gn)−1].

3. Suppose A is Tate with g as above and A0 a ring of definition. A
subset S ⊂ A is bounded if and only if S ⊂ g−nA0 for some n.

Proof. 1. Since g ∈ A = A0[g−1] is a topologically nilpotent unit, A is
Tate by definition.

2. Let I ⊂ A0 be an ideal of definition. Since g is topologically nilpotent,
we can replace g by gn for n large enough to assume that g ∈ I. Since
gA0 is the preimage of A0 under the continuous map g−1 : A → A,
we have that gA0 ⊂ A0 is open, and thus it contains Im for some m.
Thus we have gmA0 ⊂ Im ⊂ gA0, which shows that A0 is g-adic.

It remains to show that A = A0[g−1]. Clearly A0[g−1] ↪→ A. If x ∈ A
then gnx→ 0 as n→∞, since g is topologically nilpotent. Thus there
exists n with gnx ∈ A0, and therefore x ∈ A0[g−1].

3. Left as exercise.
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We remark that if A is a complete Tate ring and A0 ⊂ A is a ring of
definition, with g ∈ A0 a topologically nilpotent unit in A, then one can
define a norm |·| : A→ R≥0 by

|a| = inf
n: gna∈A0

2n

Thus |g| = 1/2 and
∣∣g−1

∣∣ = 2. Note that this really is a norm: if |a| = 0,
then a ∈ gnA0 for all n ≥ 0, and thus a = 0. Under this norm, A is a
Banach ring with whose unit ball is A0.

Note that this norm is not in general multiplicative. If A = Qp(
√
p) and

g = p, then the above definition gives
∣∣√p∣∣ = 1, but |p| = 1/2. One can fix

this by considering the modification

|a| = inf
n,m: gnam∈A0

2n/m,

which gives the “correct” norm on Qp(
√
p). But also note that if A =

Qp〈X,Y 〉/(XY − p), with ring of definition A0 = Zp〈X,Y 〉/(XY − p), then
the above definition gives |X| = |Y | = 1, but |XY | < 1. The most we can
really say in generality is that |g|

∣∣g−1
∣∣ = 1.

This construction gives an equivalence of categories between the category
of separated and complete Tate rings (with continuous homomorphisms),
and the category of Banach rings A which admit an element g ∈ A×, |g| < 1
such that |g|

∣∣g−1
∣∣ = 1 (with bounded homomorphisms).

Definition 2.2.6. Let A be a Huber ring. An element x ∈ A is power-
bounded if {xn|n ≥ 0} is bounded. Let A◦ ⊂ A be the subring of power-
bounded elements (one checks easily that it really is a ring).

Example 2.2.7. If A = Qp〈T 〉, then A◦ = Zp〈T 〉, which as we have seen is
a ring of definition. However, if A = Qp[T ]/T 2, then A◦ = Zp⊕QpT . Since
A◦ is not bounded, it cannot be a ring of definition.

Proposition 2.2.8. 1. Any ring of definition A0 ⊂ A is contained in
A◦.

2. A◦ is the filtered direct limit of the rings of definition A0 ⊂ A. (The
word filtered here means that any two subrings of definition are con-
tained in a third.)

Proof. 1. For any x ∈ A0, {xn} ⊂ A0 is bounded, so x ∈ A◦.

13



2. The poset of rings of definition is filtered: if A0, A′0 are rings of defini-
tion, let A′′0 = A0A

′
0 be the ring they generate. We show directly that

A′′0 is bounded. Let U ⊂ A be an open neighborhood of 0; we have
to find V such that V A′′0 ⊂ U . Without loss of generality, U is closed
under addition. Pick U1 such that U1A0 ⊂ U , and pick V such that
V A′0 ⊂ U1.

A typical element of A′′0 is
∑

i xiyi, with xi ∈ A0, yi ∈ A′0. We have(∑
i

xiyi

)
V ⊂

∑
i

(xiyiV ) ⊂
∑
i

(xiU1) ⊂
∑
i

U = U.

Thus V A′′0 ⊂ U and A′′0 is bounded.

For the claim that A◦ is the union of the rings of definition of A: Let
x ∈ A◦, and let A0 be any ring of definition. Then A0[x] is still a ring
of definition, since it is still bounded.

Definition 2.2.9. A Huber ring A is uniform if A◦ is bounded, or equiva-
lently A◦ is a ring of definition.

We remark that if A is Tate and uniform, then A is reduced.

Definition 2.2.10. 1. Let A be a Huber ring. A subring A+ ⊂ A is a
ring of integral elements if it is open and integrally closed and A+ ⊂
A◦.

2. An affinoid ring is a pair (A,A+), where A is Huber and and A+ ⊂ A
is a ring of integral elements.

We remark that it is often the case that A+ = A◦. On first reading one
may make this assumption.

2.3 Continuous valuations

Definition 2.3.1. A continuous valuation on a topological ring A is a map

|·| : A→ Γ|·| ∪ {0}

into a totally ordered abelian group such that

1. |ab| = |a| |b|

2. |a+ b| ≤ max(|a| , |b|)

14



3. |1| = 1

4. |0| = 0

5. (Continuity) For all γ ∈ Γ|·|, {a ∈ A| |a| < γ} is open in A.

(Our convention is that ordered abelian groups Γ are written multiplica-
tively, and Γ ∪ {0} means the ordered monoid with γ > 0 for all γ ∈ Γ. Of
course, γ0 = 0.)

Two continuous valuations are equivalent if |a| ≥ |b| if and only if |a|′ ≥
|b|′. In that case, after replacing Γ|·| by the subgroup generated by the image
of A, and similarly for Γ|·|′ , there exists an isomorphism Γ|·| ∼= Γ|·|′ such that

Γ|·| ∪ {0}

∼=

��

A

|·| ::

|·|′ $$
Γ|·|′ ∪ {0}

commutes.
Note that the kernel of |·| is an ideal of A.
Thus continuous valuations are like the multiplicative seminorms of Berkovich’s

theory. At this point we must apologize that continuous valuations are not
called “continuous norms”, since after all they are written multiplicatively.
On the other hand, we want to consider value groups of higher rank (and
indeed this is the point of departure from Berkovich’s theory), which makes
the use of the word “norm” somewhat awkward.

Definition 2.3.2. Spa(A,A+) is the set of equivalence classes of continuous
valuations |·| on A such that |A+| ≤ 1.

For x ∈ Spa(A,A+), write g 7→ |g(x)| for a choice of corresponding
valuation.

The topology on Spa(A,A+) is generated by open subsets of the form{
x

∣∣∣∣ |f(x)| ≤ |g(x)| 6= 0

}
,

with f, g ∈ A.

15



The shape of these open sets is dictated by the desired properties that
both {x| |f(x)| 6= 0} and {x| |f(x)| ≤ 1} be open. These desiderata combine
features of classical algebraic geometry and rigid geometry, respectively.

Huber shows that the topological space Spa(A,A+) is reasonable (at
least from the point of view of an algebraic geometer!).

Definition 2.3.3 ([Hoc69]). A topological space T is spectral if the following
equivalent conditions are satisfied.

1. T ∼= SpecR for some ring R.

2. T ∼= lim←−Ti where Ti is a finite T0-space. (Recall that T0 means that
given any two points, there exists an open set which contains one but
not the other.)

3. There exists a basis of quasi-compact opens of T which is stable under
finite intersection, and also T is sober: every irreducible closed subset
has a unique generic point.

(Exercise: Let Ti be the topological space consisting of the first i primes
(taken to be closed), together with a generic point whose closure is all of
Ti. Let Spec Z → Ti be the map which sends the first i primes to their
counterparts in Ti, and sends everything else to the generic point. Then
there is a homeomorphism Spec Z ∼= lim←−Ti.)

Example 2.3.4. Let R be a discrete ring. Then Spa(R,R) is the set of
valuations on R bounded by 1. We list the points of Spa(Z,Z):

1. A point η, which takes all nonzero integers to 1,

2. A special point sp for each prime p, which is the composition Z →
Fp → {0, 1}, where the second arrow sends all nonzero elements to 1,

3. A point ηp for each prime p, which is the composition Z → Zp →
pZ≤0 ∪ {0}, where the second arrow is the usual p-adic absolute value.

Then {sp} is closed, whereas {ηp} = {ηp, sp}, and {η} = Spa(Z,Z).

In general we have a map SpecR → Spa(R,R), which sends p to the
valuation R → Frac(R/p) → {0, 1}, where the second map is 0 on 0 and
1 everywhere else. There’s also a map Spa(R,R) → SpecR, which sends a
valuation to its kernel. The composition of these two maps is the identity
on SpecR.
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In fact we get a fully faithful functor from schemes to adic spaces in
general.

One final remark: if K is a field, a subring R ⊂ K is a valuation ring
if whenever f ∈ K×\R, we have f−1 ∈ R. If A ⊂ K is any subring,
the Zariski-Riemann space Zar(K,A) is the set of valuation rings R ⊂ K
containing A. This set is given a topology which makes Zar(K,A) a quasi-
compact ringed space (see Matsumura, Commutative Ring Theory, Thm.
10.5). As an application, if K is a function field with field of constants
k (meaning that K/k is purely transcendental of transcendence degree 1),
then Zar(K, k) is the smooth projective curve over k whose function field is
K.

Each valuation ring R ∈ Zar(K,A) induces a continuous valuation | |R ∈
Spa(K,A), where K is given the discrete topology, here Γ| |R is the value
group of R (i.e., the lattice of R-submodules of K of the form fR, f ∈ K,
and then |f |R = fR. Conversely, every continuous valuation x ∈ Spa(K,A)
gives rise to a valuation ring R = {f ∈ K| |f(x)| ≤ 1} which contains A. We
get a homeomorphism Zar(K,A) ∼= Spa(K,A).

3 Adic spaces II, 9 September

3.1 Complements on the topological space Spa(A,A+)

Arthur Ogus asked about the following tricky lemma, which helps show why
the Huber condition is so important.

Lemma 3.1.1. Let A be a ring, let M be an A-module, and let I ⊂ A be a
finitely generated ideal. Then for

M̂ = lim←−M/InM

the I-adic completion of M , one has M̂/IM̂ = M/IM .

This implies that M̂ is I-adically complete.

Proof. Stacks project, Lemma 10.91.7.

Today we define a structure (pre)sheaf OX on X = Spa(A,A+). The
reference is [Hub94].

Recall from last time:

1. A Huber ring is a topological ring A which admits an open subring
A0 ⊂ A which is adic with finitely generated ideal of definition.
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2. A Huber pair is a pair (A,A+), where A is a Huber ring and A+ ⊂ A
is open and integrally closed.

Last time we constructed a topological space X = Spa(A,A+) consisting
of equivalence classes of continuous valuations |·| on A such that |A+| ≤ 1.

Theorem 3.1.2 (Huber). X is spectral (i.e. quasicompact, sober, and there
is a basis for its topology consisting of quasicompact open subsets which is
stable under intersection.

Proposition 3.1.3. Let (Â, Â+) be the completion of (A,A+). Then there
is a homeomorphism

Spa(Â, Â+) ∼= Spa(A,A+).

Today, all Huber pairs will be assumed complete. The next proposition
shows that the adic spectrum Spa(A,A+) is “large enough”:

Proposition 3.1.4. 1. If A 6= 0 then Spa(A,A+) is nonempty.

2. A+ = {f ∈ A| |f(x)| ≤ 1, for all x ∈ X}.

3. f ∈ A is invertible if and only if for all x ∈ X, |f(x)| 6= 0.

3.2 Rational Subsets

Definition 3.2.1. Let s1, . . . , sn ∈ A and let T1, . . . , Tn ⊂ A be finite sub-
sets such that TiA ⊂ A is open for all i. We define a subset

U

({
Ti
si

})
= U

(
T1

s1
, . . . ,

Tn
sn

)
= {x ∈ X| |ti(x)| ≤ |si(x)| 6= 0, for all ti ∈ Ti}

This is open because it is an intersection of a finite collection of the sort of
opens which generate the topology on X. Subsets of this form are called
rational subsets.

Note that a finite intersection of rational subsets is again rational, just
by concatenating the data that define the individual rational subsets.

The following theorem shows that rational subsets are themselves adic
spectra.

Theorem 3.2.2. Let U ⊂ Spa(A,A+) be a rational subset. Then there
exists a complete Huber pair (A,A+)→ (OX(U),O+

X(U)) such that the map
Spa(OX(U),O+

X(U)) → Spa(A,A+) factors over U , and is universal for
such maps. Moreover this map is a homeomorphism onto U . In particular,
U is quasi-compact.
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Proof. (Sketch.) Choose si and Ti such that U = U({Ti/si}). Choose
A0 ⊂ A a ring of definition, I ⊂ A0 a finitely generated ideal of definition.
Take (A,A+) → (B,B+) such that Spa(B,B+) → Spa(A,A+) factors over
U . Then

1. The si are invertible in B, so that we get a map A[{1/si}]→ B.

2. All ti/si are of |·| ≤ 1 everywhere on Spa(B,B+), so that ti/si ∈ B+ ⊂
B◦.

3. Since B◦ is the inductive limit of the rings of definition B0, we can
choose a B0 which contains all ti/si. We get a map

A0[ti/si|i = 1, . . . , n, ti ∈ Ti]→ B0.

Endow A0[{ti/si}] with the IA0[{ti/si}]-adic topology.

Lemma 3.2.3. This defines a ring topology on A[{1/si}] making A0[{ti/si}]
an open subring.

The crucial point is to show that there exists n such that 1
si
In ⊂ A0[{ti/si}],

so that multiplication by 1/si can be continuous. It is enough to show that
In ⊂ TiA0.

Lemma 3.2.4. If T ⊂ A is a subset such that TA ⊂ A is open, then TA0

is open.

Proof. After replacing I with some power we may assume that I ⊂ TA.
Write I = (f1, . . . , fk). There exists a finite set R such that f1, . . . , fk ∈ TR.

Since I is topologically nilpotent, there exists n such that RIn ⊂ A0.
Then for all i = 1, . . . , k, fiI

n ⊂ TRIn ⊂ TA0. Sum this over all i and
conlude that In+1 ⊂ TA0.

Back to the proof of the proposition. We haveA[{1/si}], a (non-complete)
Huber ring. Let A[{1/si}]+ be the integral closure of the image of A+[{t/si}]
in A[{1/si}].

Let (A〈{Ti/si}〉, A〈{Ti/si}〉+) be its completion, a Huber pair. This has
the desired universal property.

For the claim that Spa of this pair is homeomorphic to U : Use that Spa
doesn’t change under completion. (Also that the operation of taking the
integral closure doesn’t change much, either.)
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Definition 3.2.5. Define a presheaf OX of topological rings on Spa(A,A+):
If U ⊂ X is rational, OX(U) is as in the theorem. On a general open W ⊂ X,
we put

OX(W ) = lim←−
U⊂W rational

OX(U).

One defines O+
X similarly.

Proposition 3.2.6. For all U ⊂ Spa(A,A+),

O+
X(U) = {f ∈ OX(U)| |f(x)| ≤ 1, all x ∈ U} .

In particular O+
X is a sheaf if OX is.

Theorem 3.2.7. OX is a sheaf in the following situations.

1. (Schemes) A is discrete.

2. (Formal schemes) A is finitely generated (as an algebra) over a noethe-
rian ring of definition. This includes the case when X comes from a
noetherian formal scheme.

3. (Rigid spaces) A is Tate and strongly noetherian: the rings

A〈X1, . . . , Xn〉 =

 ∑
i=(i1,...,in)≥0

aiT
i

∣∣∣∣ ai ∈ A, ai → 0


are noetherian for all n ≥ 0.

Example 3.2.8. A = Cp is not covered by case 2, because OCp is not
noetherian. But Cp〈T1, . . . , Tn〉 is noetherian, so case 3 applies. The same
goes for A = Cp〈T1, . . . , Tn〉.

3.3 Example: the adic open unit disc over Zp

Let us make the following convenient abbreviation: whenever A is a Huber
ring, write SpaA for Spa(A,A◦).

The adic spectrum Spa Zp consists of two points, a special point and a
generic point. The same is true for Spa(Fp[[T ]],Fp[[T ]]) (or SpaA for any
DVR A for that matter).

But now consider A = Zp[[T ]] with the (p, T )-adic topology; this is a
complete regular local ring of dimension 2. Then SpaA falls under case (2)
of Thm. 3.2.7. Let us try to describe X = SpaA.
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There is a unique point xFp ∈ X whose kernel is open. It is the com-
position Zp[[T ]] → Fp → {0, 1}, where the second arrow is 1 on nonzero
elements. Let Y = X\

{
xFp
}

. All points in Y have non-open kernel, i.e.
they are analytic.

Definition 3.3.1. Let (A,A+) be a Huber pair. A point x ∈ Spa(A,A+)
is non-analytic if the kernel of |·|x is open. That is, x comes from SpecA/I
for an open ideal I. Otherwise we say x is analytic.

Suppose A0 ⊂ A is a ring of definition, and I ⊂ A0 is an ideal of
definition. If x ∈ Spa(A,A+) is analytic, then the kernel of |·|x, not being
open, cannot contain I. Thus there exists f ∈ I such that |f(x)| 6= 0. Let
γ = |f(x)| ∈ Γ = Γx. Since fn → 0 as n → ∞, we must have |f(x)|n → 0.
This means that for all γ′ ∈ Γ there exists n� 0 such that γn < γ′.

Lemma 3.3.2. Let Γ be a totally ordered abelian group, and let γ < 1 in
Γ. Suppose that for all γ′ ⊂ Γ there exists n � 0 such that γn < γ′. Then
there exists a unique order-preserving map Γ→ R≥0 which sends γ 7→ 1/2.
(The kernel of this map consists of elements which are “infinitesimally close
to 1”.)

Proof. Exercise.

As an example, if x has value group Γx = R>0 × δZ where r < δ < 1
for all r ∈ R, r < 1, then the map Γx → R>0 of the lemma is just the
projection.

Thus, any analytic point x gives rise to x̃ : A→ R≥0. (The equivalence
class of x̃ will be well-defined.)

Lemma 3.3.3. The point x̃ is the maximal generalization of x. Note that
x and x̃ define the same topology on A.

Proof. If U = {|f(y)| ≤ |g(y)| 6= 0} contains x then it also contains x̃, so
that x̃ is a generalization of x. The maximality of x̃ is an exercise.

In particular if x is an analytic point let K(x) be the completion of
Frac(A/ ker(x)) with respect to | |x is a nonarchimedean field in the following
sense.

Definition 3.3.4. A nonarchimedean field is a complete nondiscrete topo-
logical fieldK whose topology is inudced by a nonarchimedean norm | | : K →
R≥0.
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For x ∈ X, let K(x) be the completion of Frac(A/ ker |·|x) with respect to
| |x. The lemma shows that if x is analytic, then K(x) is a nonarchimedean
field. At non-analytic points of x, K(x) is discrete. (In the situation of the
special point s of our example, K(s) = Fp.)

Let us return to our example Y = X\
{
xFp
}

, with X = Spa(A,A) and
A = Zp[[T ]]. For x ∈ Y , we have that |T (x)| and |p(x)| cannot both be zero.
Both are elements of the value group which are topologically nilpotent. We
can measure their relative position as an element of [0,∞].

Proposition 3.3.5. There is a unique continuous surjection

κ : Y → [0,∞]

characterized by the following property: κ(x) = r if and only for all rational
numbers m/n > r, |T (x)|n ≥ |p(x)|m, and for all m/n < r, |T (x)|n ≤
|T (x)|m.

Proof. (Sketch.) Any x ∈ Y is analytic, so there exists a maximal general-
ization x̃ which is real-valued. We define

κ(x) =
log |T (x̃)|
log |p(x̃)|

∈ [0,∞].

The numerator and denominator both lie in [−∞, 0), with at most one being
equal to −∞, so the quotient is indeed well-defined in [0,∞]. We have
κ(x) = 0 if and only if |p(x)| = 0, which is to say that |·|x factors through
Fp[[T ]]. Similarly κ(x) = ∞ if and only if |·|x factors through Zp[[T ]] → Zp,
T 7→ 0.

To check continuity: look at the preimage of (m/n,∞]. It is the set
of x ∈ Y such that |Tm(x)| ≤ |pn(x)| 6= 0, which is open by definition.
Similarly for (0,m/n).

For an interval I ⊂ [0,∞], let YI = κ−1(I). Thus Y(0,∞] is the locus
p 6= 0. This is the generic fibre of SpaA over Spa Zp. It is not quasi-compact
(otherwise its image under κ would lie in a compact interval), and in par-
ticular it is not affinoid.

One might think that Spa(Zp[[T ]][1/p],Zp[[T ]]) should be the generic fibre
of SpaA. But Zp[[T ]][1/p] isn’t even a Huber ring! If one gives Zp[[T ]][1/p] the
topology induced from the (p, T )-adic topology of Zp[[T ]], then p−1Tn → 0.
Since this sequence never enters Zp[[T ]], we can conclude that Zp[[T ]] isn’t
even open.
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T = 0

p = 0

xQp

xFp((T ))
xFp

κ

∞

0

Figure 1: A depiction of SpaA, where A = Zp[[T ]]. The two closed subspaces
Spa Fp[[T ]] and Spa Zp appear as the x-axis and y-axis, respectively. Their
intersection is the unique non-analytic point xFp of SpaA. The complement
of xFp in SpaA is the adic space Y, on which the continuous map κ : Y →
[0,∞] is defined.
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Also, Zp[[T ]][1/p] would have to be Tate (as p is a topologically nilpotent
unit), but we have seen that any ring of definition of a Tate ring has ideal
of definition generated by one element, in this case p. But the topology on
Zp[[T ]] is not the p-adic one.

To get affinoid subsets of Y[0,∞), we need to impose some condition
|Tn| ≤ |p|. This is equivalent to exhausting Y(0,∞] by all

Y[1/n,∞] = Spa(Qp〈T, Tn/p〉,Zp〈T, Tn/p〉).

This is indeed a rational subset, because (Tn, p) is an open ideal.
This picture may seem rather esoteric, but it is really necessary to study

it. As we progress in the course, we will encounter adic spaces similar to
Y which are built out of much stranger rings, but for which the picture is
essentially the same.

4 General adic spaces, 11 September

4.1 Honest adic spaces

Today3 we will finally define what an adic space is. So far, we have defined
the notion of a Huber pair (A,A+), a topological space X = Spa(A,A+),
its presheaf of topological rings OX , and the subpresheaf O+

X . Moreover, for
each x ∈ X, we have an equivalence class of continuous valuations |·(x)| on
OX,x.

Remark 4.1.1. There are examples due to Rost (see [Hub94], end of §1)
where OX is not a sheaf. See [BV] and [Mih] for further examples.

Definition 4.1.2. A Huber pair (A,A+) is sheafy if OX is a sheaf of topo-
logical rings. (This implies that O+

X is a sheaf.)

Recall that a scheme is a ringed space which locally looks like the spec-
trum of a ring. An adic space will be something similar. First we have to
define the adic version of “ringed space”. Briefly, it is a locally topologically
ringed topological space equipped with valuations.

Definition 4.1.3. We define a category (V) as follows. The objects are
triples (X,OX , (|·(x)|)x∈X), where X is a topological space, OX is a sheaf

3Much of the content of this lecture was intended to provide a unified formalism for the
definitions of general adic space and diamond. Since then the definitions of those concepts
have evolved somewhat, to the point that the reader who wishes to learn these concepts
may skip this lecture.
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of topological rings, and for each x ∈ X, |·(x)| is an equivalence class
of continuous valuations on OX,x. (Note that this data determines O+

X .)
The morphisms are maps of locally topologically ringed topological spaces
f : X → Y (so that the map OY (f−1(U)) → OX(U) is continuous for each
open U ⊂ X), which make the following diagram commute up to equiva-
lence:

OY,f(x)
//

��

OX,x

��
Γf(x) ∪ {0} // Γx ∪ {0}

An honest adic space4 is an object (X, . . . ) of (V) which admits a covering
by spaces Ui such that the triple (Ui,OX |Ui , (|·(x)|)x∈U ) is isomorphic to
Spa(Ai, A

+
i ) for a sheafy Huber pair (Ai, A

+
i ).

For sheafy (A,A+), the topological space X = Spa(A,A+) together with
its structure sheaf and continuous valuations is an affinoid adic space, which
we continue to write as Spa(A,A+).

Proposition 4.1.4. The functor (A,A+) 7→ Spa(A,A+) from sheafy com-
plete Huber pairs to adic spaces is fully faithful.

Proof. From the adic spaceX = Spa(A,A+) one can recoverA asH0(X,OX),
and similarly A+. Therefore if Y = Spa(B,B+) is given, a map X → Y
induces a map (B,B+)→ (A,A+). So we get a map

Hom(Spa(A,A+), Spa(B,B+))→ Hom((B,B+), (A,A+)).

For a proof that this is inverse to the natural map in the other direction,
see Huber, A generalization of formal schemes and rigid analytic varieties,
Prop. 2.1(i).

4.2 General adic spaces: an overview

What can be done about non-sheafy Huber pairs (A,A+)? It really is a
problem that the structure presheaf on Spa(A,A+) isn’t generally a sheaf.
It ruins any hope of defining a general adic space as what you get when
you glue together spaces of the form Spa(A,A+); indeed, without the sheaf
property this gluing doesn’t make any sense.

Here are some of our options for how to proceed:

4This is what Huber simply calles an adic space.
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1. Ignore them. Maybe non-sheafy Huber pairs just don’t appear in
nature, so to speak.

2. It may be possible to redefine the structure sheaf on X = Spa(A,A+)
so that for a rational subset U , OX(U) is formed using a henselization
rather than a completion. Then it might be possible to show that OX
is always a sheaf. However, proceeding this way diverges quite a bit
from the classical theory of rigid spaces.

3. Construct a larger category of adic spaces using a “functor of points”
approach. This is analogous to the theory of algebraic spaces, which
are functors on the (opposite) category of rings which may not be
representable.

We take (what else?) the third approach. There is some abstract non-
sense to grapple with, but the virtue of it is that it is conceptually unified
with other constructions (such as algebraic spaces), and we will also use it
to define the category of diamonds.

The problem is that the structure presheaf on X = Spa(A,A+) can fail to
be a sheaf. This suggests that the solution might be a kind of sheafification
of X. It is tempting to simply keep the topological space X and use the
sheafification of OX to arrive at an object of the category (V), but then one
runs into problems: for instance, the analogue of Prop. 4.1.4 will fail in
general.

Instead we take a “Yoneda-style” point of view. Let CAff be the category
of complete Huber pairs5, where morphisms are continuous homomorphisms.
Let CAffop be the opposite category. An object X = (A,A+)op of CAffop

induces a set-valued covariant functor hX on CAffop, by Y 7→ HomC(X,Y ).
Rather than sheafifying OX , we sheafify this functor. In order for this to
make sense, we need to give CAffop a topology which turns it into a site. In
this topology, “opens” in X = (A,A+)op come from rational subsets, and
“covers” of X come from families of rational subsets which cover X. We can
then define Spa(A,A+) as the sheafification of the functor hX .

Then we must define adic spaces in general, as a special class of sheaves
F on the site CAffop. The idea is that F should be considered an adic space
if it is formed by gluing together “open subsets” which are each of the form
Spa(A,A+). However, one needs to make sense of what an open subset of
F is, and also what gluing means, which is a little bit subtle. In the end

5This notation appears in [SW13], and anyway recall that Huber calls such objects
affinoid algebras.
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one arrives at a category Adic, together with a morphism CAffop → Adic
which is fully faithful on the full subcategory consisting of objects (A,A+)op,
where (A,A+) is sheafy.

In fact we will generalize this story to an arbitrary category C equipped
with some extra structures, to arrive at a category of “C-spaces”.

4.3 Direct limits

In order to glue basic objects together to get more general ones, we will
make heavy use of the notion of a direct limit in a category.

Let I and C be categories. We will think of I as being a diagram, whose
objects are meaningless indices, whereas C will be a category of geometric
objects. In pratice, I is often a small category. A functor D : I → C is
called a diagram in C of type I, and an object X of C is a colimit of D if
there is a morphism D(i) → X for every object i of I making all possible
diagrams commute, and if X is the initial such object.

Example: Let C be the category of schemes, and let I be the category
containing two objects 0, 1 and two morphisms 0 ⇒ 1. An instance of a
diagram in C of type I is Gm ⇒ A1

∐
A1, where the two maps are z 7→ z±1

into the respective copies of A1. The colimit of this diagram is P1. Colimits
of this type are called coequalizers; we will use the notation Coeq(X ⇒ Y ).

We say that I is a directed (or filtered) category if every pair of objects
admits a morphism into a common object, and if for every pair of morphisms
i⇒ j there exists a morphism j → k for which the two composite morphisms
agree. A diagram in X whose index category I is directed is called a directed
system. The colimit X of a directed system is a direct limit. If Xi = D(i),
we write X = lim−→Xi.

Examples: in the category of sets, every set is the direct limit of a
diagram of finite sets, where the morphisms are inclusions. In the category
of topological spaces, R is the direct limit of the system of intervals [−n, n],
where n ≥ 0. Thus a direct limit captures the idea of a “increasing union”.

4.4 Categories with étale morphisms

Definition 4.4.1. A category with étale morphisms is a category C endowed
with a special class of morphisms, which we will call “C-étale”. These will
be assumed to satisfy:

1. Isomorphisms are C-étale.

2. Compositions of C-étale morphisms are C-étale.
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3. If

X

h   

f // X ′

g
~~

Y

with g and h C-étale, then f is C-étale as well.

4. Suppose X ′ → X is C-étale, and Y → X is any morphism. Then the
fibre product X ′×X Y is ind-representable in C in the following sense:
there exists a directed system of C-étale morphisms Y ′i → Y , which
fit compatibly into diagrams

Y ′i
//

��

Y

��
X ′ // X,

such that the induced map of functors

lim−→hY ′i → hX′ ×hX hY

is an isomorphism.

Condition 4 deserves some explanation. If it were the case that pullbacks
of C-étale morphisms existed and were C-étale, then this condition would
be satisfied: the directed system would consist of the single object X ′×X Y .
Examples of categories of étale morphisms where this happens include the
class of open immersions in the category of topological spaces, and the class
of étale morphims in the category of schemes.

However, we are interested in the category C = CAffop. We define C-
étale morphisms to be those of the form

(
(A,A+)→ (OX(U),O+

X(U))
)op

with U ⊂ X = Spa(A,A+) a rational subset. It is not necessarily the
case that the pullback of a C-étale morphism even exists! Indeed, let X =
(Zp,Zp)

op, and let X ′ = (Qp,Zp)
op be its generic point. This is a rational

subset, so that X ′ → X is C-étale. Let Y = Spa(Zp[[T ]],Zp[[T ]]). Presumably
X ′×XY is supposed to be the generic fibre of Y (though we have not defined
it precisely yet). As we have seen, this is not quasicompact, and therefore
cannot come from a Huber pair. However, this generic fibre is exhausted
by an increasing sequence of rational subsets, namely those defined by the
conditions |Tn(x)| ≤ |p(x)| 6= 0 for n = 1, 2, . . . . This is the phenomenon
captured by condition 4.
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Lemma 4.4.2. Condition 4 is satisfied for CAffop.

Proof. Let (A,A+) be a complete Huber pair, and let X = (A,A+)op. Let
U ({Ti/si}) ⊂ X be a rational subset, where T1, . . . , Tk ⊂ A are finite subsets
such that TiA ⊂ A is open and si ∈ A for i = 1, . . . , k. Let (A′, A

′+) =
(OX(U),O+

X(U)), so that A′ = A〈{Ti/si}〉. Let X ′ = (A′, A
′+)op, so that

X ′ → X is C-étale.
Now suppose we have a commutative diagram in CAffop of the form

Y ′ //

��

Y

��
X ′ // X,

where Y → X corresponds to a morphism λ : (A,A+) → (B,B+) of com-
plete Huber pairs, and Y ′ = (B′, B

′+). The image of Spa(B′, B
′+) in

Spa(B,B+) is contained in the preimage of Spa(A′, A
′+) in Spa(B,B+),

which is

V =
{
x ∈ Spa(B,B+)| |λ(Ti)(x)| ≤ |λ(si)(x)| 6= 0, i = 1, . . . , k

}
This does not necessarily describe a rational subset of Spa(B,B+), because
λ(Ti)B ⊂ B might not be open. Suppose B0 ⊂ B is a ring of definition,

and I ⊂ B0 is an ideal of definition. For n ≥ 1 let S
(n)
i = λ(Ti) ∪ In. Then

clearly S
(n)
i B ⊂ B is open. Let

Vn = U
({
S

(n)
i /si

})
=
{
y ∈ Spa(B,B+)| |ti(y)| ≤ |si(y)| 6= 0, ti ∈ S(n)

i

}
,

a rational subset of Spa(B,B+) contained in V . We claim that V =
⋃
n Vn.

Indeed, let y ∈ V . Since elements of I are topologically nilpotent, I is finitely
generated, and |·(y)| : B → Γy ∪ {0} is continuous, we can say that for all
γ ∈ Γ, there exists n � 0 such that |f(y)| ≤ γ for all f ∈ In. In particular
there exists n � 0 such that |f(y)| ≤ |si(y)| for all f ∈ In, i = 1, . . . , k.
Then y ∈ Vn.

Since the Vn cover V , and the image of Spa(B′, B
′+) in Spa(B,B+) is

a quasi-compact subset of V , we conclude that Spa(B′, B
′+)→ Spa(B,B+)

factors through Vn for some n. Let (B′n, B
′+
n ) be the Huber pair correspond-

ing to Vn. By Thm. 3.2.2, (B,B+)→ (B′, B
′+) factors through (B′n, B

′+
n ).

Then Y ′n = (B′n, B
′+
n )op is the desired directed system (in fact it is just a

sequence).
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Definition 4.4.3. An abstract étale site is a category with étale mor-
phisms C together with a special class of collections of C-étale morphisms
{Xi → X}, called covers, which satisfy the following properties:

1. Isomorphisms are covers.

2. Pullbacks of covers are covers, in the following sense: If {Xi → X} is a
cover, and Y → X is a morphism, then by Condition 4 in Defn. 4.4.1,
Xi ×X Y is ind-representable by a directed system Yij , with Yij → Y
being C-étale; then {Yij → Y } is a cover.

3. Compositions of covers are covers.

Examples include:

(A) Let C be opposite to the category of commutative rings, with C-étale
morphisms given by maps (A → A[f−1])op, with f ∈ A, where covers
are Zariski covers.

(B) Same C, but now C-étale means étale, and covers are étale covers.

(C) Let C = CAffop, where covers are topological covers by rational subsets.

(D) Let C be (V), with C-étale morphisms given by open embeddings, and
covers are open covers.

Recall the notion of a presheaf on a site C: it is simply a contravariant
set-valued functor F on C. We also want to give a precise definition of
a sheaf on C. Because the topology on C is a little strange (we did not
require that pullbacks of covers are covers), the definition of a sheaf has to
be adapted. Suppose F is a presheaf on C. If X1 → X and X2 → X are two
C-étale morphisms, then X1×XX2 is ind-representable by a directed system
Yi, and then we put6 F(X1 ×X X2) = lim←−F(Yi). (We remark, though, that
in our applications, the fibre product of two C-étale morphisms will always
exist as another C-étale morphism.)

6Brian Conrad points out that this definition raises some well-posedness issues because
it is not clear that this definition is independent of the system Yi. He points out, however,
that there is a broader notion of site defined (as in SGA) using “covering sieves”, which
defines sheaves without reference to fibre products. I have his assurance that this definition
of sheaf agrees with the ad hoc one I give here. Perhaps one day I will rewrite this lecture
using sieves, but the need is not so great: when we define diamonds, starting from the
category C of perfectoid spaces in characteristic p, there will be fibre products, so none of
these issues will arise. (JW)
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Definition 4.4.4. A presheaf F on an abstract étale site C is a sheaf if for
every cover {Xi → X}, the diagram

F(X)→
∏
i

F(Xi) ⇒
∏
ij

F(Xi ×X Xj)

represents the first arrow as the equalizer of the other two.

Our focus will now shift from objects of C to (set-valued) sheaves on C.

Definition 4.4.5. Let C be an abstract étale site.

1. For an object X of C, let X be the sheafification of the presheaf
Y 7→ HomC(Y,X). (In examples (A),(B) and (D), this is already a
sheaf. Those sites are subcanonical, meaning that every representable
presheaf is a sheaf.) If A is an object of Cop, we write Space(A) for
Aop.

2. A map f : F → G of sheaves on C is C-étale if for all X ∈ C and all
morphisms X → G, the pullback F ×G X → X can be written as the
colimit of a directed system of morphisms of the form Y → X, where
Y → X is C-étale.

3. A sheaf F on C is called a C-space if F is the colimit of a system of
C-étale morphisms of the form Xi → F .

In our examples:

(A) A C-space is a scheme.

(B) A C-space is an algebraic space.

(C) A CAffop-space is what we are now defining as a (general) adic space.

(D) A (V)-space is just an object of (V).

The category of sheaves is complete in the sense that limits always exist.
In particular if F → G and F ′ → G are two morphisms of sheaves, then the
fibre product F ×G F ′ always exists: its value on an object X of C is simply
F(X)×G(X) F ′(X).

