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Abstract

Rapoport-Zink spaces are deformation spaces for p-divisible groups with additional structure. At
infinite level, they become preperfectoid spaces. Let .#, be an infinite-level Rapoport-Zink space of
EL type, and let .#y, be one connected component of its geometric fiber. We show that .#3, contains a
dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of p-divisible
groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically
smooth locus in the infinite-level modular curve X (p™)° is exactly the locus of elliptic curves E with
supersingular reduction, such that the formal group of F has no extra endomorphisms.

1 Main theorem

Let p be a prime number. Rapoport-Zink spaces [RZ96] are deformation spaces of p-divisible groups equipped
with some extra structure. This article concerns the geometry of Rapoport-Zink spaces of EL type (endomor-
phisms + level structure). In particular we consider the infinite-level spaces .#p o, which are preperfectoid
spaces [SW13|. An example is the space .#4 o, where H/F, is a p-divisible group of height n. The points
of My over a nonarchimedean field K containing W (F,) are in correspondence with isogeny classes of
p-divisible groups G/O equipped with a quasi-isogeny G ®o, Ok /p — H ®F, Ok /p and an isomorphism
Q, = VG (where VG is the rational Tate module).

The infinite-level space .#p o, appears as the limit of finite-level spaces, each of which is a smooth rigid-
analytic space. We would like to investigate the question of smoothness for the space .#p o itself, which
is quite a different matter. We need the notion of cohomological smoothness [Sch17|, which makes sense
for general morphisms of analytic adic spaces, and which is reviewed in Section [d] Roughly speaking, an
adic space is cohomologically smooth over C' (where C/Q, is complete and algebraically closed) if it satisfies
local Verdier duality. In particular, if U is a quasi-compact adic space which is cohomologically smooth over
Spa(C, O¢), then the cohomology group H*(U, Fy) is finite for all i and all primes £ # p.

Our main theorem shows that each connected component of the geometric fiber of .#p o, has a dense
open subset which is cohomologically smooth.

Theorem 1.0.1. Let D be a basic EL datum (cf. Section @) Let C be a complete algebraically closed
extension of the field of scalars of Mp,w, and let Mp ., be a connected component of the base change
Mp.w,c. Let j/g,’ggn—sp c Mp., be the non-special locus (cf. Section , corresponding to p-divisible
groups without extra endomorphisms. Then ///f)’f;gn'w s cohomologically smooth over C'.

We remark that outside of trivial cases, mo(.#p o c) has no isolated points, which implies that no open
subset of .#p o ¢ can be cohomologically smooth. (Indeed, the H? of any quasi-compact open fails to be
finitely generated.) Therefore it really is necessary to work with individual connected components of the
geometric fiber of #p .



Theorem [1.0.1] is an application of the perfectoid version of the Jacobian criterion for smoothness, due
to Fargues—Scholze |FS]; cf. Theorem The latter theorem involves the Fargues-Fontaine curve X¢
(reviewed in Section. It asserts that a functor .# on perfectoid spaces over Spa(C, O¢) is cohomologically
smooth, when .# can be interpreted as global sections of a smooth morphism Z — X, subject to a certain
condition on the tangent bundle Tanz, x,..

In our application to Rapoport-Zink spaces, we construct a smooth morphism Z — X, whose moduli
space of global sections is isomorphic to .Z3 (Lemma . Next, we show that a geometric point
r € Mp . (C) lies in Ap""*P(C) if and only if the corresponding section s: X — Z satisfies the condition
that all slopes of the vector bundle s* Tany,x, on X¢ are positive (Theorem . This is exactly the
condition on Tany,x . required by Theorem so we can conclude that ///B,oo is cohomologically smooth.

The geometry of Rapoport-Zink spaces is related to the geometry of Shimura varieties. As an example,
consider the tower of classical modular curves X (p®), considered as rigid spaces over C. There is a perfectoid
space X (p®) over C for which X (p®) ~ lim X(p"), and a Hodge-Tate period map mpr: X(p™) — Pl
[Sch15|, which is GL2(Qp)-equivariant. Let X (p®)° < X (p*) be a connected component.

Corollary 1.0.2. The following are equivalent for a C-point x of X (p®)°.

1. The point x corresponds to an elliptic curve E, such that the p-divisible group E[p™] has End E[p®] =
Z,.

2. The stabilizer of mar(z) in PGL2(Qp) is trivial.

3. There is a neighborhood of x in X (p™)° which is cohomologically smooth over C.

2 Review of Rapoport-Zink spaces at infinite level

2.1 The infinite-level Rapoport-Zink space .# .,

Let k£ be a perfect field of characteristic p, and let H be a p-divisible group of heignt n and dimension d over
k. We review here the definition of the infinite-level Rapoport-Zink space associated with H.