Lemma 4.4.6. Let C be an abstract étale site. If Y → X is C-étale, then
Y → X is C-étale.
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Proof. (Sketch: we are going to assume that fibre products of C-étale mor-
phisms over a common base exist and are again C-étale, which is the case
for our applications.) Given a morphism X ′ → X, we have to check that
the pullback Y ×X X ′ → X ′ is C-étale. Such a morphism X ′ → X does
not necessarily arise from a morphism X ′ → X, because these objects are
defined as sheafifications. Rather, X ′ → X is specified by a C-étale cover
{X ′i → X ′} and maps X ′i → X, which agree locally on overlaps. This agree-

ment means that each X ′ij = X ′i ×X′ X ′j has a C-étale cover
{
X ′ijk → X ′ij

}
such that

X ′i

��
X ′ijk

==

  

X

X ′j

@@

commutes.
By the sheaf property, X ′ is the coequalizer of the diagram

∐
ijkX

′
ijk ⇒∐

iX
′
i. (The two arrows are X ′ijk → X ′ij followed by the respective projec-

tions on to X ′i and X ′j .) Now we consider the fibre product with Y . We are
going to use the fact that in a topos, taking fibre products commutes with
colimitscitation needed. We find that

Y ×X X ′ = Y ×X Coeq

∐
ijk

X ′ijk ⇒
∐
i

X ′i


= Coeq

Y ×X ∐
ijk

X ′ijk ⇒ Y ×X
∐
i

X ′i


Recall by Condition 4 that the fibre product Y ×X X ′i is ind-representable
by a directed system of objects which are C-étale over X ′i, and hence over
X ′. We conclude that Y ×X X ′ is a direct limit of sheaves7 attached to
objects which are C-étale over X ′, as required.

Let C and C ′ be abstract étale sites.

Lemma 4.4.7. Let F : C → C ′ be a functor which carries C-étale mor-
phisms onto C ′-étale morphisms, and which carries covers onto covers. Then

7This step requires further explanation, which I will add at some later date.
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one gets a canonical functor

F̃ : {C-spaces} →
{
C ′-spaces

}
such that F̃ (X) = F (X) for all objects X of C.

Proof. (Sketch.) The functor F , being a morphism of sites, pulls back
sheaves on C ′ to sheaves on C by the formula

F ∗(F) = sheafification of X 7→ lim−→
X′→F (X)

F(X ′).

To prove the lemma one needs to check that

1. If X is an object of C then F ∗(X) = F (X).

2. If f : F → G is a C-étale morphism of sheaves on C then F ∗(f) : F ∗(F)→
F ∗(G) is C-étale.

3. F ∗ maps C-spaces to C ′-spaces.

(Thus in examples A and B, the morphism of sites, which takes Zariski covers
to étale covers, induces the functor which takes a scheme to its corresponding
algebraic space.)

Proposition 4.4.8. There is a fully faithful functor from honest adic spaces
to adic spaces.

Example 4.4.9. Consider the fucntor

{complete Huber pairs}op → (V)

(A,A+) 7→ Spa(A,A+) with sheafified OX

This induces a functor from adic spaces to (V), which sends X to (|X| , . . . ).
In particular any adic space has an associated topological space. However,
this functor is not fully faithful.

From now on, if (A,A+) is a Huber pair, we understand Spa(A,A+) to
mean the adic space Space((A,A+)), a sheaf on the category CAffop. We
hope this will not cause confusion. After all, the topological space associated
to this adic space is Spa(A,A+) as we had previously defined it.
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4.5 Analytic adic spaces

Definition 4.5.1. An adic space is analytic if all its points are analytic.

Proposition 4.5.2. An adic space is analytic if and only if it is the colimit
of a diagram of spaces Spa(A,A+), with A Tate.

Proof. Let X = Spa(A,A+), with x ∈ X an analytic point. We need to
show that there exists a rational neighborhood U of x such that OX(U)
is Tate. Let I ⊂ A0 be as usual. Take f ∈ I be such that |f(x)| 6= 0.
Then {g ∈ A| |g(x)| < |f(x)|} is open (by the continuity of the valuations).
This means that there exists n so that this set contains In. Write In =
(g1, . . . , gk). Then

U = {y| |gi(y)| ≤ |f(y)| 6= 0}

is a rational subset. On U , f is a unit (because it is everywhere nonzero),
but it must also be topologically nilpotent, because it is containined in I.

Example 4.5.3. In X = Spa(Zp[[T ]],Zp[[T ]]), we had a unique non-analytic
point s.

Consider the point where T = 0 and p 6= 0. This has a rational neigh-
borhood U = {|T (x)| ≤ |p(x)| 6= 0}. After adding the trivial condition
|p(x)| ≤ |p(x)|, we see that this really is a rational subset. Then OX(U)
is the completion of Zp[[T ]][1/p] with respect to the (p, T ) = (p, p(T/p)) = p-
adic topology on Zp[[T ]][T/p]. This is just Qp〈T/p〉.

Now consider the point where p = 0 and T 6= 0. Let V be the rational
subset {|p(x)| ≤ |T (x)| 6= 0}. Then OX(V ) is the completion of Zp[[T ]][1/T ]
with respect to the T -adic topology on Zp[[T ]][p/T ]. One might call this
Zp[[T ]]〈p/T 〉[1/T ]. It is still a Tate ring, because T is topologically nilpotent.
But it does not contain a nonarchimedean field! Thus you cannot make sense
of it in the world of classical rigid spaces.

Complete Tate rings are “as good as” Banach algebras over nonar-
chimedean fields. For example:

Proposition 4.5.4 ([Hub93, Lemma 2.4(i)]). Complete Tate rings satisfy
Banach’s open mapping theorem. That is, if A is a complete Tate ring, and
M and N are complete Banach A-modules, then any continuous surjective
map M → N is also open.

5 Complements on adic spaces, 16 September

Today’s lecture is a collection of complements in the theory of adic spaces.
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5.1 Adic morphisms

Definition 5.1.1. A morphism f : A→ B of Huber rings is adic if for one
(or any) choice of rings of definition A0 ⊂ A, B0 ⊂ B with f(A0) ⊂ B0, and
I ⊂ A0 an ideal of definition, f(I)B0 is an ideal of definition.

A morphism (A,A+)→ (B,B+) of Huber pairs is adic if A→ B is.

Lemma 5.1.2. If A is Tate, then any f : A→ B is adic.

Proof. If A contains a topologically nilpotent unit $, then f($) ∈ B is
also a topologically nilpotent unit, and thus B is Tate as well. By Prop.
2.2.5(2), B contains a ring of definition B0 admitting f($)nB0 as an ideal
of definition for some n ≥ 1. This shows that f is adic.

The next proposition shows that fibre products X ×S Y exist in the
category of adic spaces, so long as X → S and Y → S are adic in the
appropriate sense.

Proposition 5.1.3. 1. If (A,A+)→ (B,B+) is adic, then pullback along
the associated map of topological spaces Spa(B,B+) → Spa(A,A+)
preserves rational subsets.

2. Let
(B,B+)

(A,A+)

99

%%
(C,C+)

be a diagram of Huber pairs where both morphisms are adic. Let
A0, B0, C0 be rings of definition compatible with the morphisms, and
let I ⊂ A0 be an ideal of definition. Let D = B ⊗A C, and let D0 be
the image of B0 ⊗A0 C0 in D. Make D into a Huber ring by declaring
D0 to be a ring of definition with ID0 as its ideal of definition. Let
D+ be the integral closure of the image of B+ ⊗A+ C+ in D. Then
(D,D+) is a Huber pair, and it is the pushout of the diagram in the
category of Huber pairs.

Remark 5.1.4. If the objects in the diagram were complete Huber pairs,
then after completing (D,D+), one would obtain the pushout of the diagram
in the category of complete Huber pairs.
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Remark 5.1.5. An example of a non-adic morphism of Huber rings is
Zp → Zp[[T ]]. We claim that the diagram

(Zp[[T ]],Zp[[T ]])

(Zp,Zp)

77

''
(Qp,Zp),

has no pushout in the category of Huber pairs. (At this point this should
come as no surprise: we have already indicated that the generic fiber of
Spa(Zp[[T ]],Zp[[T ]]) is not quasi-compact.) Suppose it did, say (D,D+); then
we have a morphism

(D,D+)→ lim←−
n

(
Qp〈

Tn

p
〉,Zp〈

Tn

p
〉
)

for each n ≥ 1, since the diagram admits a morphism to the object on
the right. Since (D,D+) fits into the diagram, we have that T ∈ D+ is
topologically nilpotent, and 1/p ∈ D. Therefore Tn/p→ 0 in D; now since
D+ ⊂ D is open we have Tn/p ∈ D+ for some n. But then D+ cannot
admit a morphism to Zp〈Tn+1/p〉, contradiction.

5.2 A remark on the presentation of rational subsets

Proposition 5.2.1. Let (A,A+) be a Huber pair. Then any rational subset
U ⊂ Spa(A,A+) is of the form U = {x| |fi(x)| ≤ |g(x)| 6= 0}, for f1, . . . , fn, g ∈
A, where (f1, . . . , fn)A ⊂ A is open.

(Recall that Huber’s definition of rational subset is an arbitrary finite
intersection of sets of this type.)

Proof. Any such U is rational. Conversely, any rational U is a finite intersec-
tion of subsets of this form. Take two such: let U1 = {x| |fi(x)| ≤ |g(x)| 6= 0}
and U2 =

{
x|
∣∣∣f ′j(x)

∣∣∣ ≤ |g′(x)| 6= 0
}

. Their intersection is{
x|
∣∣fif ′j(x)

∣∣ , ∣∣fig′(x)
∣∣ , ∣∣f ′jg(x)

∣∣ ≤ ∣∣gg′(x)
∣∣ 6= 0

}
Now we just have to check that the fif

′
j generate an open ideal of A. By

hypothesis there exists an ideal of definition I such that I ⊂ (fi)A and
I ⊂ (f ′j)A. Then the ideal generated by the fif

′
j contains I2.
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5.3 The role of A+ in a Huber pair

The presence of the subring A+ in a Huber pair (A,A+) may seem un-
necessary at first: why not just consider all continuous valuations on A?
For a Huber ring A, let Cont(A) be the set of equivalence classes of con-
tinuous valuations on A, with topology generated by subsets of the form
{|f(x)| ≤ |g(x)| 6= 0}, with f, g ∈ A.

Proposition 5.3.1. 1. Cont(A) is a spectral space.

2. The following sets are in bijection:

(a) The set of subsets F ⊂ Cont(A) of the form ∩f∈S {|f | ≤ 1}, as S
runs over arbitrary subsets of A◦.

(b) The set of open and integrally closed subrings A+ ⊂ A◦.

The map is

F 7→ {f ∈ A| |f(x)| ≤ 1 for all x ∈ F}

with inverse

A+ 7→
{
x ∈ Cont(A)| |f(x)| ≤ 1 for all f ∈ A+

}
.

Thus specifying A+ keeps track of which inequalities have been enforced
among the continuous valuations in Cont(A).

As further explanation, suppose A = K is a nonarchimedean field. This
is an important case because points of an adic space X take the form
Spa(K,K+) (just as points of a scheme are spectra of fields). We cannot
replace Spa(K,K+) with Cont(K) because the topological space Cont(K)
may have more than one point! In fact if k is the residue field of K (mean-
ing power-bounded elements modulo topologically nilpotent elements), then
Cont(K) is homeomorphic to the space of valuations on k.

For instance, let K be the completion of the fraction field of Qp〈T 〉 with
respect to the supremum (Gauss) norm | |η. The residue field of K is Fp(T ),

and so we have a homeomorphism Cont(K) ∼= P1
Fp

, where η corresponds to
the generic point. The other points correspond to rank 2 valuations on K.
For instance, if x ∈ Cont(K) corresponds to 0 ∈ P1(Fp), and γ = |T (x)|,
then γ < 1, but γn > |p(x)| for all n ≥ 1. If K+ ⊂ K is the valuation ring
of x, then K+ ( K◦, since 1/T 6∈ K+.
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5.4 Important examples, and fibre products

We gather here some facts about the category of adic spaces.

• The final object is Spa(Z,Z).

• (The adic closed unit disc) Spa(Z[T ],Z[T ]) represents the functor X 7→
O+
X(X). This is true not just for honest adic spaces, but for general

ones, where the sheafification of O+
X must be used. Note that if K is

a nonarchimedean field, then

Spa(Z[T ],Z[T ])× Spa(K,OK) = Spa(K〈T 〉,OK〈T 〉)

A discussion of this appears in 2.20 of [Sch12].

• (The adic affine line)X 7→ OX(X) is also representable, by Spa(Z[T ],Z).
Once again if K is any nonarchimedean field, then

Spa(Z[T ],Z)× Spa(K,OK) =
⋃
n≥1

Spa

(
K〈T

n

$
〉,OK〈

Tn

$
〉
)

is an increasing union of closed discs |T | ≤ |$|−n. Here $ ∈ OK is
any pseudo-uniformizer (meaning a topologically nilpotent unit). For
this you just have to check the universal property.

• (Fibre products do not exist in general) In the sense of hom-functors,
the product

Spa(Z[T1, T2, . . . ],Z)× Spa(K,OK)

equals
lim−→

(ni)→∞
Spa(K〈$n1T1, . . .〉,OK〈$ni , . . .〉).

But in this direct limit, the transition maps are not open; they are
given by infinitely many inequalities |Ti| ≤ |$|−ni . So this direct limit
is not representable as an adic space. This example suggests that we
restrict the class of Huber pairs we work with a little. Let us call a
Huber pair (A,A+) admissible if A is finitely generated over a ring of
definition A0 ⊂ A+. This is always the case for instance if A is Tate.
If we build a category of adic spaces starting from admissible Huber
pairs, then fibre products will always exist.
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• (The open unit disc) Let D = Spa(Z[[T ]],Z[[T ]]).

D× Spa(K,OK) = [D× Spa(OK ,OK)]×Spa(OK ,OK) Spa(K,OK)

= Spa(OK [[T ]],OK [[T ]])×Spa(OK ,OK) Spa(K,OK)

=
⋃
n≥1

Spa

(
K〈T

n

$
〉,OK〈

Tn

$
〉
)

Call this DK . This is another honest adic space, even though the
intermediate space Spa(OK [[T ]],OK [[T ]]) might not be. This shows the
importance of allowing non-honest adic spaces.

• (The open punctured unit disc) Let D∗ = Spa(Z((T )),Z[[T ]]). Then
D∗K = DK\ {T = 0}.

5.5 Analytic Adic Spaces

We discuss some very recent results from [BV], [Mih], and [KL]. Let (A,A+)
be a Tate-Huber pair (meaning a Huber pair with A Tate), and let X =
Spa(A,A+). When is OX a sheaf?

Recall that A is uniform if A◦ ⊂ A is bounded.

Theorem 5.5.1 (Berkovich). For A uniform, the map

A→
∏

x∈Spa(A,A+)

K(x)

is a homeomorphism of A onto its image. Here K(x) is the completed residue
field. Also we have

A◦ = {f ∈ A|f ∈ K(x)◦, x ∈ X} .

(This also follws from A+ = {f ∈ A| |f(x)| ≤ 1, x ∈ X}.)

Corollary 5.5.2. Let ÕX be the sheafification of OX . Then A→ H0(X, ÕX)
is injective.

Proof. Indeed, the H0 maps into
∏
xK(x), into which A maps injectively.

Definition 5.5.3. (A,A+) is stably uniform if OX(U) is uniform for all
rational subsets U ⊂ X = Spa(A,A+).

Theorem 5.5.4 ([BV, Thm. 7],[KL, Thm. 2.8.10],[Mih]). If (A,A+) is
stably uniform, then it is sheafy.
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Theorem 5.5.5 ([KL, Thm. 2.4.23]). If (A,A+) is sheafy, then H i(X,OX) =
0 for i > 0. (This is a version of Tate acyclicity.)

Strategy of proof: Using combinatorial arguments going back to Tate, we
can reduce to checking everything for a simple Laurent covering X = U ∪V ,
where U = {|f | ≤ 1} and V = {|f | ≥ 1}. Then OX(U) = A〈T 〉/(T − f) and
OX(V ) = A〈S〉/(Sf − 1). We have OX(U ∩ V ) = A〈T, T−1〉/(T − f). We
need to check that the Cech complex for this covering is exact. It is

A〈T 〉/(T − f)⊕A〈S〉/(Sf − 1)→ A〈T, T−1〉/(T − f).

Lemma 5.5.6. 1. This map is surjective.

2. If A is uniform, the kernel is A.

Proof. 1) is clear. For 2), the hard part is to show that the ideals were
closed to begin with. By Berkovich, the norm on A〈T 〉 is the supremum
norm: supx∈Spa(A,A+) | |K(x) = supx |·|K(x)〈T 〉. This is the Gauss norm, and
it is multiplicative.

We claim that for all g ∈ A〈T 〉, |(T − f)g|A〈T 〉 ≥ |g|A〈T 〉. Indeed, using
the above, the LHS is the supremum of |(T − f)g|, but this is multiplicative,
so get sup |T − f | sup |g| ≥ sup |g|.

Example 5.5.7. In general, OX is not a sheaf. In fact, uniform does not
imply sheafy. (Therefore it does not imply stably uniform.) Both parts of
the sheaf property fail: the injectivity and the surjectivity parts! (See the
papers of Buzzard-Verberkmoes and Mihara.)

Theorem 5.5.8 ([KL, Thm. 2.7.7]). Let (A,A+) be a sheafy Tate-Huber
pair. Let X = Spa(A,A+) =

⋃
i Ui, with Ui = Spa(Ai, A

+
i ), and also Uij

(the overlaps), etc. Then vector bundles “behave as expected.” In particular,
finitely generated projective A-modules M are in correspondence with data
(Mi, βij), where Mi is a finitely generated projective Ai-modules, and

βij : Mj ⊗Ai Aij →Mi ⊗Aj Aij

is a system of isomorphisms satsifying the cocycle condition βij ◦ βjk = βik.

Corollary 5.5.9. On honest analytic adic spaces X, there is a category
VB(X) of vector bundles on X (consisting of certain sheaves of OX-modules)
such that VB(Spa(A,A+)) classifies finite projective A-modules.
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It is not immediately clear how to get a good theory of coherent sheaves
on adic spaces, although there is some forthcoming work of Kedlaya-Liu
that defines a category of OX -modules which are “pseudo-coherent”, mean-
ing that locally they come from modules which admit a (possibly infinite)
resolution by free modules.

The strategy of proof of the theorem is to reduce to simple Laurent
coverings, and then imitate the proof of Beauville-Laszlo [BL95], who prove
the following lemma.

Lemma 5.5.10. Let R be a (not necessarily noetherian!) ring, let f ∈
R be a non-zero-divisor, and let R̂ be the f -adic completion of R. Then
the category of R-modules M where f is not a zero-divisor is equivalent to
the category of pairs (M

R̂
,M [f−1], β), where M

R̂
is an R̂-module such that

f is not a zero-divisor, MR[f−1] is an R[f−1]-module, and β : M
R̂

[f−1] →
MR[f−1] ⊗R R̂ is an isomorphism.

This does not follow from fpqc descent because of two subtle points:
R → R̂ might not be flat, and also we have not included a descent datum
on R̂⊗R R̂.

6 Perfectoid rings, 18 September

Today we begin discussing perfectoid spaces. Let p be a fixed prime through-
out.

6.1 Perfectoid Rings

Recall that a Huber ring R is Tate if it contains a topologically nilpotent
unit; such elements are called pseudo-uniformizers. If $ ∈ R is a pseudo-
uniformizer, then necessarily $ ∈ R◦. Furthermore, if R+ ⊂ R is a ring of
integral elements, then $ ∈ R+. Indeed, since $n → 0 as n→∞ and since
R+ is open, we have $n ∈ R+ for some n ≥ 1. Since R+ is integrally closed,
$ ∈ R+.

The following definition is due to Fontaine [Fon13].

Definition 6.1.1. A complete Tate ringR is perfectoid ifR is uniform (recall
this means that R◦ ⊂ R is bounded) and there exists a pseudo-uniformizer
$ ∈ R such that $p|p in R◦, and such that the pth power Frobenius map

Φ: R◦/$ → R◦/$p

is an isomorphism.
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Hereafter we use the following notational convention. If R is a ring, and
I, J ⊂ R are ideals containing p such that Ip ⊂ J , then Φ: R/I → R/J will
refer to the ring homomorphism x 7→ xp.

Remark 6.1.2. Let us explain why the isomorphism condition above is
independent of $. For any complete Tate ring R and pseudo-uniformizer $
satisfying $p|p in R◦, the Frobenius map Φ: R◦/$ → R◦/$p is necessarily
injective. Indeed, if x ∈ R◦ satisfies xp = $py for some y ∈ R◦ then the
element x/$ ∈ R lies in R◦ since its pth power does. Thus, the isomorphism
condition on Φ in Defn. 6.1.1 is really a surjectivity condition. In fact, this
surjectivity condition is equivalent to the surjectivity of the (necessarily
injective) Frobenius map

R◦/(p,$n)→ R◦/(p,$np)

for any n ≥ 1. (Proof: the surjectivity of Φ: R◦/$ → R◦/$p is just the
case n = 1, and if this map is surjective for n it is clearly surjective for all
1 ≤ n′ < n. In the other direction, if this map is surjective for some n, and
x ∈ R◦/p, we can write x = yp + $npz for some y, z ∈ R◦/p, yet likewise
z = tp +$pu for some t, u ∈ R◦/p, so x = (y+$nt)p +$(n+1)pu. Therefore
this map is surjective for n+ 1.)

Suppose $′ is another pseudo-uniformizer satisfying $′p|p in R◦. If we
take n large enough then$n ∈ $′R◦, then the surjectivity of Φ: R◦/(p,$n)→
R◦/(p,$np) implies the surjectivity of Φ: R◦/$′ → R◦/$′p. Therefore the
isomorphism condition on Φ in Defn. 6.1.1 holds for all $ satisfying $p|p if
it holds for one such choice.

Remark 6.1.3. Qp is not perfectoid, even though the Frobenius map on Fp

is an isomorphism. Certainly there is no element $ ∈ Zp whose pth power
divides p. But more to the point, a discretely valued non-archimedean field
K of residue characteristic p cannot be perfectoid. Indeed, if $ is a pseudo-
uniformizer as in Defn. 6.1.1, then $ is a non-zero element of the maximal
ideal, so the quotients K◦/$ and K◦/$p are Artin local rings of different
lengths and hence they cannot be isomorphic.

Example 6.1.4. 1. Qcycl
p , the completion of Qp(µp∞).

2. The t-adic completion of Fp((t))(t
1/p∞), which we will write as Fp((t

1/p∞)).

3. Qcycl
p 〈T 1/p∞〉. This is defined as A[1/p], where A is the p-adic comple-

tion of Zcycl
p [T 1/p∞ ].
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4. (An example which does not live over a field). Recall from our dis-
cussion in 4.5.3 the ring Zp[[T ]]〈p/T 〉[1/T ], which is Tate with pseudo-
uniformizer T , but which does not contain a nonarchimedean field.
One can also construct a perfectoid version of it,

R = Zcycl
p 〈(p/T )1/p∞〉[1/T ].

Here we can take $ = T 1/p, because $p = T divides p in R◦.

Question: Is there a more general definition of perfectoid Huber rings,
which do not have to be Tate? This should include Zcycl

p [[T 1/p∞ ]], the (p, T )-

adic completion of Zcycl
p [T 1/p∞ ].

Proposition 6.1.5. Let R be a topological ring with pR = 0. The following
are equivalent:

1. R is perfectoid.

2. R is a perfect uniform complete Tate ring.

Of course, perfect means that Φ: R→ R is an isomorphism.

Proof. Let R be a uniform complete Tate ring. If R is perfect, then take
$ any pseudo-uniformizer. The condition $p|p = 0 is vacuous. If x ∈ R is
powerbounded, then so is xp, and vice versa, which means that Φ: R◦ → R◦

is an isomorphism. This shows that Φ: R◦/$ → R◦/$p is surjective. For
injectivity: suppose that x ∈ R◦, xp = $py, with y ∈ R◦. Write y = zp with
z ∈ R◦, and then x = $z.

Conversely if R is perfectoid, then Φ: R◦/$ → R◦/$p is an isomor-
phism, and therefore so is R◦/$n → R◦/$np by induction. Taking inverse
limits and using completeness, we find that Φ: R◦ → R◦ is an isomorphism.
Then invert $.

Definition 6.1.6. A perfectoid field is a perfectoid ring R which is a nonar-
chimedean field.

Remark 6.1.7. It is not clear that a perfectoid ring which is a field is a
perfectoid field.

Proposition 6.1.8. Let K be a nonarchimedean field. K is a perfectoid
field if and only if the following conditions hold:

1. K is not discretely valued,
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2. |p| < 1, and

3. Φ: OK/p→ OK/p is surjective.

Proposition 6.1.9. Let R be a complete uniform Tate ring.

1. If there exists a pseudo-uniformizer $ ∈ R such that $p|p and Φ: R◦/p→
R◦/p is surjective, then R is a perfectoid ring.

2. Conversely, if R is a perfectoid ring, then Φ: R◦/p → R◦/p is sur-
jective under the additional assumption that the ideal pR◦ ⊂ R◦ is
closed.

Proof. For (1), suppose that Φ: R◦/p→ R◦/p is surjective. Then Φ: R◦/$ →
R◦/$p is surjective as well. Injectivity is true automatically; see Rmk. 6.1.2.

For (2), assume that R is a perfectoid ring such that pR◦ is closed. Take
$ ∈ R a pseudo-uniformizer such that $p|p, and such that Φ: R◦/$ →
R◦/$p is an isomorphism. By the discussion in Rmk. 6.1.2, Φ: R◦/(p,$n)→
R◦/(p,$np) is an isomorphism for all n. Now we take the inverse limit over
n. The proposition will follow once we show that

R◦/p→ lim←−
n

R◦/(p,$n)

is an isomorphism. Certainly it is surjective: R◦/p is $-adically complete,
since R◦ is. Injectivity is the statement that R◦/p is $-adically separated.
If x lies in the kernel, then there exist yn, zn ∈ R◦ with x = $nyn + pzn,
n ≥ 1. Since R is uniform, R◦ is bounded and thus $nyn → 0 as n → ∞.
We find that x = limn→∞ pzn lies in the closure of pR◦. Since pR◦ is closed,
we are done.

Remark 6.1.10. It is highly likely that there exists a perfectoid ring R such
that pR◦ is not closed, e.g. by adapting the example appearing in Section 7
of the Stacks Project – Examples. However, if p is invertible in a perfectoid
ring R, then Φ: R◦/p→ R◦/p is surjective: see [KL, Prop. 3.6.2(e)].

Theorem 6.1.11 ([Sch12, Thm. 6.3],[KL, Thm. 3.6.14]). Let (R,R+)
be a Huber pair such that R is perfectoid. Then for all rational subsets
U ⊂ X = Spa(R,R+), OX(U) is again perfectoid. In particular, (R,R+) is
stably uniform, hence sheafy by Thm. 5.5.4.

Question 6.1.12. Does Thm. 6.1.11 extend to a more general class of
perfectoid Huber rings (without the Tate condition)?

The hard part of Thm. 6.1.11 is showing that OX(U) is uniform. The
proof of this fact makes essential use of the process of tilting.
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6.2 Tilting

Definition 6.2.1. Let R be a perfectoid Tate ring. The tilt of R is

R[ = lim←−
x7→xp

R,

given the inverse limit topology. A priori this is only a topological multi-
plicative monoid. We give it a ring structure where the addition law is

(x(0), x(1), . . . ) + (y(0), y(1), . . . ) = (z(0), z(1), . . . )

where
z(i) = lim

n→∞
(x(i+n) + y(i+n))p

n ∈ R.

Lemma 6.2.2. The limit z(i) above exists and defines a ring structure mak-
ing R[ a topological Fp-algebra that is a perfect uniform Tate ring. The
subset R[◦ of power-bounded elements is given by the topological ring iso-
morphism

R[◦ = lim←−
Φ

R◦ ∼= lim←−
Φ

R◦/p ∼= lim←−
Φ

R◦/$,

where $ ∈ R is a pseudo-uniformizer which divides p in R◦. Further-
more there exists a pseudo-uniformizer $ ∈ R with $p|p in R◦ which ad-
mits a sequence of pth power roots $1/pn, giving rise to an element $[ =
($,$1/p, . . . ) ∈ R[◦, which is a pseudo-uniformizer of R[. Then R[ =
R[◦[1/$[].

Proof. Certainly R[ is perfect by design. Let $0 be a pseudo-uniformizer of
R. Let us check that the maps

lim←−
Φ

R◦ → lim←−
Φ

R◦/p→ lim←−
Φ

R◦/$0

are isomorphisms. The essential point is that any sequence (x0, x1, . . . ) ∈
lim←−Φ

R◦/$0 lifts uniquely to a sequence (x0, x1, . . . ) ∈ lim←−Φ
R◦. Here x(i) =

limn→∞ x
pn

n+i, where xj ∈ R◦ is any lift of xj . (For the convergence of that

limit, note that if x ≡ y (mod $n
0 ), then xp ≡ yp (mod $n+1

0 ).) This shows
that we get a well-defined ring R[◦.

Now assume that $p
0|p in R◦. We construct the element $[. The preim-

age of $0 under R[◦ = lim←−Φ
R◦/$p

0 → R◦/$p
0 is an element $[ with the

right properties. It is congruent to $0 modulo $p
0, and therefore it is also

a pseudo-uniformizer. Then $ = $[] is the desired pseudo-uniformizer of
R◦.
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Remark 6.2.3. In the special case that R = K is a perfectoid field, the
construction of K[ is due to Fontaine, [Fon82], as an intermediate step
towards his construction of p-adic period rings. Here, K[ is a complete
algebraically closed valued field with absolute value defined by f 7→

∣∣f ]∣∣,
where | | is the absolute value on K. It is a nontrivial theorem that if K is
algebraically closed, then so is K[.

We have a continuous, multiplicative (but not additive) map R[ →
lim←−R → R by projecting onto the zeroth coordinate; call this f 7→ f ].

This projection defines a ring isomorphism R[◦/$[ ∼= R◦/$. By topological
nilpotence conditions, the open subrings of R[◦ and R◦ correspond exactly
to the subrings of their common quotients modulo $[ and $. Moreover, the
open subring is integrally closed if and only if its image in this quotient is
integrally closed. This defines an inclusion-preserving bijection between the
sets of open integrally closed subrings of R[◦ and R◦. This correspondence
can be made more explicit:

Lemma 6.2.4. The set of rings of integral elements R+ ⊂ R◦ is in bijection
with the set of rings of integral elements R[+ ⊂ R[◦, via R[+ = lim←−x 7→xp R

+.

Also, R[+/$[ = R+/$.

The following two theorems belong to a pattern of “tilting equivalence”.

Theorem 6.2.5. (Kedlaya, Scholze) Let (R,R+) be a perfectoid Huber pair,
with tilt (R[, R[+). There is a homeomorphism Spa(R,R+) ∼= Spa(R[, R[+)
sending x to x[, where

∣∣f(x[)
∣∣ =

∣∣f ](x)
∣∣. This homeomorphism preserves

rational subsets.

Theorem 6.2.6 ([Sch12]). Let R be a perfectoid ring with tilt R[. Then
there is an equivalence of categories between perfectoid R-algebras and per-
fectoid R[-algebras, via S 7→ S[.

Let us at least describe the inverse functor, along the lines of Fontaine’s
Bourbaki talk. In fact we will answer a more general question. Given a
perfectoid algebra R in characteristic p, what are all the untilts R] of R?
Let’s start with a pair (R,R+).

Lemma 6.2.7. Let (R], R]+) be an untilt of R; i.e. a perfectoid ring R]

together with an isomorphism R][ → R, such that R]+ and R+ are identified
under Lemma 6.2.4.
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1. There is a canonical surjective ring homomorphism

θ : W (R+) → R]+∑
n≥0

[rn]pn 7→
∑
n≥0

r]np
n

2. The kernel of θ is generated by a nonzero-divisor ξ of the form ξ =
p+ [$]α, where $ ∈ R+ is a pseudo-uniformizer, and α ∈W (R+).

See [Fon13], [FF11] and [KL, Thm. 3.6.5]. We remark that there is no
assumption that an untilt of R should have characteristic p. In particular
R itself is an untilt of R, corresponding to α = 0.

Definition 6.2.8. An ideal I ⊂ W (R+) is primitive of degree 1 if I is
generated by an element of the form ξ = p+ [$]α, with $ ∈ R+ a pseudo-
uniformizer and α ∈W (R+). (This ξ is necessarily a non-zero-divisor.)

Proof. (Of the lemma)

1. This follows from the Deninger’s universal property of Witt vectors:
W (R+) is the universal p-adically complete ring A with a continu-
ous multiplicative map R+ → W (R+). Thus there exists a map
θ : W (R+) → R]+. For surjectivity: we have that R+ → R]+/p is
surjective, which shows that θ mod p is surjective, which shows (since
everything is p-adically complete) θ is surjective.

2. Fix $ ∈ R+ a pseudo-uniformizer such that $] ∈ R]+ satisfies ($])p|p.
We claim that there exists f ∈ $R+ such that f ] ≡ p (mod p$]R]+).
Indeed, consider α = p/$] ∈ R]+. There exists β ∈ R+ such that
β] ≡ α (mod pR]+). Then ($β)] = $]α ≡ p (mod p$]R]+). Take
f = $β.

Thus we can write p = f ] + p$]
∑

n≥0 r
]
npn, with rn ∈ R+. We can

now define ξ = p − [f ] − [$]
∑

n≥0[rn]pn+1, which is of the desired
form, and which lies in the kernel of θ.

Lemma 6.2.9. Any ξ of this form, namely p+ [$]α, is a non-zero-divisor.

Proof. Assume ξ
∑

n≥0[cn]pn = 0. Mod [$], this reads
∑

n≥0[cn]pn+1 ≡ 0
(mod [$]), meaning that all cn ≡ 0 (mod $). Divide by $, and induct.

Finally we need to show that ξ generates ker(θ). For this, note that θ
induces is a surjective map W (R+)/(ξ) → R]+. It is enough to show that
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f is an isomorphism modulo [$], because W (R+)/(ξ) is [$]-torsion free
and [$]-adically complete. We have W (R+)/(ξ, [$]) = W (R+)/(p, [$]) =
R+/[$] = R+/$ ∼= R]+/$].

Theorem 6.2.10. (Kedlaya-Liu, Fontaine) There is an equivalence of cat-
egories between:

1. Perfectoid Tate-Huber pairs (S, S+)

2. Triples (R,R+,J ), where (R,R+) is a perfectoid Tate-Huber pair of
characteristic p and J ⊂W (R+) is primitive of degree 1.

In one direction the map is (S, S+) 7→ (S[, S[+, ker θ), and in the other, it
is (R,R+,J ) 7→ (W (R+)[[$]−1]/J ,W (R+)/J ).

6.3 Preperfectoid rings

Thm. 6.1.11 states that if (R,R+) is a Huber pair with R perfectoid, then
(R,R+) is sheafy. It will be useful to extend this theorem to a slightly
broader class of Huber pairs. The following definition slightly generalizes
the one appearing in [SW13], Defn. 2.3.9.

Definition 6.3.1. Let R be a Zp-algebra which is Tate. R is preperfectoid
if there exists a perfectoid field K of characteristic 0 such that R⊗̂ZpOK is
perfectoid.

Example 6.3.2. 1. R = Qp〈T 1/p∞〉 is preperfectoid, since R⊗̂ZpZ
cycl
p =

Qcycl
p 〈T 1/p∞〉 is perfectoid.

2. Let R = Zp〈(p/T )1/p∞〉[1/T ]. Then R is Tate with pseudo-uniformizer

T , and R⊗̂Zcycl
p is the perfectoid ring from Example 6.1.4(4).

3. Unfortunately, perfectoid rings aren’t necessarily preperfectoid. For
instance, the perfectoid field Qcycl

p isn’t preperfectoid, because one

can show that for any perfectoid field K, Qcycl
p ⊗̂ZpOK isn’t uniform.

Proposition 6.3.3. Let (R,R+) be a Tate Huber pair such that R is uniform
and preperfectoid. Then (R,R+) is sheafy.

Proof. Let K be a perfectoid field such that R̃ = R⊗̂ZpOK is perfectoid.
We claim that (R,R+) is stably uniform, which by Thm. 5.5.4 imples that
it is sheafy. Let U = Spa(R,R+) and let Ũ = Spa(R̃, R̃+), where R̃+ is the
integral closure of R+⊗̂ZpOK in R̃. Let V ⊂ U be a rational subset, and
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let Ṽ be its preimage under Ũ → U , which is also a rational subset. Then
OU (V ) is a topological subring of O

Ũ
(Ṽ ) = OU (V )⊗̂ZpOK .

Since R̃ is perfectoid, Thm. 6.1.11 implies that O
Ũ

(Ṽ ) is perfectoid,

hence uniform. Thus O
Ũ

(Ṽ )◦ serves as a ring of definition. Let $ ∈ R
be a pseudo-uniformizer; then $ serves as a pseudo-uniformizer for both
OU (V ) and O

Ũ
(Ṽ ). Therefore $nO

Ũ
(Ṽ )◦ ∩ OU (V ) (n ≥ 0) is a basis of

neighborhoods of 0 in OU (V ). It follows that O
Ũ

(Ṽ )◦ ∩OU (V ) is open and
bounded in OU (V ), hence a ring of definition. With these facts in place, it
is easy to see that OU (V )◦ = OU (V )∩O

Ũ
(Ṽ )◦, and that this is bounded in

OU (V ). Therefore OU (V ) is uniform as required.

7 Perfectoid spaces, 23 September

This will be the second lecture on perfectoid spaces. Recall that a perfectoid
Tate ring R is a complete, uniform Tate ring containing a pseudo-uniformizer
$ such that$p|p inR◦ and such that Φ: R◦/$ → R◦/$p is an isomorphism.

In fact there is a recent generalization of this notion due to Gabber-
Ramero. They define (at least) a perfectoid Huber ring (and even show that

these are sheafy). This would include Zcycl
p [[T 1/p∞ ]].

7.1 Perfectoid spaces: definition and tilting equivalence

We also talked about tilting. Suppose (R,R+) is a Huber pair, with R per-
fectoid. Let R[ = lim←−x 7→xp R, a perfectoid ring of characteristic p, together

with a map R[ → R of multiplicative monoids f 7→ f ].

Theorem 7.1.1. A Huber pair (R,R+) with R perfectoid is sheafy. Let
X = Spa(R,R+), X[ = Spa(R[, R[,+), and then we have a homeomorphism
X → X[, x 7→ x[, which preserves rational subsets. It is characterized by∣∣f(x[)

∣∣ =
∣∣f ](x)

∣∣. Moreover for U ⊂ X perfectoid, OX(U) is perfectoid with
tilt OX[(U).

Definition 7.1.2. A perfectoid space is an adic space covered by Spa(R,R+)
with R perfectoid.

Remark 7.1.3. Perfectoid spaces are honest because such Spa(R,R+) are
sheafy. However if (R,R+) is some Huber pair and Spa(R,R+) is a perfec-
toid space, it is not clear whether R has to be perfectoid (although it is fine
if we are in characteristic p). See Buzzard-Verberkmoes.

The tilting process glues to give a functor X 7→ X[.
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Proposition 7.1.4. Tilting induces an equivalence between the following
categories:

1. Pairs (S, S+), where S is perfectoid, and

2. Triples (R,R+,J ), where (R,R+) is perfectoid of characteristic p, and
J ⊂W (R+) is a primitive ideal of degree 1.

7.2 Why do we study perfectoid spaces?

1. Any adic space over Qp is pro-étale locally perfectoid (Colmez). That
is, if A is a Banach Qp-algebra, there exists a filtered directed system

of finite étale A-algebras Ai such that A∞ = l̂im−→Ai is perfectoid. For

example, if X = Spa(Qp〈T±1〉,Zp〈T±1〉) is the “unit circle”, this has

a pro-étale covering by X̃ = Spa(Qcycl
p 〈T±1/p∞ ,Zcycl

p 〈T±1/p∞〉〉), this
being the inverse limit of the appropriate system Xi.

2. If X is a perfectoid space, all topological information (e.g. |X|, and
even Xét) can be recovered from X[. However X[ forgets the structure
morphism X → Spa(Zp,Zp). The following can be made precise (next
lecture): The category of perfectoid spaces over Qp is equivalent to
the category of perefectoid spaces X of characteristic p, together with
a “structure morphism X → Qp”.

7.3 The equivalence of étale sites

The tilting equivalence extends to the étale site of a perfectoid space. That
is, if X is a perfectoid space then there is an equivalence Xét

∼= X[
ét. First

we discuss the case where X is a single point.

Theorem 7.3.1 ([FW79], [KL, Thm. 3.5.6], [Sch12]). Let K be a perfectoid
field with tilt K[.

1. If L/K is finite, then L is perfectoid.

2. L 7→ L[ is an equivalence of categories between finite extensions of K
and finite extensions of K[ which preserves degrees. Thus, the absolute
Galois groups of K and K[ are isomorphic.

Theorem 7.3.2 ([Tat67], [GR03]). Let K be a perfectoid field, L/K a finite
extension. Then OL/OK is almost finite étale.
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For the precise meaning of almost finite étale, which is somewhat tech-
nical, we refer to [Sch12], Section 4. What Tate actually proved is that (for
certain perfectoid fields K) if tr : L → K is the trace map, then tr(OL)
contains mL, the maximal ideal of L.

Example 7.3.3. Say K = Qp(p
1/p∞)∧, a perfectoid field. Let L = K(

√
p)

(and assume p 6= 2). Let Kn = Qp(p
1/pn) and Ln = Kn(

√
p). Note that

p1/2pn ∈ Ln, because p1/2pn = (p1/pn)(pn+1)/2p−1/2, and that

OLn = OKn [p1/2pn ] = OKn [x]/(x2 − p1/pn).

Let f(x) = x2 − p1/pn . The different ideal δLn/Kn is the ideal of OLn gener-

ated by f ′(p1/2pn), which is p1/2pn . The p-adic valuation of δLn/Kn is 1/2pn,
which tends to 0 as n → ∞. Inasmuch as the different measures ramifi-
cation, this means that the extensions Ln/Kn are getting less ramified as
n→∞.

In other words, one can almost get rid of ramification along the special
fibre by passing to a tower whose limit is perfectoid. This is what Tate
does (using the cyclotomic tower) to do computations in Galois cohomology,
which is an essential part of p-adic Hodge theory.

In fact Theorem 7.3.2 implies Theorem 7.3.1. The equivalence between
finite étale algebras over K and K[ goes according to the diagram (which
uses the notations of [Sch12]):

{
finite étale
K-algs.

}
Thm. 7.3.2 //


almost
finite étale
OaK-algs.

 //


almost
finite étale
(OK/$)a-
algs.


��{

finite étale
K[-algs.

} 
almost
finite étale
Oa
K[-algs.

Thm. 7.3.2oo


almost
finite étale
(OK[/$[)[a-
algs.

oo

Philosophically, properties of K extend “almost integrally” to OK , which
one can then pass to OK/$.

7.4 Almost mathematics, after Faltings

Let R be a perfectoid Tate ring.
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SpecR

SpecR[

SpecR+/$ SpecR[+/$[

Figure 2: A (not to be taken too seriously) depiction of the tilting process for
a perfectoid ring R. The blue figure represents SpecR+ and the red figure
represents SpecR[+. Objects associated with R can “almost” be extended
to R+ and then reduced modulo $. But then R+/$ = R[+/$[, so one gets
an object defined over R[+/$[. The process can be reversed on the R[ side,
so that one gets a tilted object defined over R[.

Definition 7.4.1. AnR◦-moduleM is almost zero if$M = 0 for all pseudo-
uniformizers $. Equivalently, if $ is a fixed pseudo-uniformizer admitting
pth power roots, and $1/pnM = 0 for all n. (Similarly for R+-modules)

Example 7.4.2. 1. If K is a perfectoid field, OK/mK is almost zero. (A
general almost zero module is a direct sum of such modules.)

2. If R is perfectoid and R+ ⊂ R◦ is any ring of integral elements, then
R◦/R+ is almost zero. Indeed, if $ is a pseudo-uniformizer, and x ∈
R◦, then $x is topologically nilpotent. Since R+ is open, there exists
n with ($x)n ∈ R+, so that $x ∈ R+ by integral closedness.

Note: extensions of almost zero modules are almost zero. Thus the
category of almost zero modules is a thick Serre subcategory of the category
of all modules, and one can take the quotient.

Definition 7.4.3. The category of almost R◦-modules, written R◦a-mod,
is the quotient of the category of R◦-modules by the subcategory of almost
zero modules.

One can also defineR+a-mod, but the natural mapR◦a-mod→ R+a-mod
is an equivalence.
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Theorem 7.4.4. Let (R,R+) be a perfectoid Tate-Huber pair, and let X =
Spa(R,R+). (Thus by Kedlaya-Liu, H i(X,OX) = 0 for i > 0.) Then
H i(X,O+

X) is almost zero for i > 0, and H0(X,O+
X) = R.

Proof. By tilting one can reduce to the case of pR = 0. We will show that
for any finite rational covering X =

⋃
i Ui, all cohomology groups of the

Cech complex

C• : 0→ R+ →
∏
i

O+
X(Ui)→

∏
i,j

O+
X(Ui ∩ Uj)→ · · ·

are almost zero. We know that C•[1/$] (replace O+
X with OX everywhere)

is exact. Now we use Banach’s Open Mapping Theorem: each cohomology
group of C• is killed by a power of $. (One knows each cohomology group
is $-power-torsion, but we assert that there is a single power of $ which
kills everything.)

Since R is perfect, Frobenius induces isomorphisms on all cohomology
groups of C•. So if these are killed by $n, they are also killed by all the
$n/pk , so they are almost zero.

This is a typical strategy: bound the problem up to a power of $, and
then use Frobenius to shrink the power to zero.

Theorem 7.4.5 ([Fal02],[KL],[Sch12]). Let R be perfectoid with tilt R[.

1. For any finite étale R-algebra S, S is perfectoid.

2. Tilting induces an equivalence

{Finite étale R-algebras} →
{

Finite étale R[-algebras
}

S 7→ S[

3. (Almost purity) For any finite étale R-algebras S, then S◦ is almost
finite étale over R◦. (This means that S◦ is almost self-dual under the
trace pairing.)

See [?], Thm. 7.4.5 for a proof in characteristic 0, but the argument
carries over to this context. See also Thm. 3.6.21 for parts (1) and (2) and
Thm. 5.5.9 for (3).

The line of argument is to prove (2) and deduce (1) and (3) (by proving
them in characteristic p). Let us sketch the proof of (2). We reduce to the
case of perfectoid fields via the following argument. Let x ∈ X = Spa(R,R+)
with residue field K(x), and similarly define K(x[). Then we have K(x)[ =
K(x[).
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Lemma 7.4.6.

2- lim−→
U3x
{finite étale OX(U)-algs.} → {finite étale K(x)-algs.}

is an equivalence.

Remark 7.4.7. One has here a directed system of categories Ci, indexed by
a filtered category I, with functors Fij : Ci → Cj for each morphism i→ j in
I. The 2-limit C = 2- lim−→Ci is a category whose objects are objects of any
Ci. If Xi and Xj belong to Ci and Cj , respectively, then

HomC(Xi, Xj) = lim−→
i,j→k

HomCk(Fik(Xi), Fjk(Xj)),

the limit being taken over pairs of morphisms from i and j into a common
third object k.

Admitting the lemma for the moment, we can complete this to a diagram

2- lim−→U3x {finite étale OX(U)-algs.} //

��

{finite étale K(x)-algs}

��
2- lim−→U3x {finite étale OX[(U)-algs.} //

{
finite étale K(x)[-algs

}
Thus we get equivalences locally at every point, which we can glue to-

gether to deduce (2). It remains to address Lemma 7.4.6. This rests on the
following theorem.

Theorem 7.4.8 ([Elk73], [GR03]). Let A be a Tate ring such that A is
“topologically henselian”. That is, for a ring of definition A0 ⊂ A, $ ∈ A0

a pseudo-uniformizer, then A0 is henselian along $A0. Then the functor

{finite étale A-algs.} →
{

finite étale Â-algs.
}

B 7→ B̂ = B ⊗A Â.

Remark 7.4.9. Also, the K-groups are the same: K(A,Z/`) ∼= K(Â,Z/`)
if ` ∈ A×.

As a corollary, let Ai be a filtered directed system of complete Tate rings,

A∞ = l̂im−→Ai. Then

2- lim−→{finite étale Ai-algs} =
{

finite étale lim−→Ai-algs.
}

= {finite étale A∞-algs.}
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To deduce Lemma 7.4.6 from Theorem 7.4.8, it remains to show that

K(x) = ̂lim−→OX(U), for the topology making lim−→O
+
X(U) open and bounded.

We have
0→ I → lim−→

x∈U
O+
X(U)→ K(x)+

where the last arrow has dense image. We claim that $ is invertible in I.
If f ∈ O+

X(U) is such that |f(x)| = 0, then V = |f(x)| ≤ |$| is an open
neighborhood of x, and then f ∈ $O+

X(V ), and so f ∈ $I. Thus the $-adic
completion of lim−→O

+
X(U) is K(x)+.

7.5 The étale site

Definition 7.5.1. 1. A morphism f : X → Y of perfectoid spaces is fi-
nite étale if for all Spa(B,B+) ⊂ Y open, the pullbackX×Y Spa(B,B+)
is Spa(A,A+), where A is a finite étale B-algebra, and A+ is the inte-
gral closure of the image of B+ in A.

2. A morphism f : X → Y is étale if for all x ∈ X there exists an open
U 3 x and V ⊃ f(U) such that there is a diagram

U
open //

f |U   

W

finite étale~~
V

3. An étale cover is a jointly surjective family of étale maps.

Proposition 7.5.2. 1. Composition of étale morphisms are étale.

2. Pullbacks of étale morphisms are étale. (Same with finite)

3. If g and gf are étale, then so is f .

4. f étale if and only if f [ is étale.

Corollary 7.5.3. There exists an étale site Xét, such that naturally Xét
∼=

X[
ét, and H i(Xét,O+

X) is almost zero for i > 0 for affinoids X.

55



8 Diamonds, 25 September

8.1 Diamonds: motivation

Today we discuss the notion of a diamond. The idea is that there should be
a (not necessarily fully faithful) functor

{adic spaces over Qp} → {diamonds}
X 7→ X♦

which “forgets the structure morphism to Qp”. For a perfectoid spaceX/Qp,
the functor X 7→ X[ has this property, so the desired functor should factor
through X 7→ X[ on such objects. In general, if X/Qp is an adic space, then
X is pro-étale locally perfectoid:

X = Coeq(
˜̃
X ⇒ X̃),

where X̃ → X is a pro-étale (in the sense defined below) perfectoid cover,

and so is
˜̃
X → X̃ ×X X̃. Then the functor should send X to Coeq(

˜̃
X
[

⇒
X̃[)). The only question now is, what category does this live in? (There
is also the question of whether this construction depends on the choices
made.) Whatever this object is, it is pro-étale under a perfectoid space in
characteristic p, namely X̃[.

Example 8.1.1. If X = Spa(Qp,Zp), then a pro-étale perfectoid cover of X

is X̃ = Spa(Qcycl
p ,Zcycl

p ). Then
˜̃
X = X̃×X X̃ = X̃×Z×p is again a perfectoid

space, and so X[ should be the coequalizer of
˜̃
X
[

⇒ X̃, which comes out to
be the quotient Spa(Qcycl,[

p ,Zcycl,[
p )/Z×p , whatever this means.

8.2 Pro-étale morphisms

Definition 8.2.1. A morphism f : X → Y of perfectoid spaces is pro-étale if
it is locally (on the source) of the form Spa(A∞, A

+
∞)→ Spa(A,A+), where

A,A∞ are perfectoid, where

(A∞, A
+
∞) = ̂lim−→(Ai, A

+
i )

is a filtered colimit of pairs (Ai, A
+
i ) with Ai perfectoid, such that

Spa(Ai, A
+
i )→ Spa(A,A+)

is étale.
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Remark 8.2.2. Pro-étale morphisms are not necessarily open. For instance,
Y could be a pro-finite set8, and f : X → Y could be the inclusion of a point
X = {x}. Indeed, this is the completed inverse limit of morphisms Ui → Y ,
where Ui ⊂ Y is an open subset and ∩iUi = {x}.

Lemma 8.2.3. Let

Spa(A∞, A
+
∞)

((

Spa(B∞, B
+
∞)

vv
Spa(A,A+)

be a diagram of pro-étale morphisms of perfectoid affinoids, where (A∞, A
+
∞) =

̂lim−→i∈I(Ai, A
+
i ) is as in the definition, and similarly with the B objects. Then

HomSpa(A,A+)(Spa(A∞, A
+
∞),Spa(B∞, B

+
∞))

= lim←−
J

lim−→
I

HomSpa(A,A+)

(
Spa(Ai, A

+
i ), Spa(Bj , B

+
j )
)
.

Proof. Without loss of generality J is a singleton, and we can write (B,B+) =
(B∞, B

+
∞). Now have to check that

Hom(Spa(A∞, A
+
∞), Spa(B,B+)) = lim−→

I

Hom(Spa(Ai, A
+
i ), Spa(B,B+))

(where all Homs are over (A,A+)). This can be checked locally on Spa(B,B+).
An étale morphism is a composition of rational embeddings and finite étale
morphisms. So WLOG f : Spa(B,B+)→ Spa(A,A+) is one of these.

1. If f is a rational embedding: let U = Spa(B,B+) ↪→ Spa(A,A+),
then the fact that Spa(A∞, A

+
∞)→ Spa(A,A+) factors over U implies

that there exists i such that Spa(Ai, A
+
i )→ Spa(A,A+) factors over U .

Indeed, we can apply the following quasi-compactness argument, which
applies whenever one wants to show that a “constructible” algebro-
geometric property applies to a limit of spaces if and only if it applies
to some stage of the limit.

8Probably I should have included this as an example earlier, but if Y is any profinite
set, then Y can be realized as an adic space over a nonarchimedean field K as Spa(R,R+),
where R (resp., R+) is the ring of continuous functions from Y to K (resp., OK). The
resulting adic space is homeomorphic to Y . If K is a perfectoid field, then this construction
produces a perfectoid space.
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Topologically we have Spa(A∞, A
+
∞) = lim←−i Spa(Ai, A

+
i ).

Spa(A∞, A
+
∞)\ {preimage of U} = lim←−

(
Spa(Ai, A

+
i )\ {preimage of U}

)
The RHS is an inverse limit of spaces which are closed in a spectral
space, thus spectral, and so they are compact and Hausdorff for the
constructible topology. If the inverse limit is empty, one of the terms
had to be empty: this is a version of Tychonoff’s theorem, see [RZ10].
We get that Spa(Ai, A

+
i ) equals the preimage of U for some i.

2. Suppose that f is finite étale. Recall from [GR03] that

{finite étale A∞-algs.} = 2- lim−→{finite étale Ai-algs.}

This shows that

HomA(B,A∞) = HomA∞(B ⊗A∞, A∞)

= lim−→
i

HomAi(B ⊗Ai, Ai)

= lim−→
i

HomA(B,Ai).

Proposition 8.2.4. 1. Compositions of pro-étale maps are pro-étale.

2. If

X

g
  

f // Y
h

��
Z

is a diagram of perfectoid spaces where g and h are pro-étale, then f
is pro-étale.

3. Pulbacks of pro-étale morphisms are pro-étale. (Note: the category of
affinoid perfectoid spaces has all limits. In particular fibre products of
perfectoid spaces exist.)

Definition 8.2.5 (The big pro-étale site). Consider the category Perf of
perfectoid spaces of characteristic p. We endow this with the structure of
a site by saying that a collection of morphisms {fi : Xi → X} is a covering
(a pro-étale cover) if the fi are pro-étale, and if for all quasi-compact open
U ⊂ X, there exists a finite subset IU ⊂ I, and a quasicompact open Ui ⊂ Xi

for i ∈ IU , such that U = ∪i∈IU fi(Ui).
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Remark 8.2.6. It is not good enough to demand that the fi are a topolog-
ical cover. For instance, let X be a pro-finite set considered as a perfectoid
space over some perfectoid field in characteristic p, and let Xi → X be a
pro-étale morphism whose image is the point i ∈ X, as in Rmk. 8.2.2. The
finiteness criterion in Defn. 8.2.5 prevents the Xi → X from constituting a
cover in Perf. The same issue arises for the fpqc topology on the category of
schemes: if X is an affine scheme, the collection of flat quasi-compact maps
SpecOX,x → X for x ∈ X is generally not an fpqc cover.

Proposition 8.2.7. For a perfectoid space X of characteristic p, let hX be
the presheaf on Perf defined by hX(Y ) = Hom(Y,X). Then hX is a sheaf
on the pro-étale site. (That is, all representable presheaves are sheaves.)

Proof. The essential point is to show that X 7→ OX(X) is a sheaf for the pro-
étale topology. Without loss of generality X = Spa(R,R+) is a perfectoid
affinoid. Fix a pseudo-uniformizer $ ∈ R. Say X has a finite cover Xi =

Spa(R∞i, R
+
∞i), with each (R∞i, R

+
∞i) = ̂lim−→j∈J(Rji, R

+
ji). We claim that

the complex

0→ R+/$ →
∏
i

R+
∞i/$ → · · ·

is almost exact. For all j, the complex

0→ R+/$ →
∏
i

R+
ji/$ → · · ·

is almost exact, because H i(Xét,O+
X/$) is almost zero for i > 0 (and R+/$

for i = 0). Now we can take a direct limit over j. A filtered direct limit of
almost exact sequences is almost exact. Thus,

0→ R+ →
∏
i

R+
∞i → · · ·

is almost exact (all terms are $-torsion free and $-adically complete). Now
invert $ to get the “essential point”.

For the general statement, can reduce to the case that X = Spa(R,R+)
and Y = Spa(S, S+) is affinoid. Let {fi : Yi → Y } be a cover. We can
further reduce to the case that this a finite cover. But then each Yi admits a
cover by affinoids of the standard form: Yi = Spa(S∞i, S

+
∞i) → Spa(S, S+)

as in the definition of pro-étale. We get a map R → H0(Yproét,OY ) = S
(the latter because OY is a sheaf), as desired.
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Definition 8.2.8. 1. A map f : F → G of sheaves on Perf is pro-étale if
for all perfectoid spaces X and maps hX → G (which correspond to
sections in G(X)), the pullback hX×GF is representable by a perfectoid
space Y , and Y → X (corresponding to hY = hX ×G F → hX) is pro-
étale9.

2. A diamond is a sheaf F on Perf such that there exists a collection of
pro-étale morphisms hXi → F such that

∐
i hXi → F is surjective.

Remark 8.2.9. The underlying formalism used to define diamonds is the
same as the one used to define algebraic spaces. An algebraic space is a sheaf
on the category of schemes (with its étale topology) admitting a surjective
étale morphism from a representable sheaf.

Let us introduce some notation. If (R,R+) is pefectoid, write Spd(R,R+)
for hSpa(R[,R[+), considered as a diamond. We have a fully faithful func-

tor X 7→ X♦ from perfectoid spaces in characteristic p to diamonds; here
X♦ = hX .

9 Diamonds II, 7 October

9.1 Complements on the pro-étale topology

Two issues came up last time which we would like to address.
The first issue was pro-étale descent for perfectoid spaces.

Question 9.1.1. Is the fibred category

X 7→ {morphisms Y → X with Y perfectoid}

on the category of perfectoid spaces a stack for the pro-étale topology? That
is, if X ′ → X is a pro-étale cover, and we are given a morphism Y ′ → X ′

together with a descent datum over X ′ ×X X ′, etc, then does Y ′ → X ′

descend to Y → X? (Such a descent is unique up to unique X-isomorphism
if it exists, since by Prop. 8.2.7 hY is a sheaf.)

Remark 9.1.2. 1. It is enough to show that for affinoid perfectoid X,
the fibred category of morphisms Y → X with Y perfectoid affinoid is
a stack.

9It may be necessary to loosen this definition so that hX ×G F has these properties
pro-étale locally on X. This is because we are not sure if the property of being pro-étale
is a pro-étale local property on the target.
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2. The statement is true if X is “w-local” in the sense of [BS].

The other issue was that the property of being a pro-étale morphism is
not local for the pro-étale topology on the source. That is, suppose f : X →
Y is a morphism between perfectoid spaces, and suppose there exists a
pro-étale surjection X ′ → X, such that the composite X ′ → X → Y is
pro-étale. We cannot conclude that f is pro-étale, cf. Example 9.1.5. How
can we characterize such f? It turns out there is a convenient “punctual”
criterion.

Definition 9.1.3. Say Spa(B,B+)→ Spa(A,A+) is affinoid pro-étale if

(B,B+) = ̂lim−→
filtered

(Ai, A
+
i ),

where Ai is perfectoid, and Spa(Ai, A
+
i )→ Spa(A,A+) is étale.

Proposition 9.1.4. Let f : X → Y be a morphism of affinoid perfectoid
spaces. The following are equivalent:

1. There exists X ′ → X which is affinoid pro-étale surjective, such that
the composite X ′ → Y is affinoid pro-étale.

2. For all points y ∈ Y , corresponding to Spa(K(y),K(y)+) → Y , the
pullback X ×Y Spa(K(y),K(y)+)→ Spa(K(y),K(y)+) is pro-étale.

3. Same as (2), but for geometric points Spa(C,OC) of rank 1.

The idea for the proof is to follow the argument in [BS], Thm. 2.3.4,
which concerns the relationship between weakly étale and pro-étale mor-
phisms between schemes.

Example 9.1.5 (A non-pro-étale morphism which is locally pro-étale). Let

Y = Spa(K〈T 1/p∞〉,OK〈T 1/p∞〉),

and let
X = Spa(K〈T 1/2p∞〉,OK〈T 1/2p∞〉).

(Assume p 6= 2.) Then X → Y appears to be ramified at 0, and indeed it is
not pro-étale. However, consider the following pro-étale cover of Y : let

Y ′ = lim←−Y
′
n, Y

′
n = {x ∈ Y | |x| ≤ |$n|} t

n∐
i=1

{
x ∈ Y | |$|i ≤ |x| ≤ |$|i−1

}
.
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Let X ′ = X ×Y Y ′. We claim that the pullback X ′ → Y ′ is pro-étale, and
that the composite X ′ → Y is affinoid pro-étale. Thus X → Y may not be
pro-étale, but it is so pro-étale locally on X, and even on Y !

As a topological space, π0(Y ′) = {1, 1/2, 1/3, . . . , 0} ⊂ R. The fibre of

Y ′ over 1/i is
{
x ∈ Y | |$|i ≤ |x| ≤ |$|i−1

}
, and the fibre over 0 is just 0.

Let

X ′n = {x| |x| ≤ |$|n} t
n∐
i=1

{
|$|i ≤ |x| ≤ |$|i−1

}
×Y X

so that X ′n → Y ′n is finite étale. Then X ′ ∼= lim←−X
′
n = lim←−(X ′n ×Y ′n Y

′)→ Y ′

is pro-étale.

9.2 Quasi-profinite morphisms

Recall that the pro-étale topology on the category (Perf) is defined by declar-
ing a family of morphisms {Xi → X} to be a cover when each morphism
is pro-étale (together with a certain quasicompactness condition). Suppose
we relax this condition so that each Xi → X is only locally pro-étale on
Xi, in the sense that there are pro-étale coverings {Xij → Xi}j∈Ji such
that the composite morphisms Xij → X are pro-étale. Then we have
changed the topology on (Perf), but not the topos: checking the sheaf con-
dition for {Xi → X} is equivalent to checking it for the pro-étale covers
{Xij → Xi}j∈Ji and {Xij → X}i,j .

Prop. 9.1.4 suggests a class of morphisms which are pro-étale locally on
the source.

Definition 9.2.1. A morphism f : X → Y is quasi-profinite (qpf) if locally
on X it is of the form Spa(B,B+)→ Spa(A,A+) as in Prop. 9.1.4.

Definition 9.2.2. Consider the site (Perf) of perfectoid spaces of charac-
teristic p with covers generated by open covers and affinoid pro-étale maps
(or affinoid qpf maps), subject to the same quasi-compactness condition on
covers appearing in Defn. 8.2.5. If f : F → G is a map of sheaves on (Perf),
say f is quasi-profinite if for all hX → G, F ×G hX is representable, say it is
hY , with Y → X qpf.

A diamond is a sheaf D on (Perf) such that there exists a surjective qpf
map hX → D from a representable sheaf.

Remark 9.2.3. Replacing pro-étale maps with qpf maps changes the topol-
ogy on (Perf), but not the topos: Prop. 9.1.4 says that any pro-étale covering
can be refined to a qpf covering. Thus we have not changed the definition of

62



Figure 3: An illustration of a diamond D. Suppose hX → D is a surjective
qpf map. The incoming light beam represents a morphism hY → D from
a representable object. The outgoing light beam represents the pullback
hY ×D hX , which is representable by a perfectoid space Y ′ which is qpf over
Y . If Y is a geometric point, then Y ′ is a profinite union of copies of Y ; we
have attempted to depict this scenario.
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diamond. Meanwhile it is somewhat easier to check that a morphism is qpf
than it is to check that it is pro-étale, since we have the punctual criterion
of Prop. 9.1.4.

Remark 9.2.4. One would like to be able to check that f : F → G is qpf
by checking it after pullback to a cover of G. However, we run into the
problem of Question 9.1.1. That is, suppose G′ → G is a cover for which
F ′ = F×GG′ → G is qpf. Then if hX → G is a morphism from a representable
object, we want to check whether F ×G hX is representable by some qpf
Y → X. We have the cover h′X = hX ×G G′ → G′. Since F ′ → G′ is qpf,
its pullback h′X ×G′ F ′ = hY ′ for some Y ′ → X ′ qpf. Then Y ′ → X ′ comes
equipped with descent data to X. This is where we encounter Question
9.1.1: it is not clear that the descent Y → X exists.

Remark 9.2.5. Suppose F is a diamond, and hX → F is a qpf surjection
from a representable sheaf as in Defn. 9.2.2. If hY → F is any morphism
from a representable sheaf, then hX ×F hY = hZ for some qpf morphism
Z → Y . In particular the product hX ×F hX ⊂ hX ×hX is representable by
a space R ⊂ X ×X, where each of the maps R⇒ X is qpf. This R is a qpf
equivalence relation. (The morphism R → X × X is functorially injective,
but one cannot expect it to be Zariski closed.)

Thus diamonds are quotients of perfectoid spaces X by certain kinds of
equivalence relations R ⊂ X ×X. A special case is when R comes from the
action of a profinite group on X. We will encounter this in the next section
when we introduce the diamond Spd Qp.

9.3 G-torsors

If G is a finite group, we have the notion of G-torsor on any topos. This
is a map f : F ′ → F with an action G × F ′ → F ′ such that locally on G,
F ′ ∼= F ×G.

We also have G-torsors when G is not an abstract group but rather a
group object in the category of sheaves on (Perf). If G is a finite group, let
G be the constant sheaf on (Perf). That is, if X is an affinoid in (Perf), then
G(X) = Cont(|X| ,G), the group of continuous maps |X| → G (since G is
discrete, continuous here implies locally constant). Extend this to profinite
groupsG by settingG = lim←−G/H as a sheaf on (Perf), whereH runs through
the open normal subgroups. Then once again G(X) = Cont(|X| ,G).

Note that G is not representable, even if G is finite. The problem is
that (Perf) lacks an initial object X (in other words, a base). If it had
one, then G would be representable by “G copies of X”. And indeed, G
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becomes representable once we supply the base. If X is a perfectoid space,
then G× hX is representable by a perfectoid space, namely

G×X := lim←−G/H ×X,

where G/H×X is just a finite disjoint union of copies of X. The inverse limit
really does exist in (Perf): If X = Spa(R,R+), then G ×X = Spa(S, S+),
where

S =

(
lim−→
H

Cont(G/H,R)

)∧
= Cont(G,R),

and similarly S+ = Cont(G,R+). Finally, note that everything in this
paragraph applies when G is a profinite set rather than a group.

Now if G is a profinite group, a G-torsor is a morphism f : F ′ → F with
an action G×F ′ → F ′ such that locally on F we have F ′ ∼= F ×G.

Proposition 9.3.1. Let f : F ′ → F be a G-torsor, with G profinite. Then
for any affinoid Y = Spa(B,B+) and any morphism hY → F , the pullback
F ′×F hY is representable by a perfectoid affinoid X = Spa(A,A+). Furthe-
more, A is the completion of lim−→H

AH , where for each open normal subgroup
H ⊂ G, AH/B is a finite étale G/H-torsor in the algebraic sense.

Remark 9.3.2. In fact one can take AH = AH to be the ring of elements
of A fixed by H.

Proof. (Sketch.) We reduce to the case of G finite this way: If H ⊂ G is
open normal, then F ′/H → F is a G/H-torsor, and F ′ = lim←−F

′/H.
The key point here is that the fibred category

Y 7→ {finite étale X/Y }

over the category of affinoid perfectoid spaces is a stack for the pro-étale
topology. If Y ′ = lim←−Y

′
i is an affinoid pro-étale cover, then{

finite étale descent data for Y ′ → Y
}

= 2- lim−→
{

finite étale descent data for Y ′i /Y
}

([Elk73], [GR03]). This in turn is the category of finite étale covers X/Y ,
and so we are reduced to showing that étale descent works. Thus, we are
reduced to showing that ’etale descent is effective for finite étale morphisms
of affinoid perfectoids. For this we can either use a descent to noetherian
adic spaces together with a result of Huber. Or we can use de Jong-van der
Put: étale descent follows from analytic descent (Kedlaya-Liu) plus classical
finite étale descent.
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9.4 The diamond SpdQp

For a Huber ring R, let us abbreviate SpaR = Spa(R,R◦). If R is perfectoid
(of whatever characteristic), let us write SpdR for the diamond hSpa(R[).

Thus we have the diamond Spd Qcycl
p : it is the sheaf on (Perf) whose

(R,R+)-valued sections are the set of continuous homorphisms Qcycl,[
p → R.

Since Qcycl,[
p

∼= Fp((t
1/p∞)), this is nothing more than the set of topologically

nilpotent elements of R (these automatically lie in R+).
We now give an ad hoc definition of the diamond Spd Qp.

Definition 9.4.1. Spd Qp = Spd Qcycl,[
p /Z×p . That is, Spd Qp is the co-

equalizer of
Z×p × hSpaQcycl,[

p
⇒ h

SpaQcycl,[
p

,

where one map is the projection and the other is the action.

We would like to know that Spd Qcycl
p → Spa Qp is a Z×p -torsor. This

is something like showing that the Z×p action on Qcycl,[
p = Fp((t

1/p∞)) is
sufficiently nontrivial.

Lemma 9.4.2. Let g : Z×p ×Spd Qcycl
p → Spd Qcycl

p ×SpdQp Spd Qcycl
p be the

product of the projection onto the second factor by the group action. Then
g is an isomorphism.

Proof. The crucial point is that Z×p → Aut Fp((t
1/p∞)) is injective. This

implies that Z×p acts freely on geometric points of Spa Fp((t
1/p∞)). Let us

construct the inverse of g. We need a map

Spa Qcycl
p ×SpaQp Spd Qcycl

p → Z×p

(whereas the map to Spd Qcycl
p is just the projection onto the first factor). A

section of the fibre product over (R,R+) is a pair of maps f1, f2 : Qcycl,[
p → R,

such that there exists an affinoid pro-étale cover Spa(R̃, R̃+)→ Spa(R,R+),
and a continuous map γ̃ : Spa(R̃, R̃+)→ Z×p such that

f1(t) = (1 + f2(t))γ̃ − 1 ∈ R̃.

We want to show that γ̃ factors through a continuous map γ̃ : Spa(R,R+)→
Z×p . It is enough to show that γ̃ is constant on fibres of Spa(R̃, R̃+) →
Spa(R,R+), so without loss of generality R = C is an algebraically closed
nonarchimedean field. If γ̃ is not constant, we have γ0 6= γ1 ∈ Z×p such that

f1(t) = (1 + f2(t))γi − 1 ∈ C
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for i = 0, 1. That is, the two composites f2 ◦ γ̃1, f1 ◦ γ̃2 : Fp((t
1/p∞))→ C are

the same. But this can’t be, since the action of Z×p on geometric points of

Spa Fp((t
1/p∞)) is free.

Corollary 9.4.3. Spd Qcycl
p → Spd Qp is a Z×p -torsor.

Corollary 9.4.4. (Spd Qp)(R,R
+) is the set of isomorphism classes of data

of the form:

1. R→ R̃, a Z×p -torsor,

2. A Z×p -equivariant map Qcycl,[
p → R̃.

Theorem 9.4.5. There is an equivalence of categories between perfectoid
spaces over Qp, and the category of perfectoid spaces X of characteristic p
together with a “structure morphism” X♦ → Spd Qp.

Proof. We will show below that for any affinoid perfectoid (R,R+), specify-
ing a morphism Spa(R,R+)→ Spd(Qp) determines a characteristic 0 untilt
of (R,R+), by which we mean a pair (R], ι), where R] is a perfectoid Qp-
algebra R] and an isomorphism ι : R][ → R of perfectoid algebras. This pair
is uniquely functorial in the map to Spd(Qp). This gives a precise sense in
which specifying an untilt of (R,R+) is functorially the same as specifying a
morphism Spa(R,R+) → Spd(Qp), so we may then globalize to obtain the
assertion in the theorem.

Suppose (R], ι) is an untilt of (R,R+). Let

R̃] = R]⊗̂QpQ
cycl
p =

(
lim−→R] ⊗Qp Qp(µpn)

)∧
,

so that R̃] is a Z×p -torsor over R]. Tilting this gives R̃, a Z×p -torsor over R,

together with a Z×p -equivariant map Qcycl,[
p → R̃.

In the other direction, let R → R̃ be a Z×p -torsor, and let Qcycl,[
p → R̃

be a Z×p -equivariant map. Recall the tilting equivalence between perfectoid

algebras over Qcycl,[
p and Qcycl

p . Thus we get a canonical untilt Qcycl
p → R̃]

which is Z×p -equivariant. We let

R] =
(
R̃]
)Z×p

,

and similarly for R]+. We would like to know that (R], R]+) is “big enough”
in the sense that R][ ∼= R.
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First we work modulo a pseudo-uniformizer. By an argument with co-
cycles, we can build a pseudo-uniformizer $ ∈ R̃ such that $] ∈ R] (i.e., it
is Z×p -invariant), and such that ($])p|p in R̃],+.

Consider the short exact sequence

0 // R̃]+
$] // R̃]+ // R̃]+/$] = R̃+/$ // 0

Taking Z×p invariants, we see there is an inclusionR]+/$] → H0(Z×p , R̃
+/$).