First there is the formal scheme .#p over Spf W (k) parametrizing deformations of H up to isogeny, as
in [RZ96|. For a W(k)-algebra R in which p is nilpotent, .Z (R) is the set of isomorphism classes of pairs
(G, p), where G/R is a p-divisible group and p: H ® R/p — G ®gr R/p is a quasi-isogeny.

The formal scheme .#Z locally admits a finitely generated ideal of definition. Therefore it makes sense to
pass to its adic space .Z3!, which has generic fiber (.#3),, a rigid-analytic space over Spa(W (k)[1/p], W (k)).
Then (A j‘_}d)n has the following moduli interpretation: it is the sheafification of the functor assigning to a
complete affinoid (W (k)[1/p], W (k))-algebra (R, RT) the set of pairs (G, p), where G is a p-divisible group
defined over an open and bounded subring Ry < R, and p: H ®; Ro/p — G ®g, Ro/p is a quasi-isogeny.
There is an action of Aut H on .#3! obtained by composition with p.

Given such a pair (G, p), Grothendieck-Messing theory produces a surjection M (H)®y ) R — Lie G[1/p]
of locally free R-modules, where M (H) is the covariant Dieudonné module. There is a Grothendieck-Messing
period map wanr: (A ;_}d)n — F{, where F/ is the rigid-analytic space parametrizing rank d locally free
quotients of M (H)[1/p]. The morphism 7y is equivariant for the action of Aut H. It has open image F¢°
(the admissible locus).

We obtain a tower of rigid-analytic spaces over (., I‘i}d)n by adding level structures. For a complete affinoid
(W (k)[1/p], W (k))-algebra (R, R*), and an element of (.#3),(R, R*) represented locally on Spa(R, R")
by a pair (G, p) as above, we have the Tate module TG = lim G[p™], considered as an adic space over
Spa(R, RT) with the structure of a Z,-module [SW13, (3.3)]. Finite-level spaces .#4 ,, are obtained by



trivializing the G[p™]; these are finite étale covers of (.#Z&d),. The infinite-level space is obtained by
trivializing all of TG at once, as in the following definition.

Definition 2.1.1 ( [SW13| Definition 6.3.3]). Let .# o be the functor which sends a complete affinoid
(W (k)[1/p], W (k))-algebra (R, R*) to the set of triples (G, p, @), where (G, p) is an element of (.#p )2 (R, RT),
and a: Zy — TG is a Zj-linear map which is an isomorphism pointwise on Spa(R, R").

There is an equivalent definition in terms of isogeny classes of triples (G, p, ), where this time a: Q) —
VG is a trivialization of the rational Tate module. Using this definition, it becomes clear that .#y o, admits
an action of the product GL,(Q,) x Aut” H, where Aut’ means automorphisms in the isogeny category.
Then the period map mgay: A w0 — FL is equivariant for GL,, (Q)) x Aut® H, where GL,(Q,) acts trivially
on FY.

We remark that g o ~ lim My ,m in the sense of [SW13|, Definition 2.4.1].

One of the main theorems of [SW13]| is the following.

Theorem 2.1.2. The adic space M« 15 a preperfectoid space.

This means that for any perfectoid field K containing W (k), the base change .#x o X spa(w (k)[1/p],W (k)
Spa(K, Ok ) becomes perfectoid after p-adically completing.

We sketch here the proof of Theorem Consider the “universal cover” H = lir_an as a sheaf
of Q,-vector spaces on the category of k-algebras. This has a canonical lift to the category of W(k)-
algebras [SW13, Proposition 3.1.3(ii)], which we continue to call H. The adic generic fiber ﬁf;d is a preper-
fectoid space, as can be checked “by hand”: it is a product of the d-dimensional preperfectoid open ball
(Spa W(k;)[[Tll/pm, .. ,TC}/’)W]]L7 by the constant adic space VH®, where H® is the étale part of H. Given
a triple (G, p,«) representing an element of .#y (R, R"), the quasi-isogeny p induces an isomorphism
Hj;d X Spa(W (k)[1/p],W (k)) SPa(R, RT) — égd; composing this with a gives a morphism Qp — Hf;d(R, RT).
We have therefore described a morphism ., — (H3)™.

Theorem follows from the fact that the morphism #g o — (ﬁ' ad);‘ presents .# o as an open
subset of a Zariski closed subset of (H ad):;. We conclude this subsection by spelling out how this is done.
We have a quasi-logarithm map qlog; : fff]*d — M(H)[1/p]®w (r)[1/p) Ga [SW13, Definition 3.2.3, a Q,-linear
morphism of adic spaces over Spa(W (k)[1/p], W (k)).