The latter H0 is just R+/$, because R+ → R̃+ is a Z×p -torsor. The ob-

struction to R]+/$] → R+/$ being surjective lies in H1
cont(Z

×
p , R̃

]+). By

successive approximation, this H1 vanishes provided that H1
cont(Z

×
p , R̃/$

])
vanishes.

Lemma 9.4.6. We have an almost isomorphism:

H i
cont(Z

×
p , R̃

]+/$]) ∼=

{
R+/$, i = 0

0, i > 0.

Proof. Use pro-étale descent for (O+/$)a along R→ R̃.

Thus R]+/$] ∼= R+/$. We can also apply the lemma using $p in-
stead of $ (the lemma only required that $]|p) to obtain an isomorphism
R]+/($])p ∼= R+/$p. Since R is perfectoid, Φ: R+/$ → R+/$p is an iso-
morphism, and so is Φ: R]+/$] → R]+/($])p. Therefore R] is perfectoid
as well.

The Z×p -invariant inclusion R] → R̃] is a map between perfectoid rings,

so the functoriality of tilting gives a Z×p -invariant map R][ → R̃][ = R̃,
which factors through the subalgebra R of Z×p -invariants. As a result we

have a map R][ → R which induces a map R][+ → R+. We have already
seen that the reduction of the latter map modulo $ is an isomorphism, and
so by successive approximation, R][+ → R+ is surjective. But likewise we
see from being an isomorphism modulo $ that it is an isomorphism modulo
$n for n = 1, 2, . . . . Taking the inverse limit, we deduce an isomorphism
R][+ → R+, which becomes an isomorphism R][ → R upon inverting $.
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10 The cohomology of diamonds, 9 October

10.1 The functor X 7→ X♦

Our goal today is to construct a functor

{analytic adic spaces/Spa Zp} → {diamonds}
X 7→ X♦

This is roughly analogous to the forgetful functor from complex-analytic
spaces to topological spaces.

Definition 10.1.1. Let X be an analytic adic space over Spa Zp. Define a
pre-sheaf X♦ on (Perf) as follows. For a perfectoid space Y in characteristic
p, let X♦(Y ) be the set of isomorphism classes of pairs (Y ], ι), with Y ] → X
a perfectoid space, and ι : Y ][ ∼= Y an isomorphism.

If X = Spa(R,R+), we write Spd(R,R+) = Spa(R,R+)♦.

Remark 10.1.2. Note that if (R,R+) is already perfectoid in characteristic
p, then Spd(R,R+) = hSpa(R,R+) agrees with our prior definition. Also note

that the pairs (Y ], ι) don’t have nontrivial automorphisms (cf. Thm. 6.2.6),
so X♦ has some hope of being a sheaf.

Theorem 10.1.3. X♦ is a diamond.

Proof. By Prop. 4.5.2 we may assume X = Spa(R,R+) is affinoid, with R a
Tate ring. Since Spa Zp is the base, p ∈ R is topologically nilpotent (though
not necessarily a unit).

Lemma 10.1.4 ([Fal02], [Col02]). Let R be a Tate ring such that p ∈ R
is topologically nilpotent. Let lim−→Ri be a filtered direct limit of algebras Ri
finite étale over Ri, which admits no nonsplit finite étale covers. Endow
lim−→Ri with the topology making lim−→R◦i open and bounded. Let R̃ be the

completion. Then R̃ is perfectoid.

Proof. First, find $ ∈ R̃ a pseudo-uniformizer such that $p|p in R̃◦. To
do this, let $0 ∈ R be any pseudo-uniformizer. Let N be large enough so
that $0|pp

N
. Now look at the equation xp −$0x = $0. This determines a

finite étale R̃-algebra, and so it admits a solution x = $1 ∈ R̃. Note that
$p

1|$0 in R̃◦, and $1 is a unit in R̃. Repeat to obtain a pseudo-uniformizer
$ = $N+1 with $p|p.

Now we must check that Φ: R̃◦/$ → R̃◦/$ is surjective. Let f ∈ R̃◦,
and consider the equation xp −$x− f . We claim this determines an étale
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R̃-algebra (which consequently has a section). This can be checked at each
geometric point Spa(C,C+) of Spa(R̃, R̃+). We claim that the image of the
polynomial xp − $x − f in C[x] is separable. If x ∈ C is a repeated root,
then pxp−1 = $; since p/$ is topologically nilpotent in R, we have that
x ∈ C is a unit with x−1 topologically nilpotent. Thus x−1C◦ is an ideal
of definition for C◦ ⊂ C. On the other hand, x is integral over R◦, and so
it must lie in C◦. By definition of power-bounded, there exists n ≥ 1 such
that x−n

{
1, x, x2, . . .

}
⊂ $C◦. But this implies 1 ∈ $C◦, contradiction.

Thus xp −$x − f has a root g ∈ R̃, which automatically lies in R̃◦. Then
gp ≡ f (mod $R̃◦).

We can also assume that each Ri is a Gi-torsor over R, compatibly with
change in i for an inverse system {Gi} of finite groups. Let G = lim←−iGi.

Lemma 10.1.5. Spd(R,R+) = Spd(R̃, R̃+)/G. Also, Spd(R̃, R̃+)→ Spd(R,R+)
is a G-torsor.

Proof. (Sketch.) The proof is similar to the case of Spd Qp. We need the fact
that for any algebraically closed nonarchimedean field C of characteristic p,
the group G acts freely on Hom(R̃[, C). Fix f : R̃[ → C. By the tilting
equivalence, this corresponds to a map f ] : R̃ → C]. More precisely, R̃◦ =
W (R̃[◦)/I, where I is G-stable. We get W (f◦) : W (R̃[◦) → W (OC), and
then W (f◦) mod I : R̃◦ → OC] .

Assume there exists γ ∈ G such that

R̃[
f // C

R̃[
γ

``

f

??

commutes. Apply W and reduce modulo I to obtain

R̃◦
f]0 // OC]

R̃◦
γ

__

f]0

>>
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Now invert p. By G-equivariance, we get that

Ri
f] // C]

Ri

γ

``

f]

>>

commutes, which shows that γ = 1.

Example 10.1.6. Consider the product Spd Qp×Spd Qp. Let D̃∗Qp
be the

punctured unit disc, considered as an adic space over Qp. We can consider

D̃∗Qp
as a subspace of Gm via x 7→ 1 + x. Let D̃∗Qp

= lim←−D∗Qp
, where the

inverse limit is taken with respect to the pth power maps on Gm.
We claim that there is an isomorphism of diamonds (D̃∗Qp

)♦/Z×p
∼=

Spd Qp × Spd Qp which makes the following diagram commute:

(D̃∗Qp
)♦/Z×p //

��

Spd Qp × Spd Qp

pr1

��
Spd Qp

= // Spd Qp.

For this it is enough to know that there is an isomorphism(
D̃∗

Qcycl
p

)♦ ∼= Spd Qcycl
p × Spd Qcycl

p

which is Z×p ×Z×p -equivariant. It is not hard to see that D̃∗
Qcycl
p

is a perfectoid

space whose tilt is D̃∗
Qcycl,[
p

, the corresponding object in characteristic p.

Meanwhile, Spd Qcycl
p ×Spd Qcycl

p is representable by the perfectoid space

Spa Qcycl,[
p × Spa Qcycl,[

p . We have an isomorphism Qcycl,[
p

∼= Fp((t
1/p∞)),

which when applied to one of the factors in the product gives

Spa Qcycl,[
p × Spa Qcycl,[

p
∼= Spa Qcycl,[

p × Spa Fp((t
1/p∞)) = D∗

Qcycl,[
p

once again. We leave it as an exercise to check that the group actions are
compatible.
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10.2 The cohomology of diamonds

Definition 10.2.1. Let D be a diamond. Define

Dproét = {qpf morphisms E → D}

with covers defined as jointly surjective maps.

Remark 10.2.2. If E is a sheaf on (Perf) and E → D is quasiprofinite,
then E is a diamond. Indeed if hX → D is qpf, then hX ×D E = hY is
representable, and then Y → E is qpf and surjective.

Remark 10.2.3. If D = X♦ for a perfectoid space X, then Dproet is the
category of Y → X qpf, with Y a perfectoid space, with covers as in (Perf).
Thus the pro-étale site on diamonds recovers that on perfectoid spaces.

Proposition 10.2.4. Let F be a sheaf on Dproét, and let X♦ → D be a
surjective qpf morphism from a perfectoid space X. For i ≥ 0, let Xi be
the perfectoid space X♦ ×D · · · ×D X♦, with i + 1 factors. Then there is a
spectral sequence

Eij1 = Hj(X♦i ,F) = Hj(Xi,proét,F) =⇒ H i+j(Dproét,F)

In this way the cohomology of diamonds can be computed from the
cohomology of perfectoid spaces.

Proposition 10.2.5. Let X be a rigid space over Qp considered as an adic
space. (Or more generally, suppose X is locally of the form X = Spa(A,A+),
where A is strongly noetherian.) Huber defines an étale site Xét (can be
defined as for perfectoid spaces). There is a morphism of sites ν : X♦proét →
Xét, such that for all sheaves F on Xét, F → Rν∗ν

∗F is an isomorphism.
As a result H i(Xét,F) = H i(X♦proét, ν

∗F).

Proof. (Sketch.) The morphism ν sends an étale morphism Y → X to
Y ♦ → X♦.

We have the site Xold
proét as defined in [Sch13a], where it was proved that

F ∼= Rνold
∗ νold∗F . Then ν is the composite

X♦
λ // Xold

proét
νold

// Xét

It just remains to show that νold∗F ∼= Rλ∗ν
∗F . That is, we want the

sheafification of U ∈ Xold
proét 7→ H i(U♦proét, ν

∗F) to vanish for i > 0, and

νoldF for i = 0.
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For the vanishing: let i > 0. WLOG U is perfectoid. Let α ∈ H i(U♦proét, ν
∗F).

This vanishes after pullback V ♦ → U♦, where V = lim←−Vi, with Vj ∈ U étale
(and thus they live in the old pro-étale site). Now in the cohomology

H i(V ♦proét, ν
∗F) = lim−→

j

H i(V ♦j,proét, ν
∗F)

we must have that α already vanishes in H i(V ♦j,proét, ν
∗F) for j � 0.

Proposition 10.2.6. Let f : X → X ′ be a finite universal homeomorphism
of locally strongly noetherian adic spaces over Spa Qp. (This means that
any pullback is also a homeomorphism.) Then f♦ : X♦ → (X ′)♦ is an
isomorphism.

Proof. Let Y = Spa(S, S+) be an affinoid pefectoid space, and let Y → X ′

be a morphism. We claim there exists a unique factorization

Y //

  

X

~~
X ′

We have |f | : |Y | → |X| = |X ′|. We need also |f |∗OX → OY . We have
|f |∗O+

X′/$
n → O+

Y /$
n.

Lemma 10.2.7. O+
X′/$

n → O+
X/$

n is an isomorphism of sheaves on
|X| = |X ′|.

Proof. Check on stalks. They are K(x′)+/$n → K(x)+/$n, where x′ cor-
responds to x. But the residue fields are the same.

So we have a map |f |∗O+
X/$

n → O+
Y /$

n, which in the limit becomes
|f |∗O+

X → lim←−nO
+
Y /$

n = O+
Y . The last equality is because Y is perefectoid:

H i(Y,O+
Y /$

n) is almost S+/$n if i = 0 and 0 if i > 0.

In [Sch13b], we had the perfectoid space A∗g,∞ = lim←−A
∗
g,Kp

. Within

this there is a smaller Shimura variety Sh∗∞ = lim←− Sh
∗
Kp

. But then there

is a universal homeomorphism Sh∗Kp → Sh
∗
Kp

from the compatification of
interest. Nonetheless the two Shs have the same diamond, and so they have
the same cohomology.
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Proposition 10.2.8. The functor

{normal rigid-analytic spaces/Qp} → {diamonds/Spd Qp}
X 7→ X♦

is fully faithful.

Proof. The crucial statement is that if R → R̃ is as above, with group G,
and R is normal, then R = R̃G. (This is an analogue of the Ax-Sen-Tate
theorem.) One can use resolution of singularities to reduce to the smooth
case, and then use an explicit computation.

11 Mixed-characteristic shtukas, 14 October

Today we begin talking about shtukas.

11.1 Review of the equal characteristic story

Let X/Fq be a smooth projective geometrically connected curve.

Definition 11.1.1. Let S/Fq be a scheme. A shtuka of rank n over S with
paws10 x1, . . . , xm ∈ X(S) is a rank n vector bundle E over X×Fq S together
with an isomorphism φE : (1 × FrobS)∗E → E on (X ×Fq S)\

⋃
i Γxi , where

Γxi ⊂ X ×Fq S is the graph of xi : S → X.

We currently have no hope of replacing X with the spectrum of the ring
of integers in a number field, but rather only a p-adic field. So let us discuss
the local analogue of Defn. 11.1.1. Fix a point x ∈ X(Fq), and let X̂x be

the formal completion of X at x, so that X̂ ∼= Spf Fq[[T ]]. The paws will be

elements of X̂x(S), which is to say morphisms S → Spf Fq[[T ]], where S/Fq

is an adic formal scheme, or more generally an adic space.

Definition 11.1.2. A local shtuka of rank n over an adic space S/Spa Fq

with paws x1, . . . , xn ∈ X̂x(S) is a rank n vector bundle E over X̂x ×Fq S

together with an isomorphism φE : (1×FrobS)∗E → E over (X̂x×S)\
⋃
i Γxi .

Remark 11.1.3. The space S should be sufficiently nice that X̂x ×Fq S
exists and has a good theory of vector bundles. This is the case for instance
if S is locally of the form Spa(R,R+), with R strongly noetherian. One
should also impose the condition that φE is meromorphic along Γxi .

10“Paws” is a translation of pattes, which appears in the French version of [Laf].
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Example 11.1.4 (One paw). Let C/Fq be an algebraically closed nonar-
chimedean field with pseudo-uniformizer $ and residue field k, and let
S = SpaC. Then the product Spa Fq[[T ]] ×Fq S = DC is the open unit

disc over C. (Recall that DC is the increasing union
⋃
n≥1 SpaC〈T/$1/n〉.)

The paw will be a continuous map Fq[[T ]] → C, which is to say an element
ζ ∈ C (the image of T ) which is topologically nilpotent. We can think of ζ
as a C-point of DC .

Then a shtuka is a rank n vector bundle E over DC together with an
isomorphism φE : φ∗E → E on DC\ {ζ}. Here, φ : DC → DC sends the
parameter T to T , but is Frobenius on C. Note that DC is a classical rigid
space over C, but φ is not a morphism of rigid spaces because it is not C-
linear. In the case ζ = 0, such pairs (E , φE) are studied in [HP04], where
they are called σ-bundles.

We could also have taken S = SpaOC , in which case the product X̂x ×
SpaOC is SpaOC [[T ]]. This is similar to the space Spa Zp[[T ]], which we
analyzed in §3.3. It contains a unique non-analytic point xk. Let Y be the
complement of xk in SpaOC [[T ]]. Once again there is a continuous surjective
map κ : Y → [0,∞], defined by

κ(x) =
log |$(x̃)|
log |T (x̃)|

,

where x̃ is the maximal generalization of x. The Frobenius map φ is a new
feature of this picture. It satisfies κ ◦ φ = pκ. See Figure 11.1.

11.2 The adic space “S × SpaZp”

In the mixed characteristic setting, X̂x will be replaced with Spa Zp. Our
test objects S will be drawn from (Perf), the category of perfectoid spaces
in characteristic p. For an object S of (Perf), a shtuka over S should be a
vector bundle over an adic space “S × Spa Zp” together with a Frobenius
structure. The product is not meant to be taken literally (if so, one would
just recover S), but rather it is to be interpreted as a fiber product over a
deeper base.

The main idea is that if R is a Fp-algebra, then “R ⊗ Zp” ought to
be W (R). As justification for this, note W (R) is a ring admitting a ring
homomorphism Zp →W (R) and also a map R→W (R) which is not quite
a ring homomorphism (it is only multiplicative). Motivated by this, we will
define an analytic adic space “S×Spa Zp” and then show that its associated
diamond is the appropriate product of sheaves on (Perf).

75



$ = 0

T = 0

xk((T ))

xC
xk

φ
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∞

0

Figure 4: A depiction of SpaA, where A = OC [[T ]]. The two closed subspaces
SpaOC and Spa k[[T ]] appear as the x-axis and y-axis, respectively. Their
intersection is the unique non-analytic point xk of SpaA. The complement of
xk in SpaA is the adic space Y, on which the continuous map κ : Y → [0,∞]
is defined. The automorphism φ of SpaA tends to rotate points towards the
y-axis (though it fixes both axes).
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Definition 11.2.1. Let Spd Zp be the presheaf on (Perf) which sends S to
the set of isomorphism classes of pairs (S], ι), where S] is a perfectoid space
(in any characteristic) and ι : S][ → S is an isomorphism. Such a pair (S], ι)
will be called an untilt of S (and often we will drop the ι from the notation).

Recall that Spd Qp is the sheaf on (Perf) which sends S to the set of
isomorphism classes of untilts S] which are Qp-algebras. This is an open
subfunctor of Spd Zp. The complement is represented by the single point
Spa Fp, which sends S to {(S, idS)}.

We warn the reader that Spd Zp is not a diamond. (All diamonds are
“analytic”, but the special point of Spd Zp is not analytic.) However, the
next proposition shows that Spd Zp becomes a diamond once one supplies a
base.

Proposition 11.2.2. For any perfectoid space S of characteristic p, S♦ ×
Spd Zp is a diamond. More precisely, there is an analytic adic space “S ×
Spa Zp” over Spa Zp such that (“S×Spa Zp”)♦ ∼= S♦×Spd Zp as diamonds
over Spd Zp.

Remark 11.2.3. It follows that Spd Zp is a sheaf. Indeed, to check the
sheaf property for Spd Zp on a cover of an object S is the same as checking
it for the product S♦ × Spd Zp, which is a diamond and therefore a sheaf.

Proof. We will treat the case that S = Spa(R,R+) is affinoid; the reader
may globalize the result by computing with rational subsets. Let $ ∈ R be
a pseudo-uniformizer. Give the ring of Witt vectors W (R+) the (p, [$])-adic
topology. Define

“S × Spa Zp” = {[$] 6= 0} ⊂ SpaW (R+).

(The displayed condition is shorthand for {x| |[$](x)| 6= 0}; note that it does
not depend on the choice of $.)

The element [$] is everywhere a topologically nilpotent unit on “S ×
Spa Zp”. Consequently “S × Spa Zp” is an analytic adic space over Spa Zp.

Now we check the identification of associated diamonds. For an object
Y of (Perf), say Y = Spa(T, T+), a Y -valued point of (“S×Spa Zp”)♦ is an
untilt Y ] lying over “S × Spa Zp”. To give a morphism Y ] → “S × Spa Zp”
is to give a continuous homomorphism W (R+)→ T ]+ such that the image
of [$] is invertible in T .

On the other hand, a Y -valued point of S♦× Spd Zp is a pair consisting
of a morphism Y → S together with an untilt Y ].
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Define a map (“S× Spa Zp”)♦(Y )→ (S♦× Spd Zp)(Y ) as follows. Sup-
pose we are given an untilt Y ] and a map W (R+) → T ]+. Reduce the
map modulo the ideal (p, [$]) to obtain a map R+/$ → T+/p. Now ap-
ply lim←−Φ

to obtain a map R+ → T+, in which the image of $ is invertible
in T ; this extends to R → T . We have constructed a map Y → S. The
untilt Y ] was part of the given data, so we have constructed an element of
(S♦ × Spd Zp)(Y ).

In the other direction, suppose we are given a morphism Y → S and
an untilt Y ] = Spa(T ], T ]+). The morphism Y → S corresponds to a map
R+ → T , which induces a map W (R+) → W (T+). Composing this with
the map θ : W (T+)→ T ]+ gives the desired map W (R+)→ T ]+.

Example 11.2.4. Let S = SpaC, where C/Fp is an algebraically closed
nonarchimedean field with residue field k. The ring of Witt vectors W (OC)
is called Ainf in Fontaine’s theory, [Fon94]. Its spectrum SpaW (OC) is
rather like the formal unit disk SpaOC [[T ]]. Note that there is no map
“S×Spa Zp”→ S (because there is no ring homomorphism OC →W (OC)),
but there is one on the level of topological spaces.

11.3 “Sections of “S × SpaZp”→ S”

Even though there is no morphism “S × Spa Zp” → S, Prop. 11.2.2 shows
there is a morphism (“S × Spa Zp”)♦ → S♦. The following proposition
shows that sections of this morphism behave as expected.

Proposition 11.3.1. Let S be an object of (Perf). The following sets are
naturally identified:

1. Sections of (“S × Spa Zp”)♦ → S♦,

2. Morphisms S♦ → Spd Zp, and

3. Untilts S] of S.

Proof. By Prop. 11.2.2, (“S × Spa Zp”)♦ = S♦× Spd Zp. Thus a section as
in (1) is a section of S♦ × Spd Zp → S♦, which is nothing but a morphism
S♦ → Spd Zp. Thus (1) and (2) are identified.

Let us show that (3) is identified with (1) and (2). Once again only
treat the case that S = Spa(R,R+) is affinoid. Let $ ∈ R be a pseudo-
uniformizer.

Given an untilt S] = Spa(R], R]+) as in (3), we have a map θ : W (R+)→
R]+ which sends [$] to a unit in R]. This means that the composite map
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S → SpaR]+ → SpaW (R+) factors through “S × Spa Zp” ⊂ SpaW (R+),
so we have a map S → “S×Spa Zp”. Passing to diamonds gives an element
of (1).

Conversely if an element of (2) is given, we a have a morphism of dia-
monds S♦ → Spd Zp. The image of the identity morphism S → S under
S♦(S) → (Spd Zp)(S) is an S-point of Spd Zp, which is by definition an
untilt of S. We leave it to the reader to see that these maps are mutual
inverses.

Proposition 11.3.2. “S × Spa Zp” is an honest adic space.

Proof. Once again we assume S = Spa(R,R+) is affinoid, with $ ∈ R a
pseudo-uniformizer. We claim that the adic space

“S × Spa Zp” = SpaW (R+)\ {[$] = 0}

has a covering by affinoid subsets of SpaW (R+) of the form |p| ≤
∣∣[$1/pn ]

∣∣ 6=
0, for n = 1, 2, . . . . Indeed, if |·(x)| is a continuous valuation on W (R+) with
|[$](x)| 6= 0, then (since p is topologically nilpotent) there exists n� 0 such
that |p(x)|n ≤ |[$]|.

Let Spa(Rn, R
+
n ) be the rational subset |p| ≤

∣∣[$1/pn ]
∣∣ 6= 0. Thus for in-

stance Rn is the ring obtained by [$]-adically completing W (R+)[p/[$1/pn ]
and then inverting [$]. One has the following presentation for Rn:

Rn =

∑
i≥0

[ri]

(
p

[$1/pn ]

)i ∣∣∣∣ ri ∈ R, rn → 0

 .

(One might call this ring W (R)〈p/[$1/pn ]〉.)
Note that Rn is Tate ([$] serves as a pseudo-uniformizer). We leave it

to the reader to show that if K is a perfectoid Qp-algebra, then Rn⊗̂ZpOK
is a perfectoid ring, and therefore Rn is preperfectoid. (We just note that
$′ = [$1/p] serves as a pseudo-uniformizer satisfying the condition of Defn.
6.1.1. Note that Rn does not contain a field, so it is rather like Example
6.3.2(2).) By Prop. 6.3.3, (Rn, R

+
n ) is sheafy.

11.4 Definition of mixed-characteristic shtukas

By Thm. 5.5.8 one has a good notion of vector bundle for the space “S ×
Spa Zp”.
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Definition 11.4.1. Let S be a perfectoid space in characteristic p. Let
x1, . . . , xm : S♦ → Spd Zp be a collection of morphisms; for i = 1, . . . ,m

let x]i : S
]
i → “S × Spa Zp” be the corresponding morphism of adic spaces

over Spa Zp. Write Γxi for the image of x]i. A (mixed-characteristic) shtuka
of rank n over S with paws x1, . . . , xm is a rank n vector bundle E over
“S × Spa Zp” together with an isomorphism φE : Frob∗S(E)→ E over (“S ×
Spa Zp”)\

⋃
i Γxi . This is required to be meromorphic along each Γxi .

Let us discuss the case of shtukas with one paw over S = SpaC, where
C/Fp is an algebraically closed nonarchimedean field. The paw is a map
S♦ → Spd Zp. Let us assume that this factors over Spd Qp and thus corre-
sponds to a characteristic 0 untilt C], an algebraically closed field. We have
a surjective homomorphism W (OC)→ OC] whose kernel is generated by an
element ξ ∈W (OC). Let φ = W (FrobOC ), an automorphism of W (OC).

It turns out that such shtukas are in correspondence with linear-algebra
objects which are essentially shtukas over all of SpaW (OC), rather than
over just the locus [$] 6= 0.

Definition 11.4.2 (Fargues). A Breuil-Kisin module over W (OC) is a pair
(M,φM ), where M is a finite free W (OC)-module and φM : (φ∗M)[ξ−1]

∼→
M [ξ−1] is an isomorphism.

Remark 11.4.3. Note the analogy to Kisin’s work [Kis06], which takes
place in the context of a finite totally ramified extension K/W (k)[1/p]
(now k is any perfect field of characteristic p). Let ξ generate the ker-
nel of a continuous surjective homomorphism W (k)[[u]] → OK . Kisin’s φ-
modules are pairs (M,φM ), where M is a finite free W (k)[[u]]-module and
φM : (φ∗M)[ξ−1]

∼→ M [ξ−1] is an isomorphism. Kisin constructs a fully
faithful functor from the category φ-modules up to isogeny into the cate-
gory of crystalline representations of Gal(K/K) and identifies the essential
image.

Let (M,φM ) be a Breuil-Kisin module over W (OC). After inverting [$],
M gives rise to a vector bundle on “S × Spa Zp” ⊂W (OC) and therefore a
shtuka E . In fact one can go in the other direction:

Theorem 11.4.4 ([Far13]). The functor M 7→ E is an equivalence between
the category of Breuil-Kisin modules over W (OC) and the category of shtukas
over SpaC with one paw at C].
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12 Shtukas with one paw, 16 October

12.1 p-divisible groups over OC
Today we connect mixed-characteristic shtukas to p-adic Hodge theory over
an algebraically closed field. Let C/Qp be an algebraically closed nonar-
chimedean field, with ring of integers OC and residue field k. Let G be a
p-divisible group over OC , and let TpG = lim←−G[pn](C) be its Tate module,
a free Zp-module of finite rank.

Theorem 12.1.1 (The Hodge-Tate exact sequence, [Far08]). There is a
natural short exact sequence

0 // LieG⊗OC C(1)
α∗
G∗ // TpG⊗Zp C

αG // (LieG∗)∗ ⊗OC C // 0

Remark 12.1.2. Tate [Tat67] treated the case where G comes from a p-
divisible group over a DVR with perfect residue field.

The map αG is defined as follows. An element of TpG is really just a
morphism of p-divisible groups f : Qp/Zp → G, whose dual is morphism
f∗ : G∗ → µp∞ . The derivative of f∗ is an OC-linear map Lie f∗ : LieG∗ →
Lieµp∞ . The dual of Lie f∗ is a map (Lieµp∞)∗ → (LieG∗)∗; let αG(f)
be the image of dt/t ∈ (Lieµp∞)∗. (See for instance Ch. II of Messing’s
thesis for a discussion of this map for a p-divisible group over a p-adically
separated and complete ring.)

Remark 12.1.3. It isn’t quite formal that αG ◦ α∗G∗ = 0.

Definition 12.1.4. Let {(T,W )} be the category of pairs consisting of a
free Zp-module T of finite rank and a C-vector subspace W ⊂ T ⊗Zp C.

Theorem 12.1.1 gives us a functor

{p-div. gps./OC} → {(T,W )}
G 7→ (TpG,LieG⊗OC C(1))

Theorem 12.1.5 ([SW13]). This is an equivalence of categories.

Theorem 12.1.5 gives a classification of p-divisible groups over OC in
terms of linear algebra data, analogous to Riemann’s classification of com-
plex abelian varieties. Recall also the classification of p-divisible groups
over a general perfect field k of characteristic p by Dieudonné modules: free
W (k)-modules M of finite rank equipped with a σ-linear map F : M → M

81



and a σ−1-linear map V : M → M which satisfy FV = V F = p. Here
σ : W (k)→W (k) is induced from the pth power Frobenius map on k. There
is the interesting question of how these classifications interact. That is, we
have a diagram

We get a diagram

{p-div. gps./OC} ∼ //

��

{(T,W )}

?
��

{p-div. gps./k} ∼ // {Dieudonné modules}

It is not at all clear how to give an explicit description of the arrow
labeled “?”. If we think of “?” only as a map between sets of isomorphism
classes of objects, we get the following interpretation. Let (h, d) be a pair
of nonnegative integers with d ≤ h. The set of isomorphism classes of
objects (T,W ) with rankT = h and dimW = d together with a trivialization
T ∼= Znp is Grass(h, d), the set of d-planes in Ch. The set of isogeny classes
of Dieudonné modules is identified with the finite set NPh,d of Newton
polygons running between (0, 0) and (d, h) whose slopes lie in [0, 1]. Thus
we have a canonical GLh(Qp)-equivariant map Grass(d, h)→ NPh,d. What
are its fibers?

Example 12.1.6. In the cases d = 0 and d = 1 the map Grass(d, h) →
NPh,d can be calculated explicitly. The case d = 0 is trivial since both
sets are singletons. So consider the case d = 1. Let W ⊂ Ch be a line,
so that W ∈ Ph−1(C). The p-divisible group corresponding to (Zhp ,W )

is determined by “how rational” W is. To wit, let H ⊂ Ph−1(C) be the
smallest Qp-linear C-subspace containing W , and let i = dimC H−1. Then
the p-divisible group associated to (Zhp ,W ) is isogenous to (Qp/Zp)

⊕(h−i)⊕
Gi, where Gi is a p-divisible group of height i and dimension 1. (Since k is
algebraically closed, Gi is unique up to isomorphism.) Thus for instance the
set of W ∈ Ph−1(C) which correspond to a p-divisible group with special
fiber Gh is Drinfeld’s upper half-space Ωh(C).

12.2 Shtukas with one paw and p-divisible groups: an overview

In general the functor “?” is harder to describe, but there is a hint for how
to proceed: If G is defined over OK with K/Qp finite, then we have the
following Fontaine-style comparison isomorphism, valid after inverting p:

M = (TpG⊗Zp Acris)
GK

82



up to p-torsion. This indicates that we will have to work with period rings. It
turns out that the necessary period rings show up naturally in the geometry
of SpaW (OC), and that there is an intimate link to shtukas over SpaC[

with one paw at C.

Remark 12.2.1. A notational remark: Fontaine gives the name R to OC[ ,
and Berger, Colmez call it Ẽ+, reserving Ẽ for what we call C[. W (OC[) is
variously called W (R) and Ainf .

Recall that we have a surjective map θ : W (OC[)→ OC . The kernel of θ

is generated by a non-zero divisor ξ = p−[p[], where p[ = (p, p1/p, p1/p2
, . . . ) ∈

OC[ . Note that p[ is a pseudo-uniformizer of C[.
Consider the adic space SpaW (OC[). (It turns out that this is an honest

adic space, but at present we won’t be needing this fact.) We give names to
four special points of SpaW (OC[), labeled by their residue fields:

1. xk, the unique non-analytic point (recall that k is the residue field of
C).

2. xC[ , which corresponds to W (OC[)→ OC[ → C[.

3. xC , which corresponds to W (OC[)→ OC → C (the first map is θ).

4. xL, which corresponds to W (OC[)→W (k)→W (k)[1/p] = L,

Let Y = SpaW (OC[)\ {xk}, an analytic adic space. Then as usual there
exists a surjective continuous map κ : Y → R≥0 ∪ {∞}, defined by

κ(x) =
log |[$](x̃)|
log |p(x̃)|

,

where x̃ is the maximal generalization of x, cf. the discussion in §3.3.
See Figure 12.2 for a depiction of the various structures associated with
SpaW (OC[). We have:

κ(xC[) = 0,

κ(xC) = 1,

κ(xL) = ∞.

For an interval I ⊂ R≥0 ∪{∞}, let YI be the interior of the preimage of
Y under κ. Thus Y[0,∞) is the complement in Y of the point xL with residue
field L = W (k)[1/p]. Also note that Y[0,∞) = “ SpaC × Spa Zp”.
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[p[] = 0

p = 0

xL

xC[

xC

xk

κ

∞

0

1

Figure 5: A depiction of SpaAinf , where Ainf = W (OC[). The two closed
subspaces p = 0 and [p[] = 0 appear as the x-axis and y-axis, respectively.
We have also depicted the closed subspace p = [p[], which cuts out SpaOC ,
as a green ellipse. The unique non-analytic point xk of SpaAinf appears at
the origin. Its complement in SpaAinf is the adic space Y[0,∞], on which
the continuous map κ : Y[0,∞] → [0,∞] is defined. The automorphism φ of
SpaAinf (not shown) tends to rotate points towards the y-axis (though it
fixes both axes).
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The Frobenius automorphism of OC[ induces an automorphism φ of
SpaW (OC[), which preserves Y and which satisfies κ ◦ φ = pκ. Therefore φ
sends Y[a,b] to Y[ap,bp].

We will outline the construction of “?” in three steps:

1. Give a linear algebra description of the category of shtukas over SpaC[

with one paw at C, in terms of modules over the de Rham period ring
BdR.

2. Show that any shtuka over Y[0,∞) extends to all of Y (i.e., it extends
over xL).

3. Show that any shtuka over Y extends to all of SpaW (OC[) (i.e., it
extends over xk).

The remainder of the lecture concerns Step (1).

12.3 Shtukas with no paws, and φ-modules over the integral
Robba ring

Definition 12.3.1 (The integral Robba rings). Let R̃int be the local ring
OY,x

C[
. For a rational number r > 0, we define R̃int,r to be the ring of global

sections of OY[0,r]
.

Unwinding the definition of κ, we see that Y[0,r] is the rational subset
of SpaW (OC[) cut out by the conditions |p(x)|r ≤ |[$](x)| 6= 0. Thus

R̃int,r = W (OC[)〈p/[p[]1/r〉 is the p-adic completion of W (OC[)[p/[(p[)1/r]],

where (p[)1/r ∈ OC[ is any rth root of p[. Thus R̃int,r can be described as

R̃int,r =

∑
n≥0

[cn]pn
∣∣∣∣ cn ∈ C[, cn(p[)n/r → 0

 .

For r′ < r, the inclusion of rational subsets Y[0,r′] → Y[0,r] allows us to view

R̃int,r as a subring of R̃int,r′ . Finally,

R̃int = lim−→ R̃int,r as r → 0.

Remark 12.3.2. 1. R̃int is a henselian discrete valuation ring with uni-
formizer p, residue field C[, and completion equal to W (C[).

2. The Frobenius automorphism ofOC[ induces isomorphisms φ : R̃int,r →
R̃int,r/p for r > 0.
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Definition 12.3.3. Let R be a ring together with an automorphism φ : R→
R. A φ-module over R is a finite projective R-module M with a φ-semilinear
isomorphism φM : M →M .

The next theorem states that φ-modules over the rings R̃int and W (C[)
are trivial in the sense that one can always find a φ-invariant basis.

Theorem 12.3.4 ([KL, Thm. 8.5.3]). The following categories are equiva-
lent:

1.
{
φ-modules over R̃int

}
2.
{
φ-modules over W (C[)

}
3. {finite free Zp-modules}

The functor from (1) to (2) is base extension, and the functor from (2) to
(3) is the operation of taking φ-invariants.

Proof. The equivalence between (1) and (2) is equivalent to the statement
that if M is a φ-module over R̃int, then the map

Mφ=1 → (M ⊗R̃int W (C[))φ=1

is an isomorphism. This can be checked by consideration of Newton poly-
gons.

The equivalence between (2) and (3) is a special case of the following
fact. Let R be a perfect ring. Then φ-modules over W (R) are equivalent
to Zp-local systems on SpecR. This is sometimes called Artin-Shreier-Witt
theory (the case of φ-modules over R and Fp-local systems being due to
Artin-Shreier).

Proposition 12.3.5. The following categories are equivalent:

1. Shtukas over SpaC[ with no paws, and

2. φ-modules over R̃int (in turn equivalent to finite free Zp-modules by
Thm. 12.3.4).

Proof. A shtuka over SpaC[ with no paws is a vector bundle E on Y[0,∞)

together with an isomorphism φE : φ∗E → E . The localization of E at xC[ is

a φ-module over OY,x
C[

= R̃int.

Going in the other direction, suppose (M,φM ) is a φ-module over R̃int.
Since R̃int = lim−→R̃

int,r, the category of finitely presented modules over R̃int
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is the colimit of the directed system of categories of finitely presented mod-
ules over the R̃int,r. This means that we can descend (M,φM ) to a pair
(Mr, φMr), where Mr is a finitely presented module over R̃int,r, together
with an isomorphism φMr : φ∗Mr →Mr ⊗R̃int,r R̃int,r/p.

In terms of vector bundles, we have a pair (Er, φEr), where Er is a vector
bundle over Y[0,r] together with an isomorphism φEr : φ∗Er → Er|Y[0,r/p]

. We

can now pull back through powers of φ−1 to construct a shtuka (E , φE) over
all of Y[0,∞). For n ≥ 1, the pullback (φ−n)∗Er is a vector bundle on Y[0,pnr].
These can be glued together using φEr . To wit, (φ−n)∗φEr is an isomorphism
(φ1−n)∗Er → (φ−n)∗Er|Y[0,pn−1r]

. Let E be the result of this gluing, a vector

bundle on all of Y[0,∞).
We still need to construct the required isomorphism φE : φ∗E → E . Let

us construct its restriction to Y[0,pnr]: this is the composition

(φ∗E)|Y[0,pnr]
= φ∗(E|Y[0,pn+1r]

) ∼= φ∗(φ−n−1)∗Er = (φ−n)∗Er ∼= E|Y[0,pnr]
.

We leave it to the reader to check that these isomorphisms are compatible
as n changes.

12.4 Shtukas with one paw, and BdR-modules

We now turn to the category of shtukas over SpaC[ with one paw at
C. These are vector bundles E on Y[0,∞) together with an isomorphism
φE : φ∗E → E away from xC . Our analysis will involve the completed local
ring of Y at xC , which is none other than the de Rham period ring B+

dR.

Definition 12.4.1 (The de Rham period ring). Let B+
dR = ÔY,xC . That is,

BdR is the ξ-adic completion of W (OC[)[1/p]. It is a complete discrete valua-
tion ring with residue field C and uniformizer ξ. The map θ : W (OC[)→ OC
extends to a map BdR → C which we continue to call θ. Let BdR = B+

dR[ξ−1]
be the fraction field of B+

dR.

Remark 12.4.2. The automorphism φ of Y allows us to identify ÔY,φn(xC)

with B+
dR for any n ∈ Z, and it will be convenient for us to do so. Thus if E

is a vector bundle on an open subset of Y containing φn(xC), its completed
stalk Êφn(xC) is a B+

dR-module.

Remark 12.4.3. The assumption that φE is meromorphic at xC means
that it induces an isomorphism on stalks at C after inverting the parameter
ξ. That is, we have an isomorphism φE,xC : Êφ(xC) ⊗B+

dR
BdR → ÊxC ⊗B+

dR

BdR. Thus φE,xC is an isomorphism between two BdR-vector spaces which
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each contain a distinguished B+
dR-lattice. The following theorem shows that

shtukas can be classified in terms of the relative position of these two lattices.

Theorem 12.4.4 (Fargues). There is an equivalence between the category
of shtukas over SpaC[ with one paw at C and the category of pairs (T,Ξ),
where T is a finite free Zp-module and Ξ ⊂ T ⊗Zp BdR is a B+

dR-lattice.

Remark 12.4.5. There is a fully faithful functor {(T,W )} → {(T,Ξ)}
where Ξ =

{
x ∈ T ⊗Zp B

+
dR|x (mod ξ) ∈W

}
.

Proof. Let (E , φE) be a shtuka over SpaC[ with one paw at C. The stalk
Ex

C[
is a φ-module over R̃int. Applying Prop. 12.3.5, this stalk corresponds

to a shtuka (E0, φE0) with no paw. With this correspondence comes an iso-
morphism of φ-modules E0,x

C[
∼= Ex

C[
over R̃int = OY,x

C[
. This isomorphism

descends to an isomorphism of vector bundles ι : E0
∼= E over Y[0,r] for some

0 < r < 1, which is compatible with the φ-module structures in the sense
that the diagram of vector bundles

(φ∗E0)

φE0
��

φ∗(ι) // (φ∗E)

φE
��

E0 ι
// E

commutes; here all morphisms are only defined over Y[0,r]. (The condition
r < 1 is necessary so that Y[0,r] avoids the paw xC .) We now proceed
as in the proof of Thm. 12.3.5 to extend ι over a larger domain. Since
(φ∗E0)|Y[0,r]

= φ∗(E0|Y[0,pr]
), and similarly for E , we can apply (φ−1)∗ to

obtain an isomorphism E0
∼= E over Y[0,pr]\ {xC} which extends ι. This

process can be repeated to extend ι over Y(0,∞)\ {xC , φ(xC), . . .}, so that
the above diagram commutes for any r > 0. At xC itself, one only has an
isomorphism Ê0,x[1/ξ]

∼→ Êx[1/ξ].
As discussed in Rmk. 12.4.3 we have an isomorphism of BdR-vector

spaces φE,xC : Êφ(xC)[1/ξ]→ ÊxC [1/ξ].
Now we apply Thm. 12.3.4 to trivialize the shtuka E0 with no paw. The

completion Ê0,x
C[

is a φ-module over W (OC[). Let T = (Ê0,x
C[

)φ=1. Then
E0 = T ⊗Zp OY[0,∞)

.

Finally we can define the lattice Ξ ⊂ T ⊗Zp BdR: it is the image of ÊxC
under the isomorphism

ÊxC [1/ξ]
φE,xC // Ê0,xC [1/ξ] // T ⊗Zp BdR.
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Thus we have defined a functor from shtukas with one paw to {(T,Ξ)}.
To go in the other direction, suppose we are given (T,Ξ). Define (E0, φE0) =
T ⊗Zp OY[0,∞)

. The lattice Ξ lies in Ê0,xC ⊗B+
dR
BdR, and so

φ−n(Ξ) ⊂ Ê0,φn(xC) ⊗B+
dR
BdR

is a B+
dR-lattice, n ≥ 1.

Using the lattices φ−n(Ξ), we modify E0 at all φn(xC), n ≥ 1. We get a
new vector bundle E over Y(0,∞] together with an isomorphism φE : φ∗E → E
away from xC , as required.

12.5 Description of the functor “?”

This conludes Step (1) of the program outlined in §12.2. The goal of the
remaining steps is to show that shtukas over Y[0,∞) can be extended to all of
SpaW (OC), where they become what we have called Breuil-Kisin modules.
Then we will have the following theorem:

Theorem 12.5.1. There is an equivalence of categories between Breuil-
Kisin modules over W (OC[) and pairs (T,Ξ).

Recall that an isocrystal over k is a finite-dimensional vector space over
L = W (k)[1/p] equipped with a σ-semilinear automorphism F . Note that
the isogeny category of Dieudonné modules is a full subcategory of the cat-
egory of isocrystals, consisting of those objects where the slopes of F lie in
[0, 1]. We have a functor

{Breuil-Kisin modules over W (OC[)} → {isocrystals over k}

which sends M to M⊗W (O
C[

)L. This corresponds to the operation of taking

the fiber of the shtuka over xL. Note that since the image of ξ = p−[p[] under
W (OC[)→W (k)[1/p] is invertible, φM really does induce an automorphism
of M ⊗W (O

C[
) L.

Finally we can give a description of the functor “?” from {(T,W )} to
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Dieudonné modules, as in the following diagram:

{p-div. gps. over OC} //

��

{(T,W )}

��
{(T,Ξ)}

∼
��

{BK modules over W (OC[)}

��
{p-div. gps. over k} // {isocrystals over k}

Proposition 12.5.2 (Fargues). This diagram commutes11.

13 Shtukas with one paw II, 21 October

Today we discuss Step 2 of the plan laid out in Lecture 11. We will show that
a shtuka over SpaC[, which is a φ-module over Y[0,∞), actually extends to
Y[0,∞]. In doing so we will encounter the theory of φ-modules over the Robba
ring, due to Kedlaya. These are in correspondence with vector bundles over
the Fargues-Fontaine curve, [FF11].

13.1 Y is honest

As in the previous lecture, let C/Qp be an algebraically closed nonar-
chimedean field, with tilt C[/Fp and residue field k. Let Ainf = W (OC[),
with its (p, [p[])-adic topology. We had set Y = Y[0,∞] = (SpaAinf)\ {xk},
an analytic adic space.

Proposition 13.1.1. Y is an honest adic space.

Proof. From Prop. 11.3.2 applied to S = SpaC[ we know that “S ×
Spa Zp” = Y[0,∞) is honest, by exhibiting a covering by rational subsets
Spa(R,R+), where R is preperfectoid. We apply a similar strategy to the
rational subsets Y[r,∞] for r > 0.

For r > 0 rational we have Y[r,∞] = Spa(Rr, R
+
r ), where Rr is the

ring W (OC[)〈(p[)r/p〉[1/p]. Here W (OC[)〈(p[)r/p〉 is the completion of
W (OC[)[(p[)r]/p] with respect to the ([p[], p)-adic topology, but since p di-
vides [(p[)r] in this ring, the topology is just p-adic.

11Fargues denies responsibility for this if p = 2.
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Let A′inf be the ring W (OC[) equipped with the p-adic topology (rather
than the (p, [p[])-adic topology, as we have defined Ainf). By the observa-
tion above, the morphism of adic spaces SpaAinf → SpaA′inf induces an
isomorphism between Y[r,∞] and the rational subset of SpaA′inf defined by∣∣[p[](x)

∣∣r ≤ |p(x)| 6= 0. Therefore to prove the proposition it is enough
to show that the rational subset {|p(x)| 6= 0} of SpaA′inf is honest. This
rational subset is Spa(A′inf [1/p], A

′
inf).

We claimA′inf [1/p] is preperfectoid. Indeed, ifR = A′inf [1/p]⊗̂ZpZp[p
1/p∞ ],

then R is a Tate ring with pseudo-uniformizer p1/p. Its subring of power-
bounded elements is R◦ = A′inf⊗̂ZpZp[p

1/p∞ ]. Observe that Φ is surjective

on R◦/p = OC[ ⊗Fp Fp[x
1/p∞ ]/x = OC[ [x1/p∞ ]/x. Thus R is perfectoid. By

Prop. 6.3.3, (A′inf , A
′
inf [1/p]) is sheafy.

Remark 13.1.2. The same proof shows that SpaW (R)[1/p] is an honest
adic space, where R is any (discrete) perfect ring and W (R) has the p-adic
topology.

13.2 The extension of shtukas over xL

The main theorem of this lecture concerns the extension of φ-modules from
Y[r,∞) to Y[r,∞], where 0 ≤ r <∞.

Definition 13.2.1. Let I ⊂ [0,∞] be an interval of the form [r,∞) or [r,∞],
so that I ⊂ p−1I. A φ-module over YI is a pair (E , φE), where E is a vector
bundle over YI , and φE : φ∗E|YI → YI is an isomorphism. (Note that φ∗E is
a vector bundle over Yp−1I ⊃ YI .)

Theorem 13.2.2. For 0 ≤ r < ∞, the restriction functor from φ-modules
over Y[r,∞] to φ-modules over Y[r,∞) is an equivalence.

Remark 13.2.3. In particular, suppose (E , φE) is a shtuka over SpaC[ with
paws x1, . . . , xn. Thus E is a vector bundle over Y[0,∞) and φE : φ∗E → E is
an isomorphism away from the Γxi . Suppose r > 0 be greater than κ(Γxi)
for i = 1, . . . , n, so that E|Y[r,∞)

is a φ-module over Y[r,∞). By the theorem,
E|Y[r,∞)

extends uniquely to a φ module over Y[r,∞]. This can be glued to

the given shtuka to obtain a vector bundle Ê together with an isomorphism
φÊ : φ∗Ê → Ê on Y\

⋃
i Γxi .

We only offer some ideas of the proof below.
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13.3 Full faithfullness

We now sketch a proof that the functor described in Thm. 13.2.2 is fully
faithful.

Suppose I is an interval of the form [r,∞) or [r,∞] with r > 0. If
(E , φE) is a φ-module over YI , let H0(YI , E)φ=1 denote the space of sections
s ∈ H0(YI , E) for which φE(φ

∗(s)|YI ) = s.

Lemma 13.3.1. Let r′ > r, and let I ′ = I ∩ [r′,∞]. The restriction map
H0(YI , E)φ=1 → H0(YI′ , E)φ=1 is an isomorphism.

Proof. The inverse map is as follows: if s ∈ H0(YI′ , E)φ=1, then s1 =
φE(φ

∗(s)|YI ) is a section of E over Yp−1I′∩I which agrees with s on YI′ .
Inductively define sn ∈ H0(Yp−nI′∩I , E) by sn = φE(φ

∗(sn−1)). Then for n
large enough so that I ⊂ p−nI ′, sn ∈ H0(YI , E)φ=1 extends s.

For full faithfulness of the restriction functor in Thm. 13.2.2, the key
point is the following proposition.

Proposition 13.3.2. Let r > 0, and let E be a φ-module over Y[r,∞]. Re-
striction induces an isomorphism

H0(Y[r,∞], E)φ=1 ∼→ H0(Y[r,∞), E)φ=1.

Proof. We may reduce to the case that E = OnY[r,∞]
is free. Indeed, E is free

over the local ring OY,xL , and so it is free over Y[r′,∞] for r′ large enough; by
Lemma 13.3.1 we may replace r by r′ in the statement of the proposition.

Assume for simplicity n = 1, so that E = H0(Y[r,∞],OY). The im-
age of 1 ∈ H0(Y[r,∞],OY) under φE is an element of H0(Y[r,∞],OY )×,

call it A−1. An element of H0(Y[r,∞), E)φ=1 corresponds to an element
f ∈ H0(Y[r,∞),OY ) such that Af = φ(f); our task is to show that any
such f extends over Y[r,∞].

Consider the Newton polygon of f : if

f =
∑
i∈Z

[ai]p
i, ai ∈ C[,

let Newt(f) be the convex hull of the polygon in R2 joining the points
(val(ai), i) for i ∈ Z. Here val is a valuation on C[, written additively. Then
Newt(f) is independent of the expression of f as a series (which may not be
unique). We have that f extends to Y[r,∞] if and only if Newt(f) lies on the
right of the y-axis. (This takes some argument, see [FF11].) We have

Newt(φ(f)) = Newt(Af) ≥ Newt(A) + Newt(f).
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Since A is a section over Y[r,∞], Newt(A) lies on the right of the vertical
axis. Also Newt(φ(f)) is Newt(f) but scaled by p in the val-axis (which we
are drawing as the x-axis). If Newt(f) goes to the left of the y-axis, then
Newt(φ(f)) goes further to the left, contradiction.

We can now show that the restriction functor in Thm. 13.2.2 is fully
faithful. Suppose E and E ′ are two φ-modules over Y[r,∞] and f : E → E ′
is a morphism of φ-modules defined over Y[r,∞). Then f determines a φ-
invariant global section s of the vector bundle E = Hom(E1, E2) (“internal
hom”), which is also a φ-module over Y[r,∞]. Now we apply Prop. 13.3.2 to
show that s (and therefore f) extends uniquely over Y[r,∞].

13.4 Essential surjectivity

For essential surjectivity in Thm. 13.2.2, the strategy is to classify all φ-
modules over Y[r,∞) and show by inspection that each one extends over
Y[r,∞].

Recall that L = W (k)[1/p]. If we choose an embedding k ↪→ OCf lat
which reduces to the identity modulo the maximal ideal of OC[ , we obtain
an embedding L ↪→ Ainf [1/p].

Theorem 13.4.1 ([Ked04]). Let (E , φE) be a φ-module over Y[r,∞). Then
there exists a φ-module (M,φM ) over L such that (E , φE) ∼= (M,φM ) ⊗L
OY[r,∞)

. (Here we have fixed an embedding L→ Ainf [1/p].)

Remark 13.4.2. 1. As a result, the φ-module Ê = M⊗LOY[r,∞]
extends

E to Y[r,∞].

2. φ-modules over L are by definition the same as isocrystals over k. The
category of isocrystals over k admits a Dieudonné-Manin classification:
it is semisimple, with simple objects Mλ classified by λ ∈ Q. For a
rational number λ = d/h written in lowest terms with h > 0, the rank
of Mλ is h, and φMλ

can be expressed in matrix form as

φMλ
=


0 1

0 1
. . .

. . .

pd 0 1

 .

The usual “Frobenius pullback” trick shows that φ-modules over Y[r,∞)

for r > 0 can be extended arbitrarily close to 0 in the sense that the restric-
tion map {

φ-modules over Y(0,∞)

} ∼→ {
φ-modules over Y[r,∞)

}
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is an equivalence. The category on the left is equivalent to the colimit as
r → 0 of the category of φ-modules over Y(0,r].

Definition 13.4.3 (The extended Robba rings, [KL, Defn. 4.2.2]). Let
R̃r = H0(Y(0,r],OY), and let R̃ = lim−→R̃

r.

Thus R̃ is the ring of functions defined on some punctured disc of small
(and unspecified) radius around xC[ . Note that φ induces an automorphism

of R̃ (but not of any R̃r. A similar Frobenius pullback trick shows that the
category of φ-modules over Y(0,∞) is equivalent to the category of φ-modules

over R̃. It is shown in [Ked05, §6.3,6.4] that this latter category admits a
Dieudonné-Manin classification.

13.5 The Fargues-Fontaine curve

As φ acts properly discontinuously on Y(0,∞), it makes sense to form the
quotient.

Definition 13.5.1. The adic Fargues-Fontaine curve is the quotient XFF =
Y(0,∞)/φ

Z.

Theorem 13.5.2 ([Ked, Thm. 4.10]). Y(0,∞) is strongly noetherian, and
thus so is XFF .

Now φ-modules over Y(0,∞) are visibly the same as vector bundles over
XFF . XFF comes equipped with a natural line bundle O(1), corresponding
to the φ-module on Y(0,∞) whose underlying line bundle is trivial and for
which φO(1) is p−1φ. Let O(n) = O(1)⊗n, and let

P =
⊕
n≥0

H0(XFF ,O(n)),

a graded ring. The nth graded piece is H0(Y(0,∞),OY)φ=pn . Note that by

Lemma 13.3.1, this is the same as H0(Y[r,∞))
φ=pn for any r > 0, and by

Prop. 13.2.2 this is in turn the same as H0(Y[r,∞],OY)φ=pn .
These spaces can be reformulated in terms of the crystalline period rings

of Fontaine. Let Acris be the p-adic completion of the divided power enve-
lope of the surjection Ainf → OC . By a general fact about divided power
envelopes for principal ideals in flat Z-algebras, this divided power envelope
is the same as the Ainf -subalgebra of Ainf [1/p] generated by ξn/n! for n ≥ 1.
Let B+

cris = Acris[1/p]. An element of B+
cris may be written∑

n≥1

an
ξn

n!
, an ∈W (OC[)[1/p], an → 0 p-adically.
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Using the estimate n/(p−1) for the p-adic valuation of n!, one can show
that such series converge in B̃[r,∞] = H0(Y[r,∞],OY). Thus we have an

embedding B+
cris ⊂ B̃[r,∞]; it can be shown that B+,φ=pn

cris = (B̃[r,∞])φ=pn .
The full crystalline period ring Bcris is defined by inverting the element

t ∈ B+
cris, where t = log[ε], ε = (1, ζp, ζp2 , . . . ). We have φ(t) = log[εp] =

log[ε]p = pt, so that t is a section of O(1). Also, θ(t) = 0, so that t has a
zero on xC ∈ XFF; in fact this is the only zero.

Definition 13.5.3 (The algebraic Fargues-Fontaine curve). Let XFF =
ProjP . The map θ : B+

cris → C determines a distinguished point xC ∈
XFF(C) with residue field C.

Theorem 13.5.4 ([FF11]). 1. XFF is a regular noetherian scheme of
Krull dimension 1 which is locally the spectrum of a Dedekind domain

2. In fact, XFF \ {xC} is an affine scheme SpecBe, where Be = Bφ=1
cris is

a principal ideal domain!

3. We have ÔXFF ,xC = B+
dR. Thus vector bundles over XFF correspond

to “B-pairs” (Me,M
+
dR) consisting of modules over Be and B+

dR re-
spectively, with an isomorphism over BdR.

4. The set |XFF| of closed points of XFF is identified with the set of
characteristic 0 untilts of C[ modulo Frobenius. This identification
sends x ∈ |XFF| to its residue field.

Question 13.5.5. Let C ′ be a characteristic 0 untilt of C[. Is C ′ ∼= C?
This is true if C is spherically complete, but open if e.g. C = Cp.

Moreover, [FF11] shows that there is a Dieudonné-Manin classification
for vector bundles over XFF, just as in Kedlaya’s theory. That is, there is
a faithful and essentially surjective functor from isocrystals over k to vector
bundles over XFF, which sends M to the vector bundle associated to the
graded P -module

⊕
n≥0(B+

cris ⊗M∗)φ=pn (here M∗ is the dual isocrystal).
This functor induces a bijection on the level of isomorphism classes. For
λ ∈ Q, let O(λ) be the vector bundle corresponding to the simple isocrystal
Mλ; if λ = d/h is in lowest terms with h > 0, then O(λ) has rank h. If
λ = n ∈ Z, this definition is consistent with how we have previously defined
the line bundle O(n). In general, if E is a vector bundle corresponding to⊕

iMλi , the rational numbers λi are the slopes of E .

95



The global sections of O(λ) are

H0(XFF ,O(λ)) =


big, λ > 0,

Qp, λ = 0,

0, λ < 0

In the “big” case, the space of global sections is a “finite-dimensional
Banach Space” (with a capital S) in the sense of Colmez, [Col02]. For
example if λ = 1, we have an exact sequence

0→ Qpt→ H0(XFF,O(1))→ C → 0.

Furthermore, H1(XFF ,O(λ)) = 0 if λ ≥ 0, and H1(XFF ,O(−1)) is isomor-
phic to the quotient C/Qp.

Theorem 13.5.6 ([KL, Thm. 8.7.7], [Far13], “GAGA for the curve”).
Vector bundles over XFF and vector bundles over XFF are equivalent.

There is a map of locally ringed spaces XFF → XFF which induces the
identification ÔXFF,xC = BdR of Thm. 13.5.4(3), so one really does have a
functor from vector bundles over XFF to vector bundles over XFF . Kedlaya
even proves Thm. 13.5.6 for coherent sheaves.

Theorem 13.5.7 ([FF11]). XFF,Qp
is simply connected; i.e. any finite étale

cover is split.

Proof. The following argument also gives a proof that P1 is simply connected
over an algebraically closed field, which avoids using the Riemann-Hurwitz
formula.

We need to show that A 7→ OXFF
⊗QpA is an equivalence from finite étale

Qp-algebras to finite étale OXFF
-algebras. Suppose E is a finite étale OXFF

-
algebra. By Thm. 13.5.4, the underlying vector bundle of E is isomorphic
to
⊕

iO(λi) for some λ1, . . . , λs ∈ Q. The étaleness provides a perfect trace
pairing on E , hence a self-duality of the underlying vector bundle, which
implies that

∑
i λi = 0. Let λ = maxλi, so that λ ≥ 0.

Assume λ > 0. The multiplication map E ⊗ E → E restricts to a map
O(λ)⊗O(λ)→ E , which gives a global section of E⊗O(−λ)⊗2. But the latter
has negative slopes, implying that H0(XFF, E⊗O(−2λ)) = 0. It follows that
f2 = 0 for every f ∈ H0(XFF,O(λ)) ⊂ H0(XFF, E). But since E is étale over
OXFF

, its ring of global sections is reduced, so in fact H0(XFF,O(λ)) = 0
and λ < 0, contradiction. Therefore λ = 0, and so λi = 0 for all i, meaning
that E is trivial. But the category of trivial vector bundles on XFF is
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the equivalent to the category of finite dimensional vector spaces, given by
E → H0(XFF, E). Thus H0(XFF, E) is a finite étale Qp-algebra, which gives
us the functor in the other direction.

14 Shtukas with one paw III, 23 October

14.1 Extending vector bundles over the closed point of SpecAinf

We continue in the usual setup: Let C/Qp be an algebraically closed nonar-
chimedean field, C[ its tilt, k its residue field, L = W (k)[1/p], and Ainf =
W (OC[).

Our goal is to complete the proof of the following theorem of Fargues.

Theorem 14.1.1. The following categories are equivalent:

1. Breuil-Kisin modules over Ainf , and

2. Pairs (T,Ξ), where T is a finite free Zp-module, and Ξ ⊂ T ⊗ BdR is
a B+

dR-lattice.

Let Y = Spa(Ainf)\ {xk}. What remains to be done is to “extend” φ-
modules on Y over all of SpaAinf in the sense of the following theorem.

Theorem 14.1.2 (Kedlaya). There is an equivalence of categories between:

1. Finite free Ainf-modules, and

2. Vector bundles on Y.

One should think of this as being an analogue of a classical result: If
(R,m) is a 2-dimensional regular local ring, then finite free R-modules are
equivalent to vector bundles on (SpecR)\ {m}. In fact the proof we give for
Thm. 14.1.2 works in that setup as well.

14.2 Vector bundles on Spec(Ainf)\ {m}

First we prove the algebraic version of Thm. 14.1.2.

Lemma 14.2.1. Let m ∈ SpecAinf be the closed point, and let Y = Spec(Ainf)\ {m}.
Then E 7→ EY is an equivalence between vector bundles on SpecAinf (that
is, finite free Ainf-modules) and the category of vector bundles on Y .
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Proof. Let R = Ainf , and let

R1 = R[1/p]

R2 = R[1/[p[]]

R12 = R[1/p[p[]].

Then Y is covered by SpecR1 and SpecR2, with overlap SpecR12. Thus
the category of vector bundles on Y is equivalent to the category of triples
(M1,M2, h), where Mi is a finite projective Ri-module for i = 1, 2, and
h : M1 ⊗R1 R12

∼→M2 ⊗R2 R12 is an isomorphism of R12-modules. We wish
to show that the obvious functor M 7→ (M ⊗RR1,M ⊗RR2, hM ) from finite
free R-modules to such triples is an equivalence.

For full faithfulness, suppose we are given finite free R-modules M and
M ′ and a morphism of triples (M⊗RR1,M⊗RR2, hM )→ (M ′⊗RR1,M

′⊗R
R2, hM ′). The matrix coefficients of such a morphism lie in R1 ∩ R2 = R,
and thus the morphism extends uniquely to a morphism M →M ′.

For essential surjectivity, suppose we are given a triple (M1,M2, h).
Using h we may identify both M1 ⊗R1 R12 and M2 ⊗R2 R12 with a com-
mon R12-module M12. Consider the map M1 ⊕ M2 → M12 defined by
(x, y) 7→ x − y. Let M be the kernel, an R-module. For i = 1, 2, the pro-
jection map pri : M1⊕M2 →Mi induces a map pri : M ⊗RRi →Mi, which
we claim is an isomorphism. We indicate the inverse map for i = 1. The
image of an element m1 ∈ M1 under h : M1 ⊗R1 R12

∼→ M2 ⊗R2 R12 takes
the form p−nm2, with m2 ∈M2 and n ≥ 0. Here m2 is uniquely determined
by n because M2 is p-torsion free. Then m = (pnm1,m2) lies in M and is
clearly independent of n. The inverse map M1 → M ⊗R R1 sends m1 to
p−nm. The case i = 2 is similar.

We now must show that M is a finite free R-module, given that its
localizations to R1 and R2 are locally free of finite rank. First we present
some generalizations concerning projective modules over Tate rings. (Even
though R is not Tate, its localizations R1 and R2 are both Tate, with pseudo-
uniformizers p and [p[], respectively.)

Let A be a Tate ring, let f ∈ A be a topologically nilpotent unit, and let
A0 ⊂ A be a ring of definition containing f . Then A0 has the f -adic topology
and A = A0[f−1] (Prop. 2.2.5(2)). If M is a finite projective A-module, it
comes with a canonical topology. This may be defined by writing M as a
direct summand of An and giving M the induced subspace (or equivalently,
quotient space) topology. We gather a few facts:

1. An A0-submodule N ⊂M is open if and only if N [f−1] = M .
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2. An A0-submodule N ⊂M is bounded if and only if it is contained in
a finitely generated A0-submodule.

3. If A is f -adically separated and complete, then an open and bounded
A0-submodule N ⊂M is also f -adically separated and complete.

4. Let A′ be a Tate ring contaning A as a topological subring. If X ⊂
M ⊗A A′ is a bounded subset, then X ∩M ⊂M is also bounded.

(For the last point: suppose that f is a pseudo-uniformizer of A, and
thus also of A′. Let A′0 ⊂ A′ be a ring of definition containing f ; then
A0 := A ∩ A′0 is a ring of definition for A. Use a presentation of M as
a direct summand of a free module to reduce to the case that M is free,
and then to the case that M = A. By Prop. 2.2.5(3), boundedness of
X ⊂ A′ means that X ⊂ f−nA′0 for some n, and therefore X ∩ A ⊂ f−nA0

is bounded.)
Now we return to the situation of the lemma. Endow R1 with the p-

adic topology making R a ring of definition. Then R1 is Tate and p ∈ R1

is a topologically nilpotent unit. We claim that M ⊂ M1 is an open and
bounded R1-submodule. Since M ⊗R R1 = M1, point (1) above (applied to
A0 = R and A = R1) shows that M is open. For boundedness, endow R12

with the p-adic topology making R2 a ring of definition. Then R1 ⊂ R12 is
a topological subring. Since M2 ⊂ M12 = M2 ⊗R2 R12 is bounded, we can
apply (4) to conclude that M = M2 ∩M1 ⊂ M1 is bounded as well. (A
similar statement holds when the roles of R1 and R2 are reversed.)

Thus M ⊂ M1 is open and bounded. Since R1 is p-adically separated
and complete, point (3) shows that M is p-adically complete. It is also p-
torsion free, since M1 is. An approximation argument now shows that in
order to prove that M is finite free, it is enough to prove that M/p is finite
free over R/p = OC[ .

We claim that the inclusion M ↪→ M2 induces an injection M/p ↪→
M2/p = M2 ⊗R2 C

[. Assume m ∈ M maps to 0 ∈ M2/p. Write m = pm2,
with m2 ∈ M2. Then m′ := (m/p,m2) ∈ ker(M1 ⊕M2 → M12) = M , so
that m = pm′, giving the claim.

Thus M/p is an open and bounded OC[-submodule of a C[-vector space
of finite dimension d, and we want to show that it is actually free of rank
d over OC[ . Note that if K is a discretely valued nonarchimedean field,
then any open and bounded OK-submodule of K⊕d is necessarily finite free
of rank d. However, the same statement is false when K is not discretely
valued: the maximal ideal mK of OK is open and bounded in K, but it isn’t
even finitely generated.
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Lemma 14.2.2. Let Λ ⊂ (C[)⊕d be any OC[-submodule. Then

dimk Λ⊗O
C[
k ≤ d,

with equality if and only if Λ ∼= O⊕d
C[

.

Proof. We use induction to reduce to the case d = 1. If d > 1, choose a
subspace 0 6= W ( V = (C[)⊕d, let ΛW = Λ ∩W ⊂ W , and let ΛV/W be
the image of Λ in V/W . We have an exact sequence

0→ ΛW → Λ→ ΛV/W → 0.

Since ΛV/W is flat over OC[ , the sequence remains exact after tensoring over
OC[ with k:

0→ ΛW ⊗O
C[
k → Λ⊗O

C[
k → ΛV/W ⊗OC[ k → 0.

Applying the induction hypothesis, dim Λ ⊗O
C[
k ≤ d, with equality if and

only if Λ is an extension of free modules of respective ranks dimW and
dim(V/W ), which implies that Λ is free of rank d. Conversely, if Λ is free
of rank d then equality obviously holds.

So assume d = 1. Then either Λ = C[, in which case Λ ⊗O
C[
k = 0, or

else (after rescaling) Λ ⊂ OC[ is an ideal. There are two cases. Either Λ is
principal, in which case Λ is a free OC[-module and dim Λ⊗O

C[
k = 1, or else

there exists r ∈ R>0 such that Λ = {x ∈ OC[ | |x| < r}. In the latter case,
any x ∈ Λ can be written εy, for some y ∈ OC[ with |y| < r and ε ∈ mC[ .
This shows that Λ⊗ k = 0.

Our goal was to show that M/p is a finite free OC[-module. By Lemma
14.2.2 it suffices to show that dimk(M/p ⊗O

C[
k) = dimk(M ⊗R k) is at

least d. Let T be the image of M ⊗R W (k) in M1 ⊗R1 W (k)[1/p] ∼= L⊕d.
Since M is open and bounded in M1, T is open and bounded in L⊕d, so
T ∼= W (k)⊕d, which implies that M ⊗R k surjects onto T ⊗R k ∼= k⊕d, and
we conclude.

Remark 14.2.3. At the end of the proof we really needed the fact that L is
discretely valued. It is not clear if Lemma 14.2.1 applies to e.g. Ainf⊗̂ZpOC .
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14.3 Proof of Thm. 14.1.2

We can now prove Thm. 14.1.2, which is the statement that finite free
Ainf -modules are in equivalence with vector bundles on Y.

For full faithfulness: We have Y = Y[0,1] ∪Y[1,∞], with intersection Y{1}.
Let SpaS1 = Y[0,1] and SpaS2 = Y[1,∞], with Y{1} = SpaS12. Then S1, S2

and S12 are complete Tate rings:

1. S1 = Ainf〈[p[]/p〉[1/p] has ring of definition Ainf〈[p[]/p〉 and pseudo-
uniformizer p,

2. S2 = Ainf〈p/[p[]〉[1/p] has ring of definition Ainf〈p/[p[]〉 and pseudo-
uniformizer [p[],

3. S12 = Ainf〈p/[p[], [p[]/p〉[1/p[p[]] has ring of definitionAinf〈p/[p[], [p[]/p〉;
both p and [p[] are pseudo-uniformizers.

The ring S12 contains S1 and S2 as topological subrings. The intersection
S1∩S2 inside S12 is Ainf : this is [KL], Lemma 5.2.11(c). (This is not trivial,
because the expansion of elements in S1 is not unique.) This gives full
faithfulness.

We turn to essential surjectivity. A vector bundle E on Y is the same (by
[KL] again) as data Ei over Si, for i = 1, 2, 12, which glue over S12. We want
to produce an algebraic gluing, which is to say we want to construct isomor-
phisms of modules over rings. Consider again R1 = W (OC[)[1/p], endowed
with the p-adic topology on W (OC[). Then Spa(R1,W (OC[)) is covered by
open subsets

{∣∣[p[]∣∣ ≤ |p| 6= 0
}

= SpaS1 and
{
|p| ≤

∣∣[p[]∣∣ 6= 0
}

=: SpaS′2,
where

S′2 = W (OC[)[p/[p
[]]∧p [1/p].

Lemma 14.3.1. The identity map W (OC[)→ Ainf induces an isomorphism
of topological rings

W (OC[)[p/[p
[]]∧p
∼= Ainf [p/[p

[]]∧
(p,[p[])

.

Proof. The crucial point is that W (OC[)[p/[p[]]∧p is already [p[]-adically com-

plete. A devissage argument reduces this to checking that W (OC[)[p/[p[]]/p
is [p[]-adically complete. We have

W (OC[)[p/[p
[]]/p = (W (OC[)/p)[T ]/(p− [p[]T )

= OC[ [T ]/p[T = OC[ ⊕
⊕
i≥1

(OC[/p
[)T i,

which is indeed [p[]-adically complete.
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After inverting p in Lemma 14.3.1 we find an isomorphism S′2
∼= S2[1/p].

Under this isomorphism, E2[1/p] can be considered as a vector bundle on
S′2. Then E1, E2[1/p] and E12 define a gluing datum for a vector bundle
on SpaR1. Since R1 is sheafy (Prop. 11.3.2), they glue to give a finite
projective R1-module M1.

Similarly, E1[1/[p[]], E2, and E12 glue to give a finite projective R2-module
M2. These glue over R12 to give a vector bundle on Spec(R)\ {m}, and we
conclude by Lemma 14.2.1.

Question 14.3.2. One can ask whether Thm. 14.1.2 extends to vector
bundles for groups other than GLn. If G/Qp is a connected reductive group
with parahoric model G/Zp, is it true that G-torsors over Ainf are the same
as G-torsors on SpecAinf\ {m}, and on Y? Cf. work of Kisin-Pappas. The
analogue for 2-dimensional regular local rings is treated in [CTS79, Thm.
6.13].

14.4 Some work in progress with Bhargav Bhatt and Matthew
Morrow on integral p-adic Hodge theory

The equivalence between shtukas with one paw and Breuil-Kisin modules
has a geometric interpretation in terms of integral p-adic Hodge theory for
a proper smooth rigid-analytic variety X/C.

The results of [Sch13a], combined with a result of [CG14], imply:

Theorem 14.4.1. There is a natural B+
dR-lattice Ξ ⊂ H i

ét(X,Zp)⊗Zp BdR.
If X = YC for a smooth proper rigid-analytic variety Y over a discretely
valued field K ⊂ C with perfect residue field, then Ξ = H i

dR(Y/K) ⊗K B+
dR

under the comparison isomorphims.

Thus after getting rid of torsion in étale cohomology, one gets a pair
(T,Ξ) as in Thm. 12.4.4, which corresponds by Thm. 12.5.1 to a Breuil-
Kisin module which we denote H i

Ainf
(X).

Theorem 14.4.2. Let X/OC be a proper smooth formal scheme, with generic
fiber X.

1. If H i
cris(Xk/W (k)) is p-torsion free for all i, then so are all H i

ét(X,Zp).

2. In this case, there is an isomorphism

H i
Ainf

(X)⊗Ainf
W (k) ∼= H i

cris(Xk/W (k))

of φ-modules over W (k).
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15 The faithful topology, 28 October

The goals for the remaining lectures are:

1. Prove Drinfeld’s lemma.

2. Discuss the affine Grassmannian.

3. Construct moduli spaces of local shtukas.

All of this will involve working quite extensively with diamonds. So
today’s lecture (and maybe Thursday’s too) will cover foundational material
on diamonds.