Now suppose (G, p) is a deformation of H to (R, R'). The logarithm map on G fits into an exact sequence
of Z,-modules:

0 — G2[p”](R,R") - G2Y(R,R") — Lie G[1/p].

After taking projective limits along multiplication-by-p, this turns into an exact sequence of Q,-vector spaces,
0— VG(R,R") - G2 (R,R") — Lie G[1/p].

On the other hand, we have a commutative diagram

H,(R,R*) —— G,(R,R")

qlong llogc

The lower horizontal map M (H)®yy ) R — Lie G[1/p] is the quotient by the R-submodule of M (H)®yy ) R
generated by the image of VG(R,RT) — é?ld(R, Rt) ~ ﬁsd(R, R*) — M(H) @w @) R.

Now suppose we have a point of .#x (R, R") represented by a triple (G, p, ). Then we have a Q,-
linear map Q — ﬁgd (R,R*) - M(H) ®w k) R. The cokernel of its R-extension R" — M(H) Qw ) R is



a projective R-module of rank d, namely Lie G[1/p]. This condition on the cokernel allows us to formulate
an alternate description of .#p o, which is independent of deformations.

Proposition 2.1.3. The adic space M.« is isomorphic to the functor which assigns to a complete affinoid
(W (K)[1/p], W (k))-algebra (R, RY) the set of n-tuples (s1,...,8n) € Hf]*d(R, R*)™ such that the following

conditions are satisfied:
1. The quotient of M(H) ®w ) R by the R-span of the qlog(s;) is a projective R-module W of rank d.

2. For all geometric points Spa(C, Oc) — Spa(R, R"), the sequence

0 — QZ (81,:;871) ]fj—sd(c’ OC) N W@R C -0

15 exact.

2.2 Infinite-level Rapoport-Zink spaces of EL type

This article treats the more general class of Rapoport-Zink spaces of EL type. We review these here.

Definition 2.2.1. Let k be an algebraically closed field of characteristic p. A rational EL datum is a
quadruple D = (B,V, H, 1), where

e B is a semisimple Q,-algebra,
e V is a finite B-module,
e H is an object of the isogeny category of p-divisible groups over k, equipped with an action B — End H,

e 1 is a conjugacy class of Qp—rational cocharacters G, — G, where G/Q, is the algebraic group
GLg(V).

These are subject to the conditions:

e If M(H) is the (rational) Dieudonné module of H, then there exists an isomorphism M (H) =V ®q,
W(k)[1/p] of B®q, W (k)[1/p]-modules. In particular dim V' = ht H.

e In the weight decomposition of V ®q, Qp ~ @,z Vi determined by p, only weights 0 and 1 appear,
and dim V; = dim H.

The reflex field E of D is the field of definition of the conjugacy class p. We remark that the weight
filtration (but not necessarily the weight decomposition) of V' ®q, Qp may be descended to E, and so we
will be viewing Vp and V) as B ®q, £-modules.

The infinite-level Rapoport-Zink space .#p o is defined in [SW13| in terms of moduli of deformations
of the p-divisible group H along with its B-action. It admits an alternate description along the lines of
Proposition 2.1.3]

Proposition 2.2.2 ( [SW13, Theorem 6.5.4]). Let D = (B,V,H, ) be a rational EL datum. Let E =
E-W (k). Then 4Mp y is isomorphic to the functor which inputs a complete affinoid (E, Oy )-algebra (R,R™)
and outputs the set of B-linear maps

s:V — HX(R,RY),

subject to the following conditions.



o Let W be the quotient
lo, os
V®q, R ™5 M(H) ®wxy R— W — 0.

Then W is a finite projective R-module, which locally on R is isomorphic to Vo ®g R as a B ®q, -
module.

e For any geometric point © = Spa(C,O¢) — Spa(R, RT), the sequence of B-modules
0>V - HO:) > WQrC —0

s exact.

If D =(Qp,Qp, H, ), where H has height n and dimension d and pu(t) = (t®4,19(=D) then E = Q,
and Mp o = M 0.

In general, we call F the field of scalars of AMp,, and for a complete algebraically closed extension C of
E, we write Mp o,c =MD, X Spa(B,0,5) Spa(C, O¢) for the corresponding geometric fiber of Ap .

The space #p,o admits an action by the product group G(Q,) x J(Qp), where J/Q, is the algebraic
group Auth(H). A pair (o, ') € G(Q,) x J(Q,) sends s to o/ o soa™t.