15.1 There is no good notion of affinoid morphism in rigid
geometry

Recall that a morphism of schemes f : X → Y is affine if for all open affine
subsets U ⊂ Y , f−1(U) is affine. It is a basic result that this is equivalent
to the condition that there exists an open affine cover {Ui} of X such that
f−1(Ui) is affine for all i. As a result, the functor X 7→ {Y/X affine} is a
stack on the category of schemes in the Zariski (and even the fpqc) topology.

One might guess that there is a notion of “affinoid morphism” between
adic spaces which works the same way. However, we run into the following
counterexample. Let K be a nonarchimedean field, and let X = SpaK〈x, y〉.
Let V ⊂ X be {(x, y)| |x| = 1 or |y| = 1}. This is covered by two affinoids,

but certainly is not affinoid itself: H1(V,OV ) =
⊕̂

m,n≥0Kx
−ny−m (analo-

gous to the situation of the punctured plane in classical geometry).
We claim there is a cover X =

⋃
i Ui by rational subsets Ui such that

Ui×X V ⊂ Ui is rational, thus affinoid. Let $ ∈ K be a pseudo-uniformizer,
and take

U0 = {|x| , |y| ≤ |$|}
U1 = {|y| , |$| ≤ |x|}
U2 = {|x| , |$| ≤ |y|} .

Then X = U0 ∪ U2 ∪ U3, and

U0 ×X V = ∅
U1 ×X V = {|x| = 1} ⊂ V
U2 ×X V = {|y| = 1} ⊂ V
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are all rational subsets of V . One gets a similar example in the perfectoid
setting. Thus the functor X 7→ {Y/X affinoid perfectoid} is not a stack on
the category of affinoid perfectoid spaces for the analytic topology, let alone
for a finer topology such as the pro-étale topology.

We will fix this by restricting the class of affinoids somewhat. We will
also pass to an even finer topology, the faithful topology, which is reminiscent
of the fpqc topology on schemes but which is more “topological” in nature.

15.2 w-local spaces, after Bhatt-Scholze

The paper [BS] introduces a pro-étale topology Xproét for a scheme X, which
is finer than the étale topology. Recall that the étale cohomologyH i(Xét,Q`)
is not equal to the cohomology of RΓ(Xét,Q`), but rather is defined as
lim←−H

i(Xét,Z/`
nZ) ⊗ Q`. This ad hoc definition is not required in the

proétale topology: H i(Xproét,Q`) really is “correct as written”.
The objects in Xproét are weakly étale morphisms f : Y → X, see [BS,

Defn. 12]. This means that both f and the diagonal map ∆f : Y → Y ×X Y
are flat. Covers in Xproét are fpqc covers. It turns out [BS, Thm. 13] the
site of weakly étale morphisms is “generated by” morphisms which Zariski
locally on X look like SpecB → SpecA, where A→ B is ind-étale, meaning
that B is a filtered direct limit of étale A-algebras; this justifies the term
“pro-étale topology”.

The local nature of schemes in the pro-étale topology is surprisingly
simple. Every affine scheme SpecA admits a pro-étale cover by another
affine scheme SpecAZ which is in a sense as disconnected as possible. To a
first approximation, AZ is the product A′ =

∏
x∈X Ax of the local rings of

A. Note that the set of connected components of SpecA′ is in bijection with
X itself.

However, the homomorphismA→
∏
x∈X Ax is not flat in general (though

it is if A is noetherian), which implies that SpecA′ → SpecA is not in general
weakly étale.

Theorem 15.2.1 ([BS, Thm. 1.7]). There is an intermediate ring

A→ AZ →
∏
x∈X

Ax

(Z for “Zariski”) such that

1. SpecAZ → SpecA is a cover in (SpecA)proét.

2. If (SpecAZ)c is the set of closed points of SpecAZ , then SpecAZ →
SpecA induces a homeomorphism (SpecAZ)c → SpecA.

104



3. The set π0 SpecAZ of connected components (with its quotient topol-
ogy) is homeomorphic to SpecA with its constructible topology.

4. The (scheme-theoretic) fibre of SpecAZ → SpecA over x ∈ SpecA is
SpecAx.

The ring AZ is a filtered colimit of algebras of the form
∏
i∈I A[f−1

i ],
where I is finite and the fi generate the unit ideal. Thus SpecAZ is an
inverse limit of disjoint unions of opens in SpecA. The effect of the functor
SpecA 7→ SpecAZ is a special case of a general and purely topological
construction involving spectral spaces.

We recall some definitions and basic facts about spectral spaces. For
further details and proofs we refer the reader to [Sta14, §5.22].

Definition 15.2.2. The category of spectral spaces with spectral maps is the
pro-category of finite T0-spaces. If X is a spectral space, the constructible
topology on X is the topology generated by quasicompact opens and their
complements.

Proposition 15.2.3. Let f : X → Y be a continuous map between spectral
spaces. The following are equivalent:

1. f is spectral.

2. The preimage of any quasicompact open is also quasicompact.

3. The preimage of any constructible set is constructible; that is, the in-
duced map fcons : Xcons → Ycons is continuous.

Example 15.2.4. Let X = lim←−Xi, with Xi finite and T0. One thinks of
a finite T0 space as finitely many points together with some specialization
relations that define a poset. Recall that the constructible topolgy is gen-
erated by usual opens together with complements of quasicompact opens.
Then

(Xi)cons = lim←−(Xi)cons.

Also, π0X = lim←−π0Xi is profinite.

Definition 15.2.5. A topological space X is w-local if the following condi-
tions hold:

1. X is spectral,

2. every connected component of X has a unique closed point,
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3. Xc := {closed points of X} is a closed subset of X.

A map of w-local spaces is w-local if it maps closed points to closed points.
(The w stands for “weakly”; recall that a topological space is local if it is a
connected space containing a unique closed point.)

Remark 15.2.6. 1. Any open cover of a w-local space splits. That is, if
X is w-local and {Ui} is an open cover of X, then

∐
i Ui → X has a

continuous section, or equivalently {Ui} admits a refinement {Vj} by
pairwise disjoint opens Vj .

2. If X is w-local, the composition Xc ↪→ X → π0X is a homeomorphism.

Proposition 15.2.7. The inclusion of the category of w-local spaces with
w-local maps into the category of spectral spaces and spectral maps admits
a right adjoint X 7→ XZ . That is, for any spectral space X there exists w-
local space XZ and a spectral map XZ → X which is final among all spectral
maps from w-local spaces into X. The map XZ → X is a filtered inverse
limit of finite open covers

∐
Ui → X. Moreover, (XZ)c ∼= π0X

Z → Xcons

is a homeomorphism. The fibre of XZ → X over x ∈ X is the set of
generalizations of x in X.

Proof. The idea of the construction is as follows. Say X = lim←−Xi, with Xi

finite and T0. Let XZ
i =

∐
x∈Xi Xi,x, where Xi,x is the set of generalizations

of x in Xi. Then XZ = lim←−X
Z
i .

Definition 15.2.8. A ring A is w-local if SpecA is. A homomorphism
A→ B between w-local rings is w-local if SpecB → SpecA is w-local.

Suppose A is a ring and X = SpecA. By keeping track of the structure
sheaves in the construction of Prop. 15.2.7 one obtains:

Corollary 15.2.9. The inclusion of the category of w-local rings and w-local
homomorphisms into the category of all rings and homomorphisms admits
a left adjoint A 7→ AZ . Moreover, A 7→ AZ is faithfully flat.

In a sense AZ is the “total localization of A”.

Example 15.2.10. If R is a DVR with fraction field K then RZ = R×K.
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15.3 The faithful topology on (Perf)

All of the preceding constructions for the category of schemes carry over
into the category of adic spaces. If X is an analytic adic space, then there
exists a profinite étale cover of X by an adic space XT (T for Tate) which
is w-local as a topological space. In fact the situation is rather nicer than
the situation for schemes: the connected components of XT are all of the
form Spa(K,K+), where K is a nonarchimedean field and K+ ⊂ OK is an
open valuation subring, and these are rather well-behaved. (In contrast, the
connected components of XZ for a scheme X are spectra of arbitrary local
rings.) This fact will allow us to shift focus to the topological space

∣∣XZ
∣∣;

this is consistent with our philosophy that diamonds are purely topological
entities.

If (R,R+) is a perfectoid Huber pair, there exists a natural homomor-
phism (R,R+) → (RT , RT+) into another perfectoid Huber pair which in-
duces a homeomorphism

Spa(RT , RT+) ∼= Spa(R,R+)Z .

By construction, the morphism Spa(RT , RT+)→ Spa(R,R+) is affinoid pro-
étale (Defn. 9.1.3). Say that a perfectoid Huber pair (R,R+) is w-local if
Spa(R,R+) is.

Proposition 15.3.1. Let (R,R+) be w-local perfectoid, let (R,R+)→ (S, S+)
be a map to any Huber pair, and let $ ∈ R a pseudo-uniformizer. Then
S+/$ is flat over R+/$, and even faithfully flat if Spa(S, S+)→ Spa(R,R+)
is surjective.

Proof. The idea is to check flatness on stalks of SpecR+/$. For this re-
duction step we need a lemma, which says that flatness can be checked on
stalks over profinite bases.

Lemma 15.3.2. Let T be a profinite set, let A be a sheaf of rings on T ,
and let M be an A-module. Then H0(T,M) is flat over H0(T,A) if and
only if for all y ∈ T , My is flat over Ay.

Proof. Write T = lim←−Ti, with Ti finite and discrete. Write pri : T → Ti for

the projection. For each i, the decomposition T =
∐
j∈Ti pr−1

i (j) into open

and closed subsets induces a decompositionH0(T,A) =
∏
j∈Ti H

0(pr−1
i (j),A).

Let fi : SpecH0(T,A)→ Ti be the continuous map which sends SpecH0(pr−1
i (j),A)

to j. Then fi∗OSpecH0(T,A) = pri∗A. Passing to the limit, we obtain a con-
tinuous map f : SpecH0(T,A) → T which satisfies f∗OSpecH0(T,A) = A.
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Note that y ∈ T lies in the image of f if and only if Ay 6= 0. Similarly,

if H̃0(T,M) is the OSpecH0(T,A)-module corresponding to H0(T,M), then

f∗H̃
0(T,M) =M.

Now for every x ∈ SpecH0(T,A) the natural mapH0(T,A)→ H0(T,A)x
factors as

H0(T,A)→ Af(x) → H0(T,A)x.

Lying over these rings are the modules H0(T,M), Mf(x), and H0(T,M)x,
respectively; each of the latter two modules is the base change of the first
through the appropriate ring map. If H0(T,M) is flat over H0(T,A), then
(by preservation of flatness under base change) My is flat over Ay for all
y in the image of f , and thus for all y ∈ T because Ay = 0 if y is not
in the image of f . Conversely, if My is flat over Ay for all y ∈ T , then
H0(T,M)y is flat over H0(T,A)y, and thus H0(T,M)x is H0(T,A)x-flat
for all x ∈ SpecH0(T,A). Hence, H0(T,M) is flat over H0(T,A).

Returning to the situation of the proposition, we have a w-local perfec-
toid Huber pair (R,R+), and a map (R,R+)→ (S, S+) into any Huber pair.
Apply Lemma 15.3.2 with T = π0 Spa(R,R+), A the sheaf of rings pushed
forward from O+

Spa(R,R+)
/$, and M the A-module pushed forward from

O+
Spa(S,S+)

/$. The lemma implies that the flatness of S+/$ over R+/$

can be checked on stalks over π0 Spa(R,R+).
Since Spa(R,R+) is w-local, its connected components are of the form

Spa(K,K+), with K a perfectoid field and K+ ⊂ OK is an open valuation
subring. If y ∈ π0 Spa(R,R+) represents one such connected component, it
is easy to check that Ay = K+/$. SimilarlyMy = S+

y /$, where (Sy, S
+
y ) is

a Huber pair lying over (K,K+). Flatness over K+ is equivalent to torsion-
freeness; since S+

y ⊂ Sy we have that S+
y is flat over K+, and hence S+

y /$
is flat over K+/$.

Definition 15.3.3. The faithful topology on (Perf) is the topology generated
by open covers and all surjective maps of affinoids.

Remark 15.3.4. A map f : X → Y is a faithful cover if and only if any
quasicompact open V ⊂ Y is contained in the image of some quasicompact
open U ⊂ X.

It may appear at first sight that the faithful topology admits far too many
covers to be a workable notion. However we have the following surprising
theorem, which shows that the structure sheaf is a sheaf for the faithful
topology on (Perf), just as it is for the fpqc topology on schemes.

108



Theorem 15.3.5. The functors X 7→ H0(X,OX) and X 7→ H0(X,O+
X) are

sheaves on the faithful site. Moreover if X is affinoid then H i
faithful(X,OX) =

0 for i > 0.

The proof will follow the pattern of the following lemma.

Lemma 15.3.6. Let F be any abelian presheaf on the faithful site of per-
fectoid affinoid spaces. For any cover X ′ → X of affinoids, let C(X ′/X,F)
be the associated Čech complex

0→ F(X)→ F(X ′)→ F(X ′ ×X X ′)→ · · · .

Assume that

1. If X is w-local, then C(X ′/X,FF) is acyclic.

2. For the w-localization XT → X, C(XT /X,F) is acyclic.

Then F is a sheaf, and H i(X,F) = 0 for all X and i > 0.

Proof. First we show that F is separated. That is, suppose X ′ → X is
a faithful cover; we show that F(X) → F(X ′) is injective. For this, let
X ′′ = X ′ ×X XZ , so that we have morphisms X ′′ → X ′ → X. It is enough
to check injectivity of F(X)→ F(X ′′). This follows from the injectivity of
F(X) → F(XT ) (assumption (2)) and the injectivity of F(XT ) → F(X ′′)
(assumption (1)).

Next we check that F satisfies the sheaf property with respect to a cover
X ′ → X. Let s′ ∈ F(X ′) be a section whose two pullbacks to X ′ ×X X ′

agree. With X ′′ as before, this gives s′′ ∈ F(X ′′) whose two pullbacks
to X ′′xXX

′′ agree. In particular, the two pullbacks to X ′′ ×XT X ′′ agree,
which shows that (by assumption (1)) s′′ descends to sT ∈ F(XT ). Now
the pullbacks of sT to XTxXX

T agree after further pullback to X ′′xXX
′′,

so by separatedness, they agree on XTxXX
T already. Thus, sT descends to

s ∈ F(X). The pullback of s to X ′′ agrees with the pullback of s′ to X ′′, so
by separatedness again, s pulls back to s′ on X ′ as required.

The same line of argument can be continued to show that H i(X,F) = 0
for i > 0.

Suppose X is an affinoid in (Perf) with pseudo-uniformizer $. we apply
Lemma 15.3.6 to the presheaf (O+/$)a on the category of perfectoid spaces
over X defined by Y 7→ H0(Y,O+

Y /$). The condition (1) is satisfied by
Prop. 15.3.1 and almost faithfully flat descent. The condition (2) is satisfied
by pro-étale descent (recall that XT → X is pro-étale).
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Thus (O+/$)a is a sheaf on the faithful site, and H i(X, (O+/$)a) = 0
for i > 0. A devissage argument can be used to transfer the same statements
to O+ and O, thus completing the proof of Thm. 15.3.5.

Corollary 15.3.7. Representable presheaves are sheaves on the faithful site.

Proof. The proof follows the pro-étale case, as in Prop. 8.2.7.

We now return to the question of “affinoid morphisms”. On w-local
objects, the problem in §15.1 does not arise, even for the faithful site:

Corollary 15.3.8. The functor which assigns to a w-local affinoid perfectoid
X the category {Y/X affinoid perfectoid} is a stack for the faithful topology.

Proof. This follows from Prop. 15.3.1 and faithfully flat descent.

15.4 Faithful diamonds

One can also introduce diamonds in this setup.

Definition 15.4.1. 1. A morphism f : F → G of sheaves on the faithful
site is relatively representable if for all Y ♦ → G (with Y an object of
(Perf)), the fibre product F ×G Y ♦ is representable by an object of
(Perf).

2. A faithful diamond is a sheaf F on the faithful site such that there
exists a relatively representable surjection X♦ → F for some object
X of (Perf).

It is true but not obvious that any diamond is sheaf on the faithful site,
and thus is a faithful diamond.

15.5 The underlying topological space of a (faithful) dia-
mond

Proposition 15.5.1. If f : X → Y is a faithful cover in (Perf) then |f | : |X| →
|Y | is a quotient map. (That is, |f | is surjective, and V ⊂ |Y | is open if and
only if |f |−1 (V ) ⊂ |X| is open.)

Proof. (Sketch.) We may assume thatX and Y are affinoid. Then |f | : |X| →
|Y | is a surjective spectral map of spectral spaces which is also generalizing,
meaning that if x ∈ X, and y′ specializes to f(x) ∈ Y , then there exists
x′ ∈ X specializing to x such that f(x′) = y′.
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(We remark that any map of analytic adic spaces is generalizing. This
fact is akin to the “going up” theorem for flat maps. It can be proved using
[Wed, Prop. 4.21], see also [HK94, Lemma 1.2.4]. These results describe
all specializations in Spv(A) as a composition of two concrete cases, called
“horizontal” and “vertical”. For maps between analytic adic spaces, all
specializations are vertical; see [Hub93, p. 468].)

This reduces us to the following lemma:

Lemma 15.5.2. Any surjective generalizing spectral map of spectral spaces
is a quotient map.

Proof. Let as exercise. The key point is that a constructible set in a spectral
space is open if and only if it is stable under generalization.

Lemma ?? ensures the well-posedness and functoriality of the following
definition.

Definition 15.5.3. Let D be a (faithful) diamond, and let X♦ → D be
a relatively representable surjection (which we can take to be qpf if D is a
diamond). The underlying topological space |D| is the coequalizer of |R| ⇒
|X|, where R♦ = X♦ ×D X♦.

In other words, |D| is the quotient of |X| by the image of the equiva-
lence relation |R| → |X| × |X|. We will need |D| later without any quasi-
separatedness conditions on D. As is the case for non-qs algebraic spaces,
|D| can be quite pathological.

16 Fake diamonds, 30 October

16.1 Fake diamonds: motivation

The motivation for defining the faithful site is that we want to define a mixed
characteristic affine Grassmannian

GrG = LG/L+G

whose C-points are G(BdR)/G(B+
dR). It will easy to see that GrG is a faithful

diamond, because LG is covered by opens that look like L+G, which is
representable. However it will be much more difficult to show that GrG is a
diamond.
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The aim of this lecture is to present a criterion for when a faithful dia-
mond is a diamond.12

Recall that if D is a fake diamond, and R♦ ⇒ X♦ → D is a faithful
presentation of D, then we had defined |D| to be the coequalizer of |R|⇒ |X|
as a topological space.

Remark 16.1.1. In general |D| is ill-behaved. It might not even be T0, for
instance.

Proposition 16.1.2. Let X be an analytic adic space over Spa Zp. There
is a natural homeomorphism

∣∣X♦∣∣ ∼→ |X|.
Proof. Since X is analytic, it is covered by Tate affinoids; we can therefore
reduce to the case thatX = Spa(R,R+) is affinoid and Tate over Spa Zp. Let

(R,R+) → (R̃, R̃+) be a G-torsor, with (R̃, R̃+) = (lim−→(Ri, R
+
i ))∧ perfec-

toid, such that each (Ri, R
+
i ) is a finite étale Gi-torsor, and G = lim←−Gi. Let

X̃ = Spa(R̃, R̃+). Then X♦ = X̃♦/G, and
∣∣X♦∣∣ =

∣∣∣X̃∣∣∣ /G = lim←−|Xi| /Gi =

lim←−|X| = |X|.

Definition 16.1.3. A map E → D of fake diamonds is an open immersion if
for any (equivalently, for one) surjection X♦ → D (for the faithful topology),
the fibre product E ×D X♦ → X♦ is representable by an open subspace of
X. In this case we say E is an open subdiamond of D.

Proposition 16.1.4. The category of open subdiamonds of D is equivalent
to the category of open immersions into |D|, via E 7→ |E|.

We want to single out those diamonds for which |D| is well-behaved. For
starters, we want D to be quasiseparated. A scheme X is quasiseparated if
the diagonal map X → X × X is a closed immerson. But for a diamond
D, the diagonal map D → D × D might not be relatively representable, so
this definition cannot be used. To handle this, we make a topos-theoretic
digression.

Recall from SGA4 the following notions: In any topos, we have a notion
of a quasicompact (qc) object: this means that any covering family has a
finite subcover. An object Z is quasiseparated (qs) if for any qc X,Y → Z,
X ×Z Y is qc.

If there is a generating family B for the topos (meaning that every object
is a colimit of objects in the generating family) consisting of qc objects which
is stable under fibre products, then:

12This notation is not ideal: the way we have defined things, faithful diamonds are not
necessarily diamonds. Instead let’s call faithful diamonds fake diamonds.
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1. all objects of B are qcqs,

2. Z is qc if and only if it has a finite cover by objects of B, and

3. Z is qs if and only if for all X,Y ∈ B, X,Y → Z, X ×Z Y is qc.

In our situation, can take B to be the class of X♦, where X is affi-
noid perfectoid. This is closed under fibre products because maps between
analytic adic spaces are adic.

Warning: B is not stable under direct products. For example if X =

Spd Fp((t
1/p∞)), then X ×X =

(
D∗

Fp((t1/p
∞

))

)♦
is not qc.

16.2 Spacial fake diamonds

Definition 16.2.1. A fake diamond D is spatial13 if

1. D is quasiseparated,

2. |D| admits a neighborhood basis consisting of |E|, where E ⊂ D is qc
open.

Remark 16.2.2. 1. For algebraic spaces, (1) implies (2); however (1)
does not imply (2) in the context of fake diamonds. See Ex. 16.2.3
below.

2. If D is qc, then so is |D|. Indeed, any open cover of |D| pulls back
to a cover of D. In particular a spatial diamond has lots of qc open
subsets.

3. If D is qs, then so is any open subdiamond of D. Thus if D is spatial,
then so is any open subdiamond.

Example 16.2.3. Let K be a perfectoid field in characteristic p, and let
D = SpdK/FrobZ, so that |D| is one point. Then D isn’t qs. Indeed if
X = Y = SpdK, then X×D Y is a disjoint union of Z copies of SpdK, and
so is not qc. In particular D isn’t spatial. However, D × Spd Fp((t

1/p∞)) =
(D×K/FrobZ)♦ is spatial.

Proposition 16.2.4. Let D be a spatial qc fake diamond. Let X♦ → D be
a faithful cover, with X qcqs. Let R♦ = X♦ ×D X♦, with R qcqs. Then
|D| = Coeq(|R|⇒ |X|) is a spectral space, and |X| → |D| is a spectral map.

13In the lectures, the term used was nice. Brian Conrad suggested the term spatial
because of the analogy with algebraic spaces.
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Proof. We need to construct many qc open subsets U ⊂ |X| which are stable
under the equivalence relation R. By (2) in Defn.16.2.1, we can just take the
preimages of |E| for E ⊂ D qc open. Since E is qc and D is qs, E ×D X ⊂ X
is still qc, and so

∣∣E ×D X♦∣∣ ⊂ |X| is qc.

Corollary 16.2.5. If D is spatial, then |D| is locally spectral, and D is qc
if and only if |D| is qc.

To check whether a diamond is spatial, we can use the following propo-
sition.

Proposition 16.2.6. Let X be a spectral space, and R ⊂ X ×X a spectral
equivalence relation such that each R → X is open (and spectral). Then
X/R is a spectral space, and X → X/R is spectral.

Proof. We need to produce many U ⊂ X which are qc open and R-stable.
Let s, t : R → X be the maps to X. Let V ⊂ X be any qc open. Then
s−1(V ) ⊂ R is qc open (since R → X is spectral), so t(s−1(V )) ⊂ X is qc
open (since R→ X is open) and R-stable.

Remark 16.2.7. There are counterexamples to Prop. 16.2.6 if R → X is
generalizing but not open.

Corollary 16.2.8. Let D be a fake diamond. Assume there exists a faithful
presentation R♦ ⇒ X♦ → D, where R and X are qcqs, and that each
R→ X is open. Then D is spatial and qc.

Proof. Since X is qc, D is qc. Since R is qc, D is qs. Then Prop. 16.2.6
shows that |D| = |X| / |R| is spectral, and |X| → |D| is spectral. Any qc
open U ⊂ |D| defines an open subdiamond E ⊂ D covered by E×DX♦ ⊂ X♦
(which is qc). Thus E itself is qc.

Corollary 16.2.9. If X is a qs analytic adic space over Spa Zp, then X♦

is spatial.

Proof. By Prop. 16.1.2,
∣∣X♦∣∣ ∼= |X|; this implies that

∣∣X♦∣∣ has a basis of
opens |U |, where U ⊂ X is qc open. By Prop. 16.1.4, these correspond to
open subdiamonds U♦ ⊂ X♦.

We can now state the main theorem of today’s lecture, which tells when
a fake diamond is a “true” diamond.

Theorem 16.2.10. Let D be a spatial qc fake diamond: this means there
exists a faithful presentation R♦ ⇒ X♦ → D with R, X qcqs such that
|X| → |D| is spectral. Assume moreover that
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1. X♦ → D is a surjection on the qpf site, i.e., for all Y ♦ → D there
exists a qpf cover Y ′ → Y and a morphism Y ′ → X such that the
diagram

(Y ′)♦ //

��

X♦

��
Y ♦ // D

commutes.

2. For all x ∈ |D|, there is a qpf morphism S♦x → D such that x lies in
the image of |Sx| → |D|.

Then D is a diamond.

Proof. It is enough to find a surjection Y ♦ → D with profinite geometric
fibres. Indeed, after passing to a qpf cover (using (1)), Y ♦ → D factors
through X♦. Since X♦ → D is relatively representable, so is Y ♦ → D, and
this has profinite geometric fibres, and so is a relatively representable qpf
surjection from a representable sheaf. Therefore D is a diamond.

Without loss of generality X is affinoid. Since we can replace X with
any faithful cover, we may also assume that X is w-local. In that case,
any qc open subset U ⊂ X is affinoid (slightly nontrivial exercise). Let
DT = D×|D| |D|Z . Explicitly, suppose {Uij}j∈Ji is a basis of qc open covers

of |D|; then DT = lim←−
∐
i

(∐
j∈Ji Uij

)
. Then DT has a cover by X×|D| |D|Z ,

which is affinoid, as each X ×|D| |Uij | is.

Then DT → D has profinite geometric fibres, so without loss of generality
|D| is w-local.

Moreover we may assume that D has no nonsplit finite étale covers. The
goal is now to show that D is representable.

First we check that all connected components are representable. Let
K ⊂ D be a connected component, with x ∈ K the unique closed point. Let
S♦x = Spd(C,C+)→ D be a qpf morphism such that x lies in the image of
|Sx|. Here C is an algebraically closed nonarchimdean field and C+ ⊂ OC
is an open valuation subring. Then the image of |Sx| is exactly K.

We have K = S♦x /G for some profinite group G. The product S♦x ×K S♦x
is a profinite set of geometric points with a continuous group structure,
which is to say it is a profinite group G = lim←−Gi, with Gi finite. Then

S♦x → K is a quotient by G. For any open subgroup H ⊂ G, S♦x /H → K is
finite étale.
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Proposition 16.2.11. Let D be a spatial qc fake diamond, and let K =⋂
i Ui ⊂ |D| be a pro-(qc open). Then

Kfét = 2- lim−→(Ui)fét.

Proof. Let R♦ ⇒ X♦ → D be as usual with R and X qcqs. Similar results
hold for R and X by [Elk73] and [GR03], and then we can descend to D.

Thus S♦x /H → K extends to a finite étale cover Ũi → Ui, with Ui ⊂ |D|
open and closed. Then Ũit(D\Ui)→ D is a finite étale cover, which is there-
fore split. Therefore S♦x /H → K is split, with only finitely many splittings
(because K is connected). Now we can apply a “Mittag-Leffler” style argu-
ment: take the inverse limit over all H to get that S♦x → K admits a section.
Since Sx = Spa(C,C+) is connected, we have that Sx

∼→ K. Thus every
connected component K really is a geometric “point” Spd(C(x), C(x)+).

Finally, we show that D is representable. Let $ be a psuedo-uniformizer
on X, and let “O+

D/$” be the sheaf of rings on |D| equal to the equal-
izer of O+

X/$ ⇒ O+
R/$. The stalk of “O+

D/$” at x is O+
C(x)/$, where

(C(x), C(x)+) is as above.
Let A+/$ = H0(|D| , “O+

D/$”). Then Φ: A+/$1/p ∼→ A+/$ is an
isomorphism. Let A+ = lim←−Φ

A+/$, A = A+[1/$]. Then Spa(A,A+)
represents D.

17 Drinfeld’s lemma for diamonds, 4 November

17.1 The failure of π1(X × Y ) = π1(X)× π1(Y )

This lecture is entirely about fundamental groups. For ease of notation we
will omit mention of base points.

It is a basic fact that for connected topological spaces X and Y , the
natural map π1(X×Y )→ π1(X)×π1(Y ) is an isomorphism; let us call this
the Künneth theorem for X and Y . Is the same result true if instead X and
Y are varieties over a field k, and π1 is interpreted as the étale fundamental
group? Certainly the answer is no in general. For instance, suppose k is a
prime field (i.e. Fp or Q), and X = Y = Spec k. Then X × Y = Spec k
once again, and the diagonal map Gal(k/k) → Gal(k/k) × Gal(k/k) is not
an isomorphism.

If k is an algebraically closed field of characteristic 0, then the answer
becomes yes, by appeal to the Lefshetz principle: X can be descended to
a finitely generated field, which can be embedded into C, and then the
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étale topology of X can be related to the (usual) topology of the resulting
complex-analytic space. The same principle shows that if k′/k is an ex-
tension of algebraically closed fields of characteristic 0, and X is a variety
over k, then the natural map π1(Xk′) → π1(X) is an isomorphism. That
is, such varieties satisfy permanence of π1 under (algebraically closed) base
extension.

So let us assume that k is an algebraically closed field of characteristic p.
Both the Künneth theorem and the permanence of π1 under base extension
hold for proper varieties over k. But both properties can fail for non-proper
varieties.

Example 17.1.1. Keep the assumption that k is an algebraically closed
field of characteristic p. Let X = SpecR be an affine k-scheme. We have
Hom(π1(X),Fp) = H1

ét(X,Z/pZ). By Artin-Schreier, this group is identified
with the cokernel of the endomorphism f 7→ fp − f of R. Generally (and
particularly if R = k[T ]) this group is not invariant under base extension,
and therefore the same can be said about π1(X). Similarly, the Künneth
theorem fails for R = k[T ].

The following lemma states that under mild hypotheses, the Künneth
theorem holds when permanence of π1 under base extension is satisfied for
one of the factors.

Lemma 17.1.2 (EGA IV2, 4.4.4). Let X and Y be schemes over an alge-
braically closed field k, with Y qcqs and X connected. Assume that for all
algebraically closed extensions k′/k, Yk′ is connected, and the natural map
π1(Yk′)→ π1(Y ) is an isomorphism. Then π1(X × Y )→ π1(X)× π1(Y ) is
an isomorphism.

17.2 Drinfeld’s lemma

Let us recall the notions of absolute and relative Frobenii. For a scheme
X/Fp, let FX : X → X be the absolute Frobenius map: this is the identity
on |X| and the pth power map on the structure sheaf. For f : Y → X a
morphism of schemes, we have the pullback F ∗XY = Y ×X,FX X (this is
often denoted Y (p)). The relative Frobenius FY/X : Y → F ∗XY is the unique
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morphism making the following diagram commute:

Y
FY/X

!!

FY

��

''

F ∗XY
//

��

Y

��
X

FX
// X.

A crucial fact is that FY/X is an isomorphism when Y → X is étale.

Definition 17.2.1. Let X1, . . . , Xn be schemes of finite type over Fp. Con-
sider the ith partial Frobenius

Fi = 1× · · · × FXi × · · · × 1: X1 × · · · ×Xn → X1 × · · · ×Xn.

Let
(X1 × · · · ×Xn/p.Fr.)fét

(p.Fr.=partial Frobenius) be the category of finite étale maps Y → X1 ×
· · · ×Xn equipped with commuting isomorphisms βi : Y

∼→ F ∗i Y such that
βn ◦ · · · ◦ β1 = FY/X : Y

∼→ F ∗XY .

Remark 17.2.2. Strictly speaking, the notation βn ◦ · · · ◦ β1 is an abuse:
the morphism β2 should be the pullback of β2 through F1, and so forth.

Remark 17.2.3. To give an object of this category it suffices to produce
all but one of the βi, by the product relation. Thus if n = 2, the category
(X1 ×X2/p.Fr.)fét is the category of finite étale morphisms Y → X1 ×X2

equipped with an isomorphism β : Y
∼→ F ∗1 Y .

This forms a Galois category in the sense of SGA1, so that (after choosing
a geometric point s of X1× · · ·×Xn) one can define the fundamental group
π1(X1 × · · · × Xn/p.Fr.); this is the automorphism of the fibre functor on
(X1 × · · ·Xn/p.Fr.)fét determined by s.

Theorem 17.2.4 (Drinfeld’s lemma for schemes). Assume the Xi are con-
nected. The natural map π1(X1 × · · · ×Xn/p.Fr.)→ π1(X1)× · · · × π1(Xn)
is an isomorphism.

Example 17.2.5. If X1 = X2 = Spec Fp, then (X1 × X2/p.Fr.)fét is the
category of finite étale covers of Spec Fp equipped with one partial Frobenius;

these are parametrized by Ẑ× Ẑ.
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The crucial step in the proof of Thm. 17.2.4 is to establish permanence
of π1 under extension of the base, once a relative Frobenius is added to
the picture. Let k/Fp be algebraically closed. For a scheme X/Fp, let
X := X ⊗Fp k; this has a relative Frobenius FX/k : X → F ∗kX. One can

then define a category (X/FX/k)fét and (after choosing a geometric point)

a group π1(X/FX/k).

Lemma 17.2.6 ([Lau, Lemma 8.12]). Let X/Fp be a scheme of finite type.
Then π1(X/FX/k)→ π1(X) is an isomorphism; that is, there is an equiva-
lence of categories between finite étale covers Y0 → X and finite étale covers
Y → X equipped with an isomorphism F ∗

X/k
Y
∼→ Y .

Proof. (Of Lemma 17.2.6, sketch.)

1. The category of finite-dimensional φ-modules (V, φV ) over k is equiva-
lent to the category of finite-dimensional Fp-vector spaces, via (V, φV ) 7→
V φ=1 and its inverse V0 7→ (V0 ⊗ k, 1⊗ φk). (Exercise)

2. Let X be projective over Fp. Then there is an equivalence between
pairs (E , φE), where E is a coherent sheaf on X, and φE : F ∗k E

∼→ E ,
and coherent sheaves E0/X. (Describe everything in terms of graded
modules, finite-dimensional over k (resp., Fp) in each degree, then use
(1). See [Lau, Lemma 8.1.1]. (This step fails if X is not projective.)

3. Without loss of generality in the lemma, X is affine. By cohomological
descent, we can assume X is normal and connected. Choose an em-
bedding X ↪→ X ′ into a normal projective Fp-scheme. The following
categories are equivalent:

(a) Y/X finite étale with F ∗
X/Y

Y
∼→ Y , and

(b) Y/X finite étale and F ∗kY
∼→ Y

(c) Y ′/X
′

finite normal, and F ∗kY
′ ∼→ Y ′ such that Y ′ is étale over

the open subset X,

(d) (using (2)) Y ′0/X
′ finite normal such that Y ′0 is étale over X,

(e) Y0/X finite étale.

(The proof of the equivalence of (b) and (c) uses the normalization of

X
′

in Y .)

119



17.3 Drinfeld’s lemma for diamonds

Let D be a diamond.

Definition 17.3.1. D is connected if |D| is.

For a connected diamond D, finite étale covers of D form a Galois cate-
gory, so for a geometric point x ∈ D(C,OC) we can define a profinite group
π1(D, x), such that finite π1(D, x)-sets are equivalent to finite étale covers
E → D.

We would like to replace all the connected schemes Xi appearing in Drin-
feld’s lemma with Spd Qp. Even though Qp has characteristic 0, its diamond
Spd Qp admits an absolute Frobenius F : Spd Qp → Spd Qp, because after
all it is a sheaf on the category (Perf) of perfectoid affinoids in characteristic
p, and there is an absolute Frobenius defined on these.

Let
(Spd Qp × · · · × Spd Qp/p.Fr.)fét

be the category of finite étale covers E → (Spd Qp)
n equipped with com-

muting isomorphisms βi : E
∼→ F ∗i E (where Fi is the ith partial Frobenius),

i = 1, . . . , n such that
∏
i βi = FE : E

∼→ E. As above, this is the same as
the category of finite étale covers E → (Spd Qp)

n equipped with commuting
isomorphisms β1, . . . , βn−1. A new feature of this story is that the action of
FZ1 ×· · ·FZ

n−1 on |(Spd Qp)
n| is free and totally discontinuous. Thus the quo-

tient (Spd Qp)
n/(FZ

1 × · · ·×FZ
n−1) really is a diamond; ((Spd Qp)

n/p.Fr.)fét

is simply the category of finite étale covers of it.

Example 17.3.2. Recall from Exmp. 10.1.6 that we have an isomorphism
Spd Qp × Spd Qp

∼= (D̃∗Qp
)♦/Z×p , where D̃∗Qp

is the punctured perfectoid

open unit disc over Spa Qp, and the action of a ∈ Z×p is through t 7→
(1 + t)a − 1. Under this isomorphism, the partial Frobenius corresponds to
t 7→ tp.

The version of Drinfeld’s lemma we need is:

Theorem 17.3.3. π1((Spd Qp)
n/p.Fr.) ∼= GnQp

.

In fact we prove something slightly more general. Let k be an alge-
braically closed field of characteristic p, with its discrete topology. Let L =
W (k)[1/p]. We may define a relative Frobenius FL/k : SpdL → F ∗k SpdL.
Formally, the definition of FL/k is the same as the definition of a relative
Frobenius for schemes. Explicitly, if (R,R+) is a perfectoid k-algebra and
S = Spa(R,R+), then (SpdL)(S) is the set of isomorphism classes of pairs
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(R], ι), where R] is a perfectoid L-algebra and ι : R][
∼→ R is an isomor-

phism. Then FL/k(R
], ι) = (R], F ◦ ι), where F : R → R is the pth power

Frobenius.
Similarly one can define the ith partial Frobenius FL/k,i on (SpdL)n for

i = 1, . . . , n. Consider the category

((SpdL)n/(FZ
L/k,1 × · · · × F

Z
L/k,n))fét

consisting of finite étale covers E → (SpdL)n together with commuting
isomorphisms βi : E

∼→ F ∗L/k,iE.

Theorem 17.3.4. π1((SpdL)n/(FZ
L/k,1 × · · · × F

Z
L/k,n))fét

∼= GnQp
.

Thm. 17.3.4 implies Thm. 17.3.3 by taking k = Fp. But we really do
need Thm. 17.3.4 in this generality to make the proof of Theorem 17.3.3
work.

Define X = Spd Qp/F
Z. Let Xk = X⊗Fpk = (SpdL)/FZ

L/k; in the spirit
of Weil schemes in Deligne’s Weil II, this is the “Weil version” of Spd Qp.

Lemma 17.3.5. π1(Xk) ∼= GQp.

Proof. We have a canonical isomorphism (SpdL/FZ
L/k)fét

∼= (SpdL/FZ
k )fét,

arising from the fact that if M/L is étale then FM/L is an isomorphism.
Thus it suffices to show that the category of pairs (M,φM ), where M is a
finite étale L-algebra and φM : φ∗M

∼→ M is an isomorphism, is equivalent
to the category of finite étale M0-algebras. For this one has to show there
are enough φ-invariants; one can use the φ-stable lattice OM .

The key lemma is:

Lemma 17.3.6. For any algebraically closed nonarchimedean field C/Fp,
one can form the base change XC , and then π1(XC) ∼= GQp.

This will be equivalent to the fact that the Fargues-Fontaine curve is
simply connected! Note that

(XC)fét = (Spd Qp/F
Z)×Fp C)fét

= (Spd Qp ×Fp (SpdC/FZ
C ))fét.

Lemma 17.3.7. Let

XFF = Y(0,∞)/φ
Z = (SpaW (OC)\ {p[$] = 0}) /φZ

be the adic Fargues-Fontaine curve. Then X♦FF = Spd Qp × SpdC/FZ
C .
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Proof. From the discussion of Spd Zp, we know that (SpaW (OC)\ {[$] = 0})♦ ∼=
Spd Zp × SpdC. Pass to {p 6= 0} and quotient by 1 × FC to obtain the re-
sult.

Lemma 17.3.8. For any analytic affinoid adic space Y = Spa(R,R+) over
Spa Zp, Rfét

∼= Y ♦fét. Thus Yfét
∼= Y ♦fét.

Proof. Take (R,R+) → (R̃, R̃+) a G-cover such that R̃ is perfectoid. Then
we had defined Y ♦ = Spd(R̃[, R̃[+)/G, so

Y ♦fét
∼=
{

fin. ét. R̃[-algebras w. cts. G-descent datum
}

which is in turn equivalent to finite étale R̃-algebras together with a G-
descent datum, which (using [GR03]) is equivalent to finite étale R-algebras.

The equivalence in Lemma 17.3.8 globalizes to general analytic adic
spaces over Spa Zp, and so we obtain an isomorphism (XC)fét

∼= (XFF)fét.

Lemma 17.3.9. (XFF)fét
∼= (XFF)fét, where XFF is the (schematic) Fargues-

Fontaine curve.

Proof. Use GAGA for the curve, Thm. 13.5.6.

Finally, the proof of Lemma 17.3.6 the theorem of Fargues-Fontaine:
(XFF)fét

∼→ (Qp)fét.
The proof of Thm. 17.3.4 combines two facts. The first is that a sort of

Stein factorization exists for certain morphisms of diamonds, Prop. 17.3.10.
The second is the analogue of Lemma 17.1.2 for diamonds, Prop. ??.

Proposition 17.3.10. Let F,X → Spd k be diamonds, with F → Spd k
qcqs. Assume that for all algebraically closed nonarchimedean fields C/k,
FC is connected, and π1(FC)→ π1(F ) is an isomorphism. Let Y = F ×kX,
and let Ỹ → Y be finite étale. There exists a finite étale morphism X̃ → X
fitting into the diagram

Ỹ //

��

X̃

��
Y // X

(17.3.1)

such that Ỹ → X̃ has geometrically connected fibres. Furthermore, X̃ → X
is unique up to unique isomorphism.

122



Remark 17.3.11. Prop. 17.3.10 can be interpreted as a Stein factorization
of the morphism Ỹ → X.

Proof. First we establish the claim of uniqueness. This will follow from
the following universal property of the diagram in Eq. (17.3.1): if such a
diagram exists, it is the initial object in the category of diagrams

Ỹ //

��

Z

finite étale
��

Y // X.

Suppose X̃ and Z fit into diagrams as above, where Ỹ → X̃ has geometri-
cally connected fibres; we will produce a unique morphism X̃ → Z.

We claim that the image of
∣∣∣Ỹ ∣∣∣ → ∣∣∣X̃ ×X Z

∣∣∣ is open and closed. Let

x ↪→ X be a geometric point, with x = Spa(C,OC). Then Yx = F×kx = FC ,
and Ỹx ∼=

∐
i∈I(FC)i for a finite set I, with each (FC)i → FC finite étale

and connected. Since π1(FC) = π1(F ), there exists Fi → F finite étale and
connected such that (FC)i = Fi ×k C.

We need the following analogue of Lemma 7.4.6 for diamonds:

Lemma 17.3.12. The functor

2- lim−→
U3x

(F ×k U)fét → (FC)fét,

where U runs over étale neighborhoods of x in X, is an equivalence.

Proof. We may assume that X is affinoid perfectoid. Then Lemma 7.4.6
implies the result when F is affinoid perfectoid.

We will show that any finite étale cover of FC spreads out to F ×k U
for some U . Let R ⇒ F ′ → F be a presentation of F , with F ′ perfectoid,
F ′ → F a qpf surjection and R = F ′×F F ′. Since F → Spd k is qcqs, F ′ and
R are qc over Spd k, and so we assume they are affinoid. Let Y → FC be a
finite étale cover; then Y ×FC F ′C → F ′C is a finite étale cover, so by Lemma
7.4.6 it spreads out to a finite étale cover Y ′U → F ′ ×k U . Both pullbacks of
Y ′U to R×k U have the same fibre over x, so after shrinking U they must be
isomorphic. Thus Y ′U descends to a finite étale cover YU → F ×k U .

Lemma 17.3.12 shows that there exists an étale neighborhood U of x
such that

ỸU ∼=
∐
i∈I

Fi ×k Ui,

123



where Ui ∼= U . (Indeed, both sides are objects in the limit appearing in
Lemma 17.3.12; since they have the same fibre at x, they become isomorphic
after passing to a smaller U .)

Since Ỹ → X̃ has geometrically connected fibres, and Ỹx =
∐
i∈I(Fi)C ,

we must have X̃x =
∐
i∈I x. Thus over U , the morphism Ỹ → X̃ looks like

this:

ỸU

��

∼ //
∐
i∈I Fi ×k Ui

��
X̃U ∼

//
∐
i∈I Ui

Meanwhile, possibly after shrinking U we have ZU =
∐
j∈J Uj , with J finite

and Uj ∼= U . Over U , the morphism Ỹ → Z looks like

ỸU

��

∼ //
∐
i∈I Fi ×k Ui

��∐
i∈I Ui

Ui→Ur(i)
��

ZU ∼
//
∐
j∈J Uj

for some function r : I → J . Now consider the product X̃ ×X Z. Over U ,
the morphism Ỹ → X̃ ×X Z looks like

ỸU

��

∼ //
∐
i∈I Fi ×k Ui

��∐
Ui

Ui→Uir(i)
��

(X̃U ×X Z)U ∼
//
∐

(i,j)∈I×J Uij ,

where Uij = Ui ×U Uj ∼= U . Suppose x′ is a geometric point of X̃ ×X Z
lying over x. We have x′ ∈ Uij for some (i, j). If j = r(i) there exists an
open neighborhood of x′, namely Uij , which is contained in the image of

Ỹ . On the other hand if j 6= r(i), then Uij is disjoint from the image of

Ỹ . We conclude that the image of
∣∣∣Ỹ ∣∣∣ → ∣∣∣X̃ ×X Z

∣∣∣ is open and closed.
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Thus Ỹ → X̃ ×X Z factors through an open subdiamond W ⊂ X̃ ×X Z
for which WU

∼=
∐
i∈I Uir(i) for sufficiently small étale U → X. This shows

that the projection W → X̃ is an isomorphism, and so we get a morphism
X̃ →W → Z as required.

Now we turn to existence. The idea is to build X̃ locally over each
geometric point and then glue using the uniqueness result.

We have already seen that there exists an cover of X by étale opens
U ∈ U such that for each U , ỸU ∼=

∐
i∈I Fi ×k U , with Fi → F finite étale

and connected. Let X̃U =
∐
i∈I U . Then X̃U fits into a diagram

ỸU //

��

X̃U

��
YU // U,

where X̃U → YU is finite étale and ỸU → X̃U has geometrically connected
fibres. If V ∈ U , then both X̃U ×X V and X̃V ×X U fit into a diagram as
above over U ×X V , and so by our uniqueness result there exists a unique
isomorphism fUV : X̃U ×X V

∼→ X̃V ×X U making the appropriate diagram
commue. The uniqueness implies that fUV satisfies the cocycle condition,
and so the X̃U glue together to form the diamond X̃ as required by the
proposition.

Proposition 17.3.13. Let k be a discrete algebraically closed field of char-
acteristic p. Let F and X be diamonds over k. Assume that:

1. X is connected.

2. F → Spd k is qcqs.

3. For all algebraically closed nonarchimedean fields C/k, FC is con-
nected, and the map π1(FC)→ π1(F ) is an isomorphism.

Then F ×kX is also connected, and the map π1(F ×kX)→ π1(F )× π1(X)
is an isomorphism.

Proof. Let Y = F ×k X.

1. We show that Y is connected. Clearly Y 6= ∅. Assume Y = Y1 t Y2,
with Yi open and closed. Suppose x = Spa(C,OC) ↪→ X is a (rank
1) geometric point. By hypothesis (3), the fiber Yx is connected, and
thus (Yi)x is empty for one of the i, say i = 1. We claim there exists a
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pro-étale neighborhood U of x in X such that Y1 ×X U is also empty.
Since étale maps are open, and since the images of geometric points
are dense in X, the claim implies that {x ∈ X|(Y1)x = ∅} is open, and
similarly for Y2. By hypothesis (1), X is connected, and therefore one
of these sets is empty, and thus one of the Yi is empty, showing that
Y is connected.

The claim is local for the pro-étale topology on X, so we may assume
that X is affinoid perfectoid. Since the morphism F → Spd k is qc,
so is the base change Y = F ×k X → X, and therefore Y is also qc.
Choose a qpf cover Z♦ → Y1 by a perfectoid space Z, which (because
Y1 is qc) may be assumed to be affinoid. Since

x = lim←−
U

U,

where U runs over étale neighborhoods of x in X, we have

Zx = lim←−
U

Z ×X U.

Since Yx = ∅, we have Zx = ∅ as well. On the level of topological
spaces, we have here an empty inverse limit of spectral spaces along
spectral maps, which implies that Z ×X U = ∅ for some U (cf. the
proof of Lemma 8.2.3), and therefore Y1 ×X U is empty.

2. We show that π1(F ×k X)→ π1(X) is surjective. First we claim that
for all finite étale X̃ → X with X̃ connected, we have that F × X̃ is
connected. This follows from (1) applied to X̃. Now, a connected étale
cover of X corresponds to a continuous transitive action of π1(X) on
a finite set. So the claim is equivalent to saying that every such action
restricts to a transitive action of π1(F ×kX). It is a simple exercise to
see that this is equivalent to the surjectivity of π1(F ×k X)→ π1(X).

3. Let x = Spa(C,OC) ↪→ X be a geometric point. Let FC = F ⊗k x.
We claim that the sequence

π1(FC)→ π1(F ×k X)→ π1(X)

is exact in the middle.

Prop. 17.3.10 translates into the following fact about these groups:
Given a finite quotient G of π1(F ×k X), corresponding to a Galois
cover Ỹ of Y = F ×k X, there exists a quotient G → H, correspond-
ing to a Galois cover X̃ → X as in Prop. 17.3.10. Consider the
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homomorphism π1(FC)→ ker(G→ H): the cosets of its image corre-
spond to connected components in the fibre of Ỹ → X̃ over a geomet-
ric point. But the fibres of Ỹ → X̃ are geometrically connected, so
π1(FC)→ ker(G→ H) is surjective. This suffices to prove the claim.

Putting together (1), (2) and (3), we have the following diagram of
groups, where the top row is an exact sequence:

π1(FC) //

∼
&&

π1(F ×k X) //

��

π1(X) // 1

π1(F )

This shows that π1(F ×k X)→ π1(F )× π1(X) is an isomorphism.

18 Examples of diamonds, 6 November

Today we will construct some interesting examples of diamonds, with a view
towards defining the mixed-characteristic affine Grassmannian.

18.1 The self-product SpdQp × SpdQp

We already encountered Spd Qp × Spd Qp in previous lectures. It is useful
to keep in mind that a diamond can D can have multiple “incarnations”, by
which we mean that there are multiple presentations of D as X♦/G, where
X is an analytic adic space over Spa Zp, and G is a profinite group. In the
case of Spd Qp×Spd Qp, there are (at least) the following two incarnations:

1. X = D̃∗Qp
, G = Z×p .

2. X = SpaW (OCp)\
{
p[p[] = 0

}
, G = GQp .

The first incarnation was discussed in Example 10.1.6. Recall that
D̃∗Qp

= lim←−D∗Qp
(with transition map T 7→ (1 + T )p − 1) is the punctured

perfectoid open unit disc. This has an action of Z×p via t 7→ (1+t)a−1. Then

we have an isomorphism of diamonds D̃∗,♦Qp
/Z×p

∼= Spd Qp× Spd Qp. One of
the partial Frobenii on Spd Qp × Spd Qp corresponds to the automorphism

t 7→ (1 + t)p − 1 ; let us define an action of Q×p on D̃∗Qp
by declaring that p

acts as t 7→ (1 + t)p − 1. The case n = 2 of Drinfeld’s Lemma for diamonds
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(Thm. 17.3.3) shows that π1(D̃∗Qp
/Q×p ) ∼= GQp×GQp . In particular if C/Qp

is complete an algebraically closed we have

π1((D̃∗C)♦/Q×p ) ∼= GQp .

Thus (rather surprisingly) GQp can be realized as a geometric fundamental
group, cf. [Wei13].

Consequently, to each finite extension F/Qp of degree n there must cor-

respond a connected Q×p -equivariant finite étale n-fold cover of D̃×C ; it is
natural to ask what this cover is. Let $ ∈ OF be a uniformizer, and let
LT /OF be a Lubin-Tate formal OF -module law: this is a formal scheme
isomorphic to Spf OF [[T ]] equipped with an OF -module structure, with the
property that multiplication by $ sends T to a power series congruent to
T q modulo $ (here q = #OF /$). Then we can form the geometric generic
fibre LTC : this is an OF -module object in the category of adic spaces, whose
underlying adic space is once again the open unit disc DC .

Now let L̃TC = lim←−$ LTC . Then L̃TC is an F -vector space object in the
category of adic spaces, whose underlying adic space is the perfectoid open
unit disc D̃C .

One can define a norm map NF/Qp
: LTC → DC , which is a (non-linear)

morphism of pointed adic spaces. Its construction goes as follows. Let F̆ be
the completion of the maximal unramified extension of F ; in fact the norm
map is defined over OF̆ . We have that LT[p∞]OF̆ is a p-divisible group of
height n and dimension 1. By [Hed], the nth exterior power of LT[p∞]OF̆
exists as a p-divisible group of dimension 1 and height 1, and so is isomor-
phic to µp∞,OF̆ . Thus we have an alternating map λ : LT[p∞]nOF̆

→ µp∞,OF̆ .

Let α1, . . . , αn be a basis for OF /Zp, and let N(x) = λ(α1x, . . . , αnx), so
that N is a morphism LT[p∞]OF̆ → µp∞,OF̆ . This induces a map of for-
mal schemes λ : LTnOF̆

→ Spf OF̆ [[t]], which becomes the desired norm map

NF/Qp
: LTC → DC after passing to geometric generic fibres.

By construction we have NF/Qp
(αx) = NF/Qp

(α)NF/Qp
(x) for all α ∈

O×F . In particular x 7→ NF/Qp
($x) and x 7→ pNF/Qp

(x) agree up to an
automorphism of DC . Therefore NF/Qp

can be used to define a norm map

L̃T→ DC , which is the desired finite étale cover.
The other incarnation of Spd Qp×Spd Qp as the quotient of an adic space

by a profinite group will lead us into a discuss of the Fargues-Fontaine curve
and Fontaine’s period rings. Recall from Prop. 11.2.2 that “SpaC[p×Spa Z′′p
is the analytic adic space Y[0,∞) = SpaW (OC[p

)\
{

[p[]
}

= 0, and that its

associated diamond is SpdC[p × Spd Zp. After inverting p, we find that
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the diamond associated to Y(0,∞) = SpaW (O[Cp)\
{
p[p[] = 0

}
is SpdC[p ×

Spd Qp. It follows from this that Y♦(0,∞)/GQp = Spd Qp × Spd Qp.

Recall that the Fargues-Fontaine curve was defined as XFF = Y(0,∞)/φ
Z.

It is a result of [FF11] that XFF is geometrically simply connected, which
is to say that π1(XFF) = GQp . On the other hand, π1(XFF) = π1(X♦) =
π1(Spd Cp×Spd Qp)/(p.Fr.), and so the simply-connectedness of XFF,C was
a special case of Drinfeld’s Lemma in disguise.

18.2 Finite-Dimensional Banach Spaces, after Colmez

We recall the construction of the de Rham period ring. Let (R,R+) be a
perfectoid Huber pair. We have the surjective homomorphism θ : W (R[+)→
R+, whose kernel is generated by a non-zero-divisor ξ. Let $[ ∈ R[ be a
pseudouniformizer, so that $ = ($[)] satisfies $p|p.

We get a surjection θ : W (R[+)[[$[]−1] → R = R+[$−1]. Let B+
dR(R)

be the ξ-adic completion of W (R[+)[[$[]−1]. This comes with a canonical
filtration FiliB+

dR = ξiB+
dR, whose associated gradeds are griB+

dR
∼= ξiR.

Philosophically, we think of Spf B+
dR(R) as the completion of “Spec Z×

SpecR” along the graph of SpecR ↪→ Spec Z. The construction of B+
dR(R)

encompasses the following two important cases:

Example 18.2.1. 1. Let R = C/Qp be algebraically closed and com-
plete. Then B+

dR(C) is the usual de Rham period ring of Fontaine. It
is a complete DVR with residue field C. Therefore it is isomorphic to
C[[ξ]], but there is no canonical isomorphism. (For instance, such an
isomorphism would not respect the action of GQp in the case C = Cp.)

2. If R has characteristic p, then we can take ξ = p, and B+
dR(R) = W (R).

Recall that Spd Qp is the functor on (Perf) which assigns to a perfectoid
Huber pair (R,R+) the set of un-tilts (R], R],+), where R] has characteristic
0 (i.e. it is a Qp-algebra). We are about to define a few functors on (Perf)
which are fibred over Spd Qp. One may think of such a functor as being
defined on the category of perfectoid Huber pairs (R,R+) in characteristic
0.

Definition 18.2.2. Let B+
dR/Fili → Spd Qp be the functor on (Perf) which

assigns to a characteristic 0 perfectoid Huber pair (R,R+) the Qp-vector
space B+

dR(R)/FiliB+
dR(R).

Proposition 18.2.3. 1. B+
dR/Fili is a diamond.
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2. B+
dR/Fili is a successive extension of forms of A1. More precisely,

there are exact sequences of presheaves

0→ griB+
dR → B+

dR/Fili+1 → B+
dR/Fili → 0,

where griB+
dR
∼= (A1

Qp
)♦⊗Q

p
Q
p
(i), where Q

p
(i) is the ith Tate twist.

For instance, after base changing to Qcycl
p we have an exact sequence

0→ (A1
Qcycl
p

)♦ → B+
dR/Fil2×SpdQp Spd Qcycl

p → (A1
Qcycl
p

)♦ → 0.

Thus B+
dR/Fil2 resembles a unipotent group. However we caution that

B+
dR/Fil2 is not a rigid space–it really only exists as a diamond.

Proof. First we prove the claimed description of griB+
dR. Let t = log([ε]) ∈

B+
dR(Qcycl

p ), where ε = (1, ζp, ζp2 , . . . ) ∈ Qcycl,[
p . One checks that the loga-

rithm series converges, and that t generates the kernel of θ : B+
dR(Qcycl

p ) →
Qcycl
p . Then griB+

dR ×SpdQp Spd Qcycl
p
∼= ti(A1

Qcycl
p

)♦. Since the action of

Gal(Qcycl
p /Qp) on t is the cyclotomic character, we can descend the picture

to Spd Qp. The claim (2) is now clear from the description of B+
dR(R]).

For (1), it is enough to prove that B+
dR/Fili×SpdQp Spd Qcycl

p is a dia-

mond. We will now assume that the base is always Spd Qcycl
p , so that we

can ignore Tate twists. We argue by induction on i, the case i = 1 being
trivial. Consider the exact sequence of presheaves:

0 // B+
dR/Fili−1 ×t // B+

dR/Fili
θ // (A1)♦ // 0

We claim that θ is qpf-locally split. Proof: Let X = lim←−T 7→T p A1
Qcycl
p

;

then the projection X → A1
Qcycl
p

is a perfectoid qpf cover. Let T [ =

(T, T 1/p, . . . ) ∈ H0(X,OX). Then [T [] ∈ (B+
dR/Fili)(X) maps to T un-

der θ; this means exactly that we have a morphism X♦ → B+
dR/Fili which

makes the diagram commute:

X♦

��yy
0 // B+

dR/Fili−1 ×t // B+
dR/Fili

θ // (A1)♦ // 0

By the inductive hypothesis, B+
dR/Fili−1 is a diamond. We have a qpf

surjection B+
dR/Fili×(A1)♦X

∼= B+
dR/Fili−1×X → B+

dR/Fili, which shows

that B+
dR/Fili is a diamond as well.
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The sections of B+
dR/Fil2 over Cp form an infinite-dimensional Qp-vector

space which is not a Cp-vector space. Rather (B+
dR/Fil2)(Cp) is an extension

of Cp by Cp. In [Col02], B+
dR/Fil2 is called a Banach Space of Dimension 2

(note the capital letters).
Another family of such Banach Spaces is defined as follows.

Definition 18.2.4. Let (R,R+) be an object of (Perf), and let $ ∈ R be a
pseudo-uniformizer.

1. Let B(R,R+) be the ring of global sections of the structure sheaf of
SpaW (R+)\ {p[$] = 0}.

2. Let Bφ=pn(R,R+) = B(R,R+)φ=pn .

Remark 18.2.5. 1. The same functor on (Perf) can be constructed us-
ing the crystalline period ring B+

cris(R
+/$). (To define B+

cris(R
+/$),

start with the universal PD thickening of the semiperfect ring R+/$,
complete at p, and then invert p). ThenB+

cris(R
+/$)φ=pn = B(R,R+)φ=pn .

2. If n = 0, then Bφ=1 = Q
p
. (Thus Q

p
is the universal cover of the

constant p-divisible group Qp/Zp.)

3. If n = 1, then B(R,R+)φ=p = B+
cris(R

+/$)φ=p. Since R+/$ is
semiperfect (meaning that Φ is surjective), a result in [SW13, §4.2]
shows that B+

cris(R
+/$)φ=p is isomoprhic to the Qp-vector space of

isogenies Qp/Zp → µp∞ over R+/$, which is in turn the same as
µ̃p∞(R+/$). Therefore Bφ=p = Spd Fp[[t

1/p∞ ]].

4. In both of the above cases Bφ=pn is (once one picks a base) repre-
sentable by an adic space, namely the universal cover of a p-divisible
group. For n > 1, we should think of Bφ=pn as the universal cover of
a “formal group of slope n”, cf. Scholze’s talk in February at MSRI.

Proposition 18.2.6. 1. Bφ=pn × Spd Qp is a diamond.

2. There is a short exact sequence of qpf sheaves of Qp-vector spaces

0 // Q
p
(n) // Bφ=pn × Spd Qp

// B+
dR/Filn // 0

(the “fundamental exact sequence of p-adic Hodge theory”).

131



Proof. Again we extend scalars to Spd Qcycl
p (and descend later). Once again

let t = log([ε]) ∈ Bφ=p(Qcycl
p ). The case n = 0 of (2) is trivial. For n = 1 we

use the isomorphism Bφ=p × Spd Qcycl
p = D̃♦. This sequence gets identified

with
0→ Q

p
t→ D̃♦ → G♦a → 0,

which is exact; in fact it is the universal cover of

0→ µp∞ → D♦ → G♦a → 0

where “universal cover” just means take inverse limit under multiplication
by p. It is enough to show that this latter sequence is exact, because multi-
plication by p is finite étale on D♦. But in a small neighborhood of 0 in D♦,
log is invertible. Thus log is étale locally surjective – it is an étale covering
map in the sense of [dJ95]. This can be used to prove exactness.

For n > 1 we apply induction. Consider the diagram:

0

��

0

��
0 // Q

p
(n− 1)

tn−1
//

∼=
��

Bφ=pn

��

// B+
dR/Filn−1 //

t

��

0

0 // Q
p
(n)

tn
// Bφ=pn //

��

B+
dR/Filn //

��

0

Ga

��

= // Ga

��
0 0

We are given that the top row is exact. The middle row is left exact
because tn is not a zero divisor. For exactness of the column on the left:
use an element t′ ∈ Bφ=p for which θ(t′) = 1 (this exists pro-étale locally).
Then right exactness of the middle row is a diagram chase. All that remains
is exactness in the middle row. This will be equivalent to the exactness in
the middle of

0→ Bφ=pn−1 t→ Bφ=pn → Ga → 0.

If f ∈ B satsifies φ(f) = pnf , and θ(f) = 0, then (θ ◦ φi)(f) = 0 for all
i. But t vanishes precisely at all roots of θ ◦ φi with multiplicity 1, which
shows that f is divisible by t.
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Now we turn to (1): we must show that Bφ=pn×Spd Qcycl
p is a diamond.

The proof of (2) shows that there are qpf locally sections of the projection
map Bφ=pn × Spa Qp → B+

dR/Filn. Then the same argument works as for
B+

dR/Filn to show that Bφ=pn × Spd Qp is a diamond.

19 Moduli spaces of shtukas, 18 November

Today we discuss moduli spaces of local mixed-characteristic shtukas, and
relate them to moduli of p-divisible groups in the simplest cases.

19.1 Local shtuka data

We first specify the data required to define a moduli space of local shtukas.
These will resemble the data required to define moduli spaces of global
(equal-characteristic) shtukas as introduced by Varshavsky, [Var04].

Definition 19.1.1. A local shtuka datum is a triple (G, b, {µi}), consisting
of:

• A reductive group G defined over Qp (and often assumed to be GLr),

• A σ-conjugacy class b ∈ B(G) in the sense of Kottwitz, [Kot85], see
note below,

• A collection {µi} of conjugacy classes of cocharacters µi : Gm → GQp

for i = 1, 2, . . . , n.

We recall here the definition of B(G) for a reductive group G over a
local field. (Kottwitz defines B(G) in the global setting as well.) Let k be
an algebraically closed field of characteristic p, let L = W (k)[1/p], and as
usual let σ ∈ AutL be induced from the pth power Frobenius on k. One
has an action of G(L) on itself by σ-conjugation, defined for h ∈ G(L) by
g 7→ h−1gσ(h). Let B(G) be the set of σ-conjugacy classes in G(L).

Theorem 19.1.2 (Kottwitz). The set B(G) is independent of k.

Example 19.1.3. In the case G = GLr, one has a bijection:

B(G)
∼→ {isocrystals (N,φ) over L} / ∼=

g 7→ (Lr, gσ).
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By the Dieudonné-Manin classification, isomorphism classes of isocrystals
are in bijection with n-tuples λ1 ≥ · · · ≥ λr of rational numbers satisfying
the condition

λ# {i|λi = λ} ∈ Z.

These in turn are in bijection with the set of convex polygons in the plane
whose breaks occur at integer lattice points, i.e., Newton polygons. We say
that (λ1, . . . , λr) is the Newton point of b.

For general G, Kottwitz constructs a Newton map

ν : B(G)→ (X∗(G)⊗Q)dom,

where the right-hand side is the set of dominant rational cocharacters; in
the case of G = GLr we may identify X∗(GLr) with Zr, and then ν(b) is the
Newton point of b.

Kottwitz also constructs a map

κ : B(G)→ π1(GQp
)Γ,

where Γ = GQp .

Remark 19.1.4. In the equal characteristic case, where Qp is replaced with
k((t)), we can think of κ as a map

G(k((t)))→ π1(G)Γ

which maps an algebraic loop to a topological loop.

Then
(λ, κ) : B(G) ↪→ (X∗(G)⊗Q)dom

⊕
π1(GQp

)Γ

is an injection, and one can describe the image. For G = GLr, κ(g) =
vp(det g) ∈ Z = π1(GLr) is already determined by the Newton point of g:
κ(g) =

∑
i λi.

19.2 Vector bundles on the Fargues-Fontaine curve

Let S be a perfectoid space over Spa k, where k is our algebraically closed
field of characteristic p. Recall from Defn. 11.4.1 that a shtuka over S is a
vector bundle E over “S×Spa Zp” equipped with an isomorphism φE : φ∗E →
E away from finitely many paws. Also recall from Prop. 11.3.2 that when
S = Spa(R,R+) is affinoid with pseudo-uniformizer $, we have

“S × Spa Zp” = SpaW (R+)\ {[$] = 0} ,
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an adic space over L. Let us call this space Y[0,∞)(R,R
+). In the case that

(R,R+) = (C,OC) is a geometric point, this agrees with the space Y[0,∞)

from §12. We have a continuous map

κ : Y[0,∞) → [0,∞),

the relative version of the map κ from §12.2.
Our intention is to extend the definition of a shtukas to general reductive

groups G, by replacing the vector bundle E with a G-bundle. The first
order of business is to classify G-shtukas with no paws in the case that S =
Spa(C,OC) is a geometric point. If E is a G-shtuka over Y[0,∞) with no paws,

then E|Y(0,∞)
descends to a G-bundle on the quotient XFF = Y(0,∞)/φ

Z; these
are classified by the following theorem.

Theorem 19.2.1 (Fargues-Fontaine for G = GLr, Fargues for all G). There
is a bijection

B(G)
∼→ {G-bundles over XFF} / ∼= .

Remark 19.2.2. In the case G = GLr, this is the classification of vector
bundles on XFF from [FF11]. We recall its construction. An element b ∈
B(GLr) corresponds to an isocrystal (N,φ) over L. We get a pair (Eb, φEb)
over Y(0,∞), where

Eb = OY(0,∞)
⊗L N, φE = φ⊗ φ.

Now suppose that (E , φE) is any shtuka over Y[0,∞). For ρ large enough
to avoid the paws, (E , φE)|[ρ,∞) is a φ-module over Y[ρ,∞). By the “Frobe-
nius pullback” trick discussed in §13.4, there exists a unique extension of
(E , φE)|[ρ,∞) to a φ-module defined on all of Y(0,∞). Thus by Thm. 19.2.1
there exists b ∈ B(G) and an isomorphism

ι : (E , φE)|[ρ,∞)
∼= (Eb, φEb)|[ρ,∞). (19.2.1)

Returning to the relative case, this discussion shows that if (E , φE) a
shtuka over S, then each geometric point of S determines an element b ∈
B(G). Since B(G) is discrete, this suggests that in order to define a nice
moduli space of shtukas, we ought to fix a σ-conjugacy class b ∈ B(G) in
advance, and include ι as part of the moduli problem.

Remark 19.2.3. We note however that Fargues has a new formulation of
geometric Langlands in mixed characteristic which requires working with
a very stacky space BunG which classifies all G-bundles on the Fargues-
Fontaine curve. The geometric points of BunG are then B(G), but with
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each b ∈ B(G) being an orbifold point whose automorphism group is the
centralizer Jb of b in G(L). Without specifying b in advance and rigidifying
the moduli problem using ι, our moduli space of shtukas would be fibred
over this BunG.

19.3 Definition of the moduli spaces of shtukas

A local shtuka datum includes a collection µ = {µi}, where µi : Gm → GQp

is a cocharacter up to conjugacy. The set of conjugacy classes of cocharacters
is in bijection with X∗(T )/W , where T ⊂ GQp

is a maximal torus and W is

its Weyl group. Recall that if G = GLr, a cocharacter can be specified by a
nonincreasing sequence of integers k1 ≥ · · · ≥ kr.

Suppose that C/Qp is complete and algebraically closed. Suppose V is
an r-dimensional vector space over BdR = BdR(C), and Λ,Λ′ ⊂ V are two
B+

dR-lattices. Recall that BdR is a DVR with uniformizer ξ. By the theory
of elementary divisors, there exists a basis e1, . . . , er for Λ and well-defined
integers k1 ≥ · · · ≥ kr such that ξk1e1, . . . , ξ

krer is a basis for Λ′. We say that
Λ and Λ′ are in relative position µ, where µ : Gm → GLr is the cocharacter
with µ(t) = diag(tk1 , . . . , tkr). In this situation we write

inv(Λ,Λ′) = (k1 ≥ · · · ≥ kr).

The notion can be defined for a general group G: if two G-torsors over
B+

dR have the same generic fiber, their relative position is measured by a
cocharacter of G which is well-defined up to conjugacy.

There is a dominance order on the set of cocharacters. For G = GLr,
it corresponds to the majorization order on tuples (k1 ≥ · · · ≥ kr). This is
defined by

(k1 ≥ · · · ≥ kr) ≥maj (k′1 ≥ · · · ≥ k′r)
if and only if k1 ≥ k′1, k1 + k2 ≥ k′1 + k′2, etc., with

∑
i ki =

∑
i k
′
i.

Let (E , φE) be a G-shtuka over a geometric point S = Spa(C,OC) with

paws at x1, . . . , xn ∈ Y(0,∞), which correspond to un-tilts C]1, . . . , C
]
n. For

i = 1, . . . , n, we have the BdR(C]i )-lattices φE(φ
∗E)∧xi and Exi , whose generic

fibres are identified via φE . Let (k1(xi) ≥ · · · ≥ kr(xi)) = inv((φ∗E)∧xi , Exi)
be the r-tuple of integers measuring their relative position.

Definition 19.3.1. Let µ = {µi}1≤i≤n be a collection of cocharacters, cor-
responding to the n-tuples ki,1 ≥ · · · ≥ ki,r. We say that (E , φE) is bounded
by µ if

(k1(xi) ≥ · · · ≥ kr(xi)) ≤maj

∑
j,xj=xi

(kj,1 ≥ · · · ≥ kj,r).
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If (E , φE) is a shtuka over a perfectoid space S, we say that (E , φE) is bounded
by µ if it is so at all geometric points of S.

Remark 19.3.2. One must really take the sum on the right hand side to
allow for the possibility that some of the paws may collide. This will ensure
that the moduli space of shtukas we define will be partially proper. We also
remark that this definition extends to general G.

We are now ready to define the moduli space of shtukas. Let k = Fp

and let Q̆p = W (k)[1/p]. Let (G, b, {µi}) be a local Shtuka datum. For the
moment assume that the µi are defined over Qp (this can always be done if
G is split).

Definition 19.3.3. Let (Spd Q̆p)
n be the self-product of n copies of Spd Qp

over Spd k. We define a morphism Sht(G,b,µ) → (Spd Q̆p)
n of functors on

the category of perfectoid k-algebras as follows. If (R,R+) is a perfectoid
k-algebra together with n maps xi : Spd(R,R+)→ Spd Q̆p, then the fiber of
Sht(G,b,µ)(R,R

+) over (x1, . . . , xn) is the set of isomorphism classes of pairs
((E , φE), ι), where

• (E , φE) is a G-shtuka over Y[0,∞)(R,R
+) with paws only at the xi, such

that (E , φE) is bounded by µ, and

• ι : (E , φE)|[ρ,∞)
∼→ (Eb, φEb)|[ρ,∞) is an isomorphism for some sufficiently

large ρ.