There is once again a Grothendieck-Messing period map mgnr: #p,c — F{,, onto the rigid-analytic
variety whose (R, R")-points parametrize B®q, R-module quotients of M (H) ®yy () R which are projective
over R, and which are of type p in the sense that they are (locally on R) isomorphic to Vo ® g R. The
morphism 7gy sends an (R, R™)-point of .#p o« to the quotient W of M(H) ®w ) R as above. It is
equivariant for the action of G(Q,) x J(Qp), where G(Q,) acts trivially on F¢,. In terms of deformations
of the p-divisible group H, the period map mgas sends a deformation G to Lie G.

There is also a Hodge-Tate period map 7pr: #po — FL,, where F(, (R, R*) parametrizes B ®q, R-
module quotients of V' ®q, R which are projective over R, and which are (locally on R) isomorphic to
Vi ®g R. The morphism 77 sends an (R, RT)-point of .#p o to the image of V ®q, R — M (H) Qw ) R.
It is equivariant for the action of G(Q,) x J(Q,), where this time J(Qp) acts trivially on F¢) (R, R"). In
terms of deformations of the p-divisible group H, the period map wg7 sends a deformation G to (Lie GY)".

3 The Fargues-Fontaine curve

3.1 Review of the curve

We briefly review here some constructions and results from [FF|. First we review the absolute curve, and
then we cover the version of the curve which works in families.

Fix a perfectoid field F' of characteristic p, with F'° < F its ring of integral elements. Let @ € F*° be
a pseudo-uniformizer for F', and let k be the residue field of F. Let W(F°) be the ring of Witt vectors,
which we equip with the (p, [@])-adic topology. Let Y = Spa(W (F°), W(F°))\ {|p[w]| = 0}. Then Vp
is an analytic adic space over Q,. The Frobenius automorphism of F' induces an automorphism ¢ of
YVr. Let Bp = H°(Vr,Oy,), a Qp-algebra endowed with an action of ¢. Let Pp be the graded ring
Pr = ®@,>0 B?i:pn. Finally, the Fargues-Fontaine curve is Xz = Proj Pr. It is shown in [FF| that Xp is
the union of spectra of Dedekind rings, which justifies the use of the word “curve” to describe Xpr. Note
however that there is no “structure morphism” Xz — Spec F'.

If x € X is a closed point, then the residue field of x is a perfectoid field F;, containing Q, which comes
equipped with an inclusion i: F < F?, which presents F? as a finite extension of F. Such a pair (F,q) is
called an untilt of F. Then x — (F},1) is a bijection between closed points of X and isomorphism classes
of untilts of F', modulo the action of Frobenius on i. Thus if F = E” is the tilt of a given perfectoid field
E/Q,, then Xy has a canonical closed point oo, corresponding to the untilt E of E’.



An important result in |[FF| is the classification of vector bundles on Xr. (By a vector bundle on Xp
we are referring to a locally free Ox,-module £ of finite rank. We will use the notation V(£) to mean
the corresponding geometric vector bundle over X g, whose sections correspond to sections of £.) Recall
that an isocrystal over k is a finite-dimensional vector space N over W (k)[1/p] together with a Frobenius
semi-linear automorphism ¢ of N. Given N, we have the graded Prp-module @n;O(N ®w (k)[1/p] BF)‘z’zpn7
which corresponds to a vector bundle £r(N) on Xp. Then the Harder-Narasimhan slopes of Er(N) are
negative to those of N. If F is algebraically closed, then every vector bundle on X is isomorphic to Eg (V)
for some N.

It is straightforward to “relativize” the above constructions. If S = Spa(R, R*) is an affinoid perfectoid
space over k, one can construct the adic space )g, the ring Bg, the scheme Xg, and the vector bundles
Es(N) as above. Frobenius-equivalences classes of untilts of S correspond to effective Cartier divisors of Xg
of degree 1.

In our applications, we will start with an affinoid perfectoid space S over Q,. We will write Xg = Xg»,
and we will use o to refer to the canonical Cartier divisor of Xg corresponding to the untilt S of S”. Thus
if N is an isocrystal over k, and S = Spa(R, R") is an affinoid perfectoid space over W (k)[1/p], then the
fiber of £5(N) over 0 is N @y (k)[1/p] R-

Let S = Spa(R, R™) be as above and let oo be the corresponding Cartier divisor. We denote the comple-
tion of the ring of functions on Vg along o by B;R(R). It comes equipped with a surjective homomorphism
6: Bi;(R) — R, whose kernel is a principal ideal ker(6) = (£).

3.2 Relation to p-divisible groups

Here we recall the relationships between p-divisible groups and global sections of vector bundles on the
Fargues-Fontaine curve. Let us fix