19.4 Relation to Rapoport-Zink spaces

Rapoport-Zink spaces are moduli of deformations of a fixed p-divisible group.
After reviewing these, we will show that (over the generic fibre) the associ-
ated diamond of a Rapoport-Zink space is isomorphic to a moduli space of
shtukas of the form ShtG,b,{µ} with µ minuscule. In the case G = GLr, the
minuscularity condition means that

µ(t) = diag(t, . . . , t︸ ︷︷ ︸
d

, 1, . . . , 1︸ ︷︷ ︸
r−d

)

This corresponds to the r-tuple (1 ≥ 1 ≥ · · · ≥ 1 ≥ 0 ≥ · · · ≥ 0).
Fact: If Sht(GLr,b,µ) 6= ∅ then b belongs to the set B(GLr, µ) of σ-

conjugacy classes which are µ-admissible, meaning that the corresponding
isocrystal is the Dieudonné module of a p-divisible group X over k of dimen-
sion d and height r. Put another way, b lies in B(GLr, µ) if and only if the

137



Newton polygon of b lies above the Hodge polygon associated to µ, which is
the polygon linking (0, 0), (r − d, 0), and (r, d).

We recall from [RZ96] the definition and main properties of Rapoport-
Zink spaces.

Definition 19.4.1. Assume that b ∈ B(GLr, µ). Let DefX be the functor
which assigns to a formal scheme S/Spf Z̆p the set of isomorphism classes
of pairs (X, ρ), where X/S is a p-divisible group, and ρ : X×S S

∼→ X×Fp
S

is a quasi-isogeny, where S = S ×Spf Z̆p
Spec Fp. (A quasi-isogeny is an

isomorphism in the isogeny category; formally it is an isogeny divided by a
power of p.)

Theorem 19.4.2 ([RZ96]). DefX is representable by a formal scheme MX

over Spf Z̆p, which is formally smooth and locally formally of finite type.
Furthermore, all irreducible components of the special fibre ofMX are proper
over Spec k.

Remark 19.4.3. “Locally formally of finite type” means that locallyMX is
isomorphic to a formal scheme of the form Spf Z̆p[[T1, . . . , Tm]]〈U1, . . . , U`〉/I.

Let MX,Q̆p
be the generic fibre over Spa Q̆p. It will be useful to have a

moduli interpretation of MX,Q̆p

Proposition 19.4.4 ([SW13, Prop. 2.2.2]). Let CAffop

Q̆p
be the category

opposite to the category of complete Huber pairs over (Q̆p, Z̆p). Then MX

is the sheafification of the presheaf on CAffop
Q̆p

defined by

(R,R+) 7→ lim−→
R0⊂R+

DefX (R0),

where the limit runs over open and bounded Z̆p-subalgebras R0 ⊂ R+.

Thus, to give a section of MX over (R,R+) is to give a covering of
Spa(R,R+) by rational subsets Spa(Ri, R

+
i ), and for each i a deformation

(Xi, ρi) ∈ DefX(Ri0) over an open and bounded Z̆p-subalgebra Ri0 ⊂ R+
i ,

such that the (Xi, ρi) are compatible on overlaps.

Theorem 19.4.5. There is an isomorphism M♦
X,Q̆p

∼= Sht(GLr,b,µ) as dia-

monds over Spd Q̆p.
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Proof. (Sketch.) The crucial observation is that both spaces admit a period
morphism to a Grassmannian Grass(d, r), and that there is a morphism
M♦

X,Q̆p
→ Sht(GLr,b,µ) lying over Grass(d, r).

On the Rapoport-Zink side we have a morphism of adic spaces

πGM : MX,Q̆p
→ Grass(d, r)Q̆p

which arises from Grothendieck-Messing periods. In the case d = 1 the
existence of πGM is due to Gross-Hopkins, [HG94], and for general d it is
in [RZ96]. Here, Grass(d, r) is the variety of d-dimensional quotients of
N(X)[1/p], the (r-dimensional) rational Dieudonné module of X.

We outline the construction of πGM . Suppose (R,R+) is a complete
Huber pair over (Q̆p, Z̆p). Let R0 ⊂ R+ be an open and bounded subring,
and let (X, ρ) ∈ DefX(R0). In light of Prop. 19.4.4 it suffices to define πGM

on the section of MX(R,R+) defined by (X, ρ).
Let EX be the universal vector extension of X. By Grothendieck-

Messing theory, the quasi-isogeny ρ induces an isomorphism of locally free
R-modules (LieEX)[1/p] → N(X) ⊗Z̆p

R. On the other hand we have the
rank d quotient LieEX → LieX. Combining these elements gives a rank d
quotient of N(X)⊗Z̆p

R, which defines a section of Grass(d, r) over (R,R+).
Grothendieck-Messing theory also shows that πGM is étale. Over its

image, it parametrizes Zp-lattices in a Qp-local system of rank r. Thus its
geometric fibres are essentially GLr(Qp)/GLr(Zp).

On the side of shtukas, we also have a morphism

π′GM : Sht(GLr,b,µ) → Grass(d, r)♦
Q̆p
.

If (E , φE) is a shtuka over (R,R+) with a paw at x, together with an iso-
morphism between E and Eb over Y[r,∞) for some r, then

φ−1
E : E → φ∗E

is a well-defined map, such that coker(E∧φ(x) → (φ∗E)∧x ) is killed by the kernel

of W (R+)→ R]+ and is locally free of rank d over R].
Choose r large enough so that φ(x) ∈ Y[r,∞). Then (φ∗E)x = Eφ(x)

∼=
N⊗Q̆p

R], and so we get a quotient coker(Ex → (φ∗E)x) of rank d ofN⊗Q̆p
R];

that is, a point of Grass(d, r)♦
Q̆p

.

What is the image of these πGM? We only have to worry about geometric
points, and rank 1 geometric points at that (by partial properness). Given
a point (C,OC) of Grass(d, r)♦

Q̆p
, one gets a pair (E ′, φE ′) over Y(0,∞) by
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modifying (Eb, φEb) at x, φ−1(x), . . . using this quotient of N ⊗Q̆p
C]. Then

φE will be an isomorphism away from x. Now: when does a φ-module over
Y(0,s] extend to a φ-module over Y[0,s], for s small?

Recall that for any s > 0, the category of φ-modules over Y[0,s] is equiv-
alent to the category of finite free Zp-modules, so that (after tensoring both
categories with Qp), φ-modules over Y[0,s] are equivalent to finite dimen-
sional Qp-vector spaces, in turn equivalent to trivial φ-modules over Y[0,s].
Thus, any extension of a φ-module over Y[0,s] is trivial. In that case, exten-
sions are in bijection with Zp-lattices in Qp-vector spaces.

Definition 19.4.6. Let Grass(d, r)adm
Q̆p
⊂ Grass(d, r)Q̆p

be the locus where

the resulting φ-module over Y[0,s] is trivial.

This is the image of πGM on the space of shtukas.

Theorem 19.4.7 (Faltings). The image of πGM : MX,Q̆p
→ Grass(d, r)Q̆p

is the admissible locus.

See also [SW13], where this is reproved using the classification of p-
divisible groups over OC] in terms of pairs (T,W ). Also one sees there a
mapM♦

X,Q̆p
→ Sht(GLr,b,µ) which compares with πGM . They have the same

image and the same fibres, and thus this is an isomorphism.

20 The mixed-characteristic Beilinson-Drinfeld Grass-
mannian, 20 November

In today’s lecture we construct moduli spaces of shtukas, and announce
the main theorem of the course, which is that these spaces are diamonds.
In the case of shtukas with one paw, one gets the “local Shimura varieties”
hypothesized in [RV]. But of course our spaces of shtukas may have multiple
paws, so that one ought to see the sort of structure in their cohomology that
appears in [Laf] in the global equal-characteristic setting.

20.1 Review of shtukas with one paw

Fix C/Qp an algebraically closed nonarchimedean field. The following ob-
jects are associated with C:

1. The topological ring Ainf = W (OC[), which comes equipped with a
surjective homomorphism θ : W (OC[)→ C, whose kernel is generated
by an element ξ.
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2. The DVR B+
dR and its fraction field BdR, where B+

dR is the ξ-adic
completion of W (OC[)[1/p].

3. The Fargues-Fontaine curve XFF defined in Defn. 13.5.3, with a distin-
guished point∞ corresponding to the un-tilt C of C[. We have. There
is also the adic version XFF; we have used xC for its distinguished
point. In either case, the completed local ring at the distinguished
point is BdR.

Proposition 20.1.1. The following categories are equivalent.

1. Shtukas over SpaC[ with one (meromorphic) paw at C.

2. Pairs (T,Ξ), where T is a finite free Zp-module, and Ξ ⊂ T ⊗Zp BdR

is a B+
dR-lattice.

3. Breuil-Kisin modules over Ainf .

4. Quadruples (F ,F ′, β, T ), where F and F ′ are vector bundles on the
Fargues-Fontaine curve XFF, and β : F|XFF\{∞}

∼→ F ′|XFF\{∞} is an

isomorphism, where ∞ ∈ XFF(C) corresponds to the un-tilt C of C[,
F is trivial, and T ⊂ H0(XFF,F) is a Zp-lattice.

If the paw is minuscule, which is to say that

ξ(T ⊗Zp B
+
dR) ⊂ Ξ ⊂ T ⊗Zp B

+
dR,

then these categories are equivalent to the category of p-divisible groups over
OC .

Proof. The equivalence between (1) and (2) is Thm. 12.4.4, and the equiv-
alence between (2) and (3) is Thm. 12.5.1. Let us explain the equivalence
between (1) and (4). Suppose (E , φE) is a shtuka over SpaC[ with one paw at
C. This means that E is a vector bundle on Y[0,∞) and φE : φ∗E → E is an iso-

morphism away from xC . The vector bundles F and F ′ on XFF = Y[0,∞)/φ
Z

come from descending (E , φE) “on either side” of xC , respectively, as we now
explain.

First we treat the side of xC close to the point xC[ , where p = 0. The
completed stalk of E over xC[ is a φ-module over the integral Robba ring

R̃int = ÔY[0,∞),xC[
. By Thm. 12.3.4, the category of φ-modules over R̃int

is equivalent to the category of finite free Zp-modules. Thus there exists a

finite free Zp-module T and an isomorphism of φ-modules Êx
C[

∼→ T ⊗Zp

OY[0,∞),x
C[

. This isomorphism spreads out to an isomorphism of φ-modules
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Ê |[0,s]
∼→ T ⊗Zp OY[0,s]

for some s small enough. Let F = T ⊗Zp OXFF
; then

of course F is trivial and T ⊂ H0(XFF,F) is a Zp-lattice.
Now we treat the other side of xC . The map φE restricts to an isomor-

phism φ∗E|Y[s,∞)

∼→ E|Y[s,∞)
for s large enough. Let F ′ be the descent of

(E , φE)|Y[s,∞)
.

The two descent procedures used to construct F and F ′ only involved
modifications at xC , so one has an isomorphism β : F → F ′ away from
{xC}.

20.2 Moduli spaces of shtukas

As usual, we let k = Fp and Q̆p = W (k)[1/p].
Let G = GLr, let b ∈ B(G), and let µ1, . . . , µr be conjugacy classes

of cocharacters of G. The class b corresponds to a φ-module (Eb, φEb) over
Y(0,∞), where Eb = OrY(0,∞)

and φEb = gφ, where g ∈ G(L) represents b.

Recall the definition of the morphism of functors on (Perfk):

Sht(GLr,b,{µi}) → Spd Q̆p ×k · · · ×k Spd Q̆p.

Given a perfectoid Huber pair (R,R+) over k with morphisms xi : Spd Q̆p →
Spd(R,R+), it assigns the set of isomorphism classes of triples (E , φE , ι) over
Y[0,∞) of rank r with paws at the graphs of the xi which are bounded by µi,
together with an isomorphism ι : (E , φE)→ (Eb, φEb) near ∞.

So far Sht(GLr,b,{µi}) is just a functor, but in fact:

Proposition 20.2.1. Sht(GLr,b,{µi}) is a sheaf on the faithful site.

Proof. This is a matter of proving that triples (E , φE , ι) glue on faithful
covers. Once the vector bundle E glues, it will be easy to glue φE and ι.

Recall that Y[0,∞)(R,R
+) is preperfectoid. Thus if K is a perfectoid

field, say K = Qp(p
1/p∞)∧, then Y[0,∞) ×SpaZp SpaOK is perfectoid. If E is

a vector bundle on Y[0,∞), then we can form E⊗̂ZpOK ; this comes equipped
with an idempotent eE = 1 ⊗ eOK , where eOK : OK → Zp is a Zp-linear
splitting.

If E⊗̂ZpOK glues on faithful covers, then since eE glues, E glues as well.
Thus is suffices to show that vector bundles glue on faithful covers of per-
fectoid spaces. We now appeal to Lemma 20.2.2 below.

Lemma 20.2.2. The fibred category

(R,R+) 7→ {Finite projective R-modules}

is a stack on the faithful site of (Perf).
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Proof. Suppose X̃ → X is a surjective morphism of perfectoid affinoids,
with X = Spa(R,R+) and X̃ = Spa(R̃, R̃+). We will show that the
base change functor from finite projective R-modules to finite projective
R̃-modules equipped with a descent datum is an equivalence of categories.

Full faithfulness follows from the sheaf property of the structure presheaf
on the faithful site, Thm. 15.3.5.

Essential surjectivity can be checked locally, as vector bundles glue over
open covers by Thm. 5.5.8. Consider first the case where R = K is a
nonarchimedean local field. Then R̃ = K̃ is a nonzero Banach K̃-algebra,
and we need to prove that projective K̃-algebras with descent data descend
to K.

Recall the proof of faithfully flat descent for modules (for instance,
[Sta14, Descent, Prop. 3.9]). The same proof carries over to K̃/K, ex-
cept that we must check that the following lemma holds (in the context of
V = K̃:

Lemma 20.2.3. Let C be a complex of K-Banach spaces, and let V 6= 0 be
a K-Banach space. Then C is acyclic if and only if C⊗̂KV is acyclic.

Proof. Use the fact that W ⊗̂KV = lim−→V ′⊂V W ⊗̂KV
′, where V ′ ⊂ V runs

over topologically countably generated subspaces. This reduces to proving
the lemma for such V ′. But if V ′ is topologically countably generated, then
it is topologically free, [BGR84, §2.7, Thm. 4]. In that case, the lemma is
easy.

Thus we have established Lemma 20.2.2 over a point. Returning to the
general case, suppose (R,R+) → (R̃, R̃+) is a faithful cover, and M̃/R̃ is a
finite projective module equipped with a descent datum

M̃⊗̂
R̃,i1

(R̃⊗̂RR̃) ∼= M̃⊗̂
R̃,i2

(R̃⊗̂RR̃),

where i1, i2 : R̃⇒ R̃⊗̂RR̃ are the two obvious homomorphisms. We wish to
descend M̃ to M/R.

After replacing X̃ with an open cover, we may assume that M̃ = R̃r is
free. The descent datum is given by a matrix B ∈ GLr(R̃⊗̂RR̃), which satis-
fies a cocycle condition. Pick any x ∈ X with completed residue field K(x).

We can descend the fibre of M̃ over x, so there exists Ax ∈ GLr(R̃⊗̂RK(x))
such that B = pr∗1(Ax) pr∗2(Ax)−1 ∈ GLr(R̃⊗̂RR̃⊗̂RK(x)). Approximate

Ax by some AU ∈ GLr(R̃⊗̂ROX(U)). After conjugating by AU , we may
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assume B ∈ GLr(R̃
+⊗̂R+O+

X), and even that B ≡ 1 (mod $) for a pseudo-
uniformizer $ ∈ R. Replacing X by U , we may assume that B ≡ 1 (mod $)
to begin with.

Now (B − 1)/$ modulo $ satisfies the additive cocycle condition, so
it lives in Ȟ1(X̃/X,Mr(O+

X/$)), but this group is almost zero, see Thm.
15.3.5 and its proof. Thus we can conjugate B so as to assume that B ≡ 1
(mod $2−ε) for some ε > 0. Continuing, we find that B = 1.

20.3 Announcement of the main theorem, and the strategy
of proof

Theorem 20.3.1. Sht(GLr,b,{µi}) is a diamond.

This is the main theorem of the course! It may not look interesting,
but it implies that these spaces have cohomology. One can add level struc-
tures to the picture to obtain a tower of diamonds whose cohomology is a
representation of GLr(Qp) × Jb, where Jb is the centralizer of b in G(L).
This cohomology ought to realize instances of the local Langlands corre-
spondence, along the lines of the Kottwitz conjecture for Rapoport-Zink
spaces.

The strategy for proving Thm. 20.3.1 goes as follows.

1. We will define a morphism

πGM : Sht(GLr,b,{µi}) → GrBD
(Spd Q̆p)n,{µi}

onto a Beilinson-Drinfeld Grassmannian. This period map records
the modifications of the vector bundle F at the xi. In the case of one
minuscule paw, πGM coincides with the Grothendieck-Messing period
map of §19.4.

2. We will show that GrBD = GrBD
(Spd Q̆p)n,{µi}

is a diamond, Thm. 21.3.7.

We will do this over the next two lectures, by showing that GrBD is a
fake diamond satisfying the hypotheses of Thm. 16.2.10.

3. Finally we will show that πGM is an étale cover of an open subdiamond
GrBD,adm ⊂ GrBD. In particular Sht(GLr,b,{µi}) is a diamond.

20.4 Definition of the period morphism

Here we define the Beilinson-Drinfeld Grassmannian and the period mor-
phism πGM. For simplicity, we only define πGM over the open subset U ⊂
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(Spd Q̆p)
n where φm(xi) 6= xj for m 6= 0. (We permit xi = xj , though.) If

we didn’t work over U , we would have to change the target of πGM slightly.
The Beilinson-Drinfeld Grassmannian makes sense as a functor lying

over (Spd Zp)
n, and so we define it in this generality.

Definition 20.4.1. GrBD
(SpdZp)n,{µi}

→ (Spd Zp)
n is the functor sending a

perfectoid Huber pair (R,R+) together with nmorphisms xi : Spd(R,R+)→
Spd Zp to the set of isomorphism classes of pairs (G, ι), where G is a vector
bundle over Y[0,∞) = Y[0,∞)(R,R

+) and

ι : OrY[0,∞)
|Y[0,∞)\

⋃
i Γxi
∼= G|Y[0,∞)\

⋃
i Γxi

is a trivialization of G away from the graphs of the xi.

Remark 20.4.2. The same convention about collisions of paws from last
time is in effect.

Now we define the morphism πGM : Sht(GLr,b,{µi}) → GrBD
(SpdQp)n,{µi}

.

Suppose we are given a section of Sht(GLr,b,{µi}) over (R,R+). This cor-
responds to a triple (E , φE , ι) over (R,R+), where (E , φE) is a shtuka on
Y(R,R+)[0,∞) and ι : (E , φE) ∼= (Eb, φEb) is an isomorphism over Y(R,R+)[s,∞)

for large enough s. By pulling this isomorphism back through φ, we can ex-
tend ι to an isomorphism over Y(R,R+)[0,∞)\

⋃
i,m≥0 Γφ−m(xi).

By our assumption, φ−m(xi) 6= xj for any m > 0. Let F be the vector
bundle over Y[0,∞) obtained by modifiying Eb = OrY[0,∞)

at the xi using E∧xi .
Then F|Y(0,∞)\

⋃
Γxi
∼= OrY(0,∞)\

⋃
Γxi

is a modification bounded by µi.

For s small, F|Y(0,s]
∼= Or|Y(0,s]

, so we can extend F uniquely to G/Y[0,∞)

in such a way that G ∼= Or over Y[0,∞)\
⋃
i Γxi . This G defines a section of

GrBD
(SpdQp)n,{µi}

over (R,R+).

20.5 The admissible locus of GrBD

We explain how Thm. 20.3.1 follows from the fact that GrBD is a diamond
(Thm. 21.3.7). The first step is to identify the image of πGM. Suppose we
are given a section of GrBD = GrBD

(SpdQp)n,{µi}
over (R,R+), corresponding to

a vector bundle G on Y[0,∞) = Y(R,R+)[0,∞) equipped with a trivialization
ι : OrY[0,∞)

→ G away from n paws x1, . . . , xn. For simplicity we assume that

this section lies over the subset U ⊂ (Spd Qp)
n where φm(xi) 6= xj for all

i, j and m ≥ 1.
Now suppose b ∈ B(GLr) is a σ-conjugacy class. We want to give a

condition for when our given section of GrBD
(SpdQp)n,{µi}

lies in the image of
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πGM : Sht(GLr,b,{µi}) → GrBD. For this we attempt to reverse the construc-
tion in the definition of πGM. Start with the φ-module (Eb, φEb) over Y. Let
E ′ be the vector bundle obtained by modifying Eb ∼= OrY[0,∞)

at all translates

φ−m(xi), m ≥ 0, using φ−m(G∧xi). This process produces a pair (E ′, φE ′) over
Y(0,∞), where φE ′ : φ

∗E ′ → E ′ is an isomorphism away from the xi. Also note
that (E ′, φE ′) is isomorphic to (Eb, φEb) near ∞.

Any extension of (E ′, φE ′) to all of Y[0,∞) would constitute a shtuka over

(R,R+) which lifts our given section of GrBD, but it is not at all guaranteed
that such an extension exists. Let

R̃int
R = lim−→H0(Y[0,r],OY)

R̃R = lim−→H0(Y(0,r],OY)

(limits as r → 0); these are the relative versions of the integral and extended
Robba rings, cf. Defns. 12.3.1 and 13.4.3. We have here a φ-module over
R̃R and are interested in the question of extension to R̃int

R .
First we recall the situation over a geometric point. There is a Dieudonné-

Manin classification for φ-modules over the (absolute) extended Robba ring
R̃. Whereas φ-modules over the (absolute) integral Robba ring R̃int are
trivial (Thm. 12.3.4). Thus a φ-module over R̃ extends to R̃int exactly
when its Newton polygon is trivial.

The behavior of Newton polygons attached to φ-modules over the relative
extended Robba ring R̃R is controlled by the following (highly nontrivial)
theorem.

Theorem 20.5.1 ([KL, Thm. 7.4.5]). Let (M,φM ) be a φ-module over
R̃R. The function which assigns to a geometric point x ↪→ Spa(R,R+) the
Newton polygon of (M,φM ) at x is lower semicontinuous.

That is, the locus of Spa(R,R+) where the Newton polygon lies above
a given one is open. On the other hand, the locus where the endpoint of
the Newton polygon is (r, 0) is also open ([KL, Lemma 7.2.2]). We conclude
from this that the locus where the Newton polygon is trivial is open.

Definition 20.5.2. The admissible locus GrBD,adm ⊂ GrBD is the subfunc-
tor defined by the condition that (E ′, φE ′) has trivial Newton polygon at all
geometric points.

The preceding argument shows that GrBD,adm ⊂ GrBD is an open sub-
functor. Granting Thm. 21.3.7, we find that GrBD,adm is a diamond.

We now apply another theorem from [KL], which is a relative version of
Thm. 12.3.4:
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Theorem 20.5.3 ([KL, Thms. 8.5.3 and 8.5.12]). The following categories
are equivalent:

1. φ-modules over R̃R, and

2. Étale Qp-local systems on Spa(R,R+).

The equivalence sends a φ-module M to V = “Mφ=1”. Furthermore, exten-
sions of M to R̃int

R are in equivalence with Zp-lattices L ⊂ V.

Therefore there exists a Qp-local system V of rank r over GrBD,adm cor-
responding to (E ′, φE ′). Given a section of GrBD,adm over (R,R+), the set of
sections of Sht(GLr,b,{µi}) lying over it is the set of Zp-lattices in VSpa(R,R+).

It is now straightforward to check that πGM : Sht(GLr,b,{µi}) → GrBD,adm

is étale. This can be checked pro-étale locally on the target, so we pass
to a covering {Ui} of GrBD,adm for which V|Ui ∼= Qr

p
is trivial. The set of

Zp-lattices in Qr
p

is just the discrete set GLn(Qp)/GLn(Zp). Therefore over

Ui, πGM is isomorphic to the projection Ui × GLn(Qp)/GLn(Zp) → Ui. It
follows from this that Sht(GLr,b,{µi}) is a diamond; this completes the proof
of Thm. 20.3.1.

Remark 20.5.4. From here it is easy to construct moduli spaces of shtukas
with level structure: The space Sht(GLr,b,{µi}) comes equipped with a Zp-
local system L, and one obtains finite étale covers of it by trivializing L
modulo pm. (Or one could trivialize all of L to obtain a profinite étale
cover.)

21 Conclusion of the proof, 25 November

Last time we reduced the proof of Thm. 20.3.1 (moduli of shtukas are
diamonds) to proving Thm. 21.3.7 (GrBD

(SpdQp)n,{µi} is a diamond). Recall

that GrBD
(SpdQp)n,{µi} parametrizes modifications of a trivial vector bundle at

n points which are bounded by {µi}. Today we will show that a similar
space is a diamond, namely the B+

dR-Grassmannian, which parametrizes
modifications of a trivial vector bundle at one point.

21.1 The B+
dR-Grassmannian

We fix an integer r ≥ 1.
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Definition 21.1.1 (The B+
dR-Grassmannian). Let GrB

+
dR → Spd Qp be

the functor taking (R,R+) with untilt R] to the set of B+
dR-lattices M ⊂

BdR(R])r.

For a conjugacy class µ of cocharacters µ : Gm → GLr (which corre-

sponds to an r-tuple of integers k1 ≥ · · · ≥ kr), we let Gr
B+

dR
µ be the set of

M satisfying the condition

inv
(
Mx, B

+
dR(K(x)])r

)
≤maj µ

for all x ∈ Spa(R,R+).
The first order of business is to prove a sort of quasi-separatedness prop-

erty for GrB
+
dR .

Lemma 21.1.2. The diagonal ∆: GrB
+
dR → GrB

+
dR ×SpdQp GrB

+
dR is rela-

tively representable and closed.

Proof. Given X = Spa(R,R+) with untilt R], and two BdR(R])+-lattices
M1,M2 ⊂ BdR(R])r, we want to show that {M1 = M2} is closed and repre-
sentable by an affinoid perfectoid space. It suffices to show this for {M1 ⊂M2}.

Let ξ ∈ B+
dR(R]) generate Fil1. We have the loci

{
M1 ⊂ ξ−iM2

}
for

i ∈ Z. For i� 0, this is all of X. By induction we may assume M1 ⊂ ξ−1M2.
Then

{M1 ⊂M2} =
⋂

m∈M1

{
m 7→ 0 ∈ ξ−1M2/M2

}
So it suffices to show that

{
m 7→ 0 ∈ ξ−1M2/M2

}
is closed and representable

by an affinoid perfectoid space.
The quotient ξ−1M2/M2 is a finite projective R]-module. After passing

to an open cover of Spa(R,R+) we may assume that ξ−1M2/M2
∼= (R])r.

Thus
{
m 7→ 0 ∈ ξ−1M2/M2

}
is the vanishing locus of an r-tuple of elements

of R]. Finally we are reduced to showing that the vanishing locus {f = 0} of
a single f ∈ R] is closed and representable. But {f = 0} is the intersection
of the {|f | ≤ |$|n} for n ≥ 1 (with $ ∈ R a uniformizer, and each of these is
rational (simple exercise), hence affinoid perfectoid. Thus the limit {f = 0}
is also affinoid perfectoid. The complement {f 6= 0} is the union of loci
{|$|n ≤ |f | 6= 0}, which are open.

21.2 The Demazure resolution

In the study of the usual Grassmannian variety G/B attached to a reduc-
tive group G, one defines a Schubert cell to be the closure of a B-orbit in
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G/B. Generally, Schubert cells are singular varieties. Desingularizations of
Schubert cells are constructed by Demazure, [Dem74]. We will make use of
an analogue of this construction in the context of the B+

dR-Grassmannian.

Definition 21.2.1. Suppose µ corresponds to (k1 ≥ · · · ≥ kr), with kr ≥ 0.
The Demazure resolution

Demµ

$$

// GrB
+
dR

zz
Spd Qp

sends a characteristic p perfectoid Huber pair (R,R+) with untilt R] to the
functor{

Mk1 ⊂Mk1−1 ⊂ · · · ⊂M0 = B+
dR(R])r

}
7→Mk1 ∈ GrB

+
dR(R,R+)

where for all i = 1, . . . , k1 − 1, ξMi ⊂ Mi+1 ⊂ Mi, and Mi/Mi+1 is a finite
projective R]-module of rank ji, where kji > i ≥ kji+1 (with convention
kr+1 = 0).

The idea behind this definition is to write Mk1 as a series of successive

minuscule modifications. Analyzing Demµ is easier than analyzing GrB
+
dR

directly. It is a succession of Grassmannian bundles.

Lemma 21.2.2. Demµ is a qc diamond. (It is also spatial.)

Proof. By induction it is enough to prove that if X/ Spd Qp is a qc diamond

(so that we get a sheaf O]X on perfectoid spaces over X), and E/O]X is a
locally free of finite rank, then Grass(d, E) → X is a qc diamond. Here
Grass(d, E) → X associates to a morphism Spa(R,R+) → X the set of
projective rank d quotients of E|Spa(R,R+).

Since X is a qc diamond, we can choose a relatively representable X̃♦ →
X, where X̃ is affinoid perfectoid. After replacing X̃ with an open cover
we may assume that E|

X̃
∼= (O]

X̃
)r is trivial. Then Grass(d, E) ×X X̃ ∼=

Grass(d, r)♦×SpdQpX̃. Since Grass(d, r) is a classical qc rigid space, Grass(d, r)♦

is a qc diamond, and thus so is Grass(d, E) ×X X̃. Thus Grass(d, E) ×X X̃
admits a relatively representable pro-étale cover by a qc perfectoid space;
implying that Grass(d, E) does as well.

Now also Demµ ×
Gr

B+
dR

Spa(R,R+) ⊂ Demµ ×SpdQp Spa(R,R+) is a qc

diamond. As the diagonal ∆ of GrB
+
dR is closed and relatively representable,
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this inclusion is closed and relatively representable, so that Demµ ×SpdQp

Spa(R,R+) is a qc diamond.

Lemma 21.2.3. Let D → Spd Qp be a qc diamond admitting a morphism

to GrB
+
dR. Then Demµ×

Gr
B+

dR
D is also a qc diamond.

Proof. This follows formally from the fact that Demµ×SpdQpD is a qc dia-
mond and Lemma 21.1.2.

Lemma 21.2.4. Let (R,R+) be a perfectoid Huber pair in characteristic p
with un-tilt R], and let M ⊂ BdR(R])r be a B+

dR(R])-lattice. The image of

Demµ×
Gr

B+
dR

Spd(R,R+)→ Spd(R,R+)

is the locus
{
x| inv(Mx, (B

+
dR)r) ≤ µ

}
. (Over the locus where one has an

equality, this is an isomorphism.)

Lemma 21.2.5. Let M ⊂ BdR(R])r be a B+
dR(R])-lattice. The function

Spa(R,R+) to Zrdom = {k1 ≥ · · · ≥ kr}
x 7→ inv(Mx, (B

+
dR(K(x)])+))

is lower semicontinuous.

Proof. Fix µ, which corresponds to k1 ≥ · · · ≥ kr. Let Z be the locus of
x ∈ Spa(R,R+) where inv(Mx, (B

+
dR(K(x)])r) ≤ µ. We want Z to be closed.

Rescaling by a power of ξ, we may assume that kr ≥ 0.
By Lemma 21.2.4, Z is the image of Demµ×

Gr
B+

dR
Spd(R,R+)→ Spd(R,R+).

By Lemma 21.2.2, this fibre product is a qc diamond, and so Z is the image
of a morphism Spa(S, S+)→ Spa(R,R+). This is a spectral map of spectral
spaces, which implies that Z is pro-constructible. Also, since the functor
Demµ×

Gr
B+

dR
Spd(R,R+)→ Spd(R,R+) does not depend on the ring of in-

tegral elements, the image Z is closed under specializations. Now we apply
the fact that any specializing pro-constructible subset of a spectral space is
closed, [Sta14, Topology, Lemma 22.5(2)].

21.3 Gr
B+

dR
µ is a diamond

As before, let µ correspond to (k1 ≥ · · · ≥ kr). To prove that Gr
B+

dR
µ is a qc

spatial diamond, we may assume that kr ≥ 0. Let N = k1 + · · · + kr, and
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let Gr
B+

dR
N = Gr

B+
dR

(N,0,...,0). Then Gr
B+

dR
µ ⊂ Gr

B+
dR

N is closed, so we are reduced

to proving the claim for Gr
B+

dR
N .

Note that Gr
B+

dR
N =

{
M ⊂ (B+

dR)r|detB+
dR
M = ξnBdR

}
. It is enough

to show that GrN,Cp := Gr
B+

dR
N ×SpdQp Spd Cp is a qc spacial diamond. We

may now fix ξ = p−[p[]. We need the following restatement of Thm. 16.2.10.

Theorem 21.3.1. Let D be a qc spatial fake diamond. Assume that

1. ∆: D → D ×D is relatively representable.

2. For all x ∈ |D|, there exists a perfectoid space Sx and a qpf map
S♦x → D such that the image of

∣∣S♦x ∣∣→ |D| contains x.

Then D is a qc spatial diamond.

We intend to apply Thm. 21.3.1 to D = Gr
B+

dR
N . Hypothesis (1) is Lemma

21.1.2. Let X/ Spd Cp be the functor

X(R,R+) =
{
B ∈Mr(W (R+))| detB ∈ ξNW (R+)×

}
.

Lemma 21.3.2. X is an affinoid perfectoid space.

Proof. First we observe that the functor (R,R+) 7→ Mr(W (R+)) is repre-
sentable by an infinite-dimensional closed unit ball B∞Cp and is thus per-

fectoid. For an element f ∈ W (R+), the condition that f ≡ 0 (mod ξ) is
closed and relatively representable, as it is equivalent to the condition that
f ] = 0 ∈ R]+ = W (R+)/ξ. The condition that f is invertible is a rational
subset, as it is equivalent to

{∣∣f ∣∣ = 1
}

, where f = f (mod p) ∈ R+. This
suffices.

Let λ : X → Gr
B+

dR
N,Cp

be the map which sends B to B((B+
dR)r).

Lemma 21.3.3. λ is a surjection of sheaves on the faithful site.

Proof. Assume first that (R,R+) = (C,C+) is a geometric point (possibly
of higher rank). Given M ⊂ (B+

dR)r which is finite projective with detM =
ξNB+

dR, let L = M ∩W (C+)r ⊂ (B+
dR)r. Then L is a W (C+)-module such

that L[ξ−1] = W (C+)[ξ−1]r, and L[1/p]∧ξ
∼= M . So L is finite and projective

away from the closed point of SpaW (C+).
By our results on extending vector bundles, we get that L is actually a

finite projective W (C+)-module (as it is the space of global sections of re-
striction to the punctured spectrum). Fixing an isomorphism L ∼= W (C+)r,
get a matrix B ∈Mr(W (C+)) as desired.
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For general (R,R+), we use the faithful cover Spa(S, S+)→ Spa(R,R+),
where

S+ =
∏

x∈Spa(R,R+)

K̂(x)+

and S = S+[1/p]. Then one has a section of λ over this cover.

Corollary 21.3.4. Gr
B+

dR
N is a qc fake diamond.

In order to apply Thm. 21.3.1, we need to show that GrN is spatial. Let
Y = X ×

Gr
B+

dR
N,Cp

X. This is closed and relatively representable in X ×Cp X,

so that Y is affinoid perfectoid. Let L+ GLr / Spd Cp be the functor sending
(R,R+) to GLr(W (R+)); this is also affinoid perfectoid.

Lemma 21.3.5. X ×Cp L
+ GLr

∼→ Y .

Proof. W (R+) ⊂ B+
dR(R]) is injective (check on geometric points). We need

to show that if B1, B2 ∈ X(R,R+) give the same point of GrB
+
dR , then their

ratio B1B
−1
2 , a priori in GLr(BdR(R])), actually lives in GLr(W (R+)). This

can be checked on geometric points (of whatever rank), and there it follows
from the uniqueness of the lattice L constructed above.

Finally we can verify that Gr
B+

dR
N,Cp

is spatial. It is enough to show that

Y → X is open. But Y = X ×Cp L
+ GLr ⊂ X ×Cp B

∞
Cp
→ X is the

composition of open maps, hence it is open. For openness of the second
map, one can show that if f ′ : Y ′ → X ′ is a flat map of rigid spaces, then f ′

is open.

To finish the proof that Gr
B+

dR
N,Cp

is a qc spatial diamond, we need to

check the punctual criterion (2). Let x ∈
∣∣∣∣Gr

b+dR
N,Cp

∣∣∣∣. We want to produce

Sx → Gr
B+

dR
N,Cp

, where Sx is representable and x lies in the image. This can be
deduced from the Demazure resolution coming from the µ which describes
x. We have:

Theorem 21.3.6. Gr
B+

dR
µ is a qc spatial diamond.

With the same proof, one shows that:

Theorem 21.3.7. GrBD
(SpdZp)n\{s},{µi}

is a qc spatial diamond.
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riels en théorie de Hodge p-adique, preprint, 2011.

[Fon82] Jean-Marc Fontaine, Sur certains types de représentations p-adiques
du groupe de Galois d’un corps local; construction d’un anneau de
Barsotti-Tate, Ann. of Math. (2) 115 (1982), no. 3, 529–577. MR
657238 (84d:14010)

[Fon94] , Le corps des périodes p-adiques, Astérisque (1994), no. 223,
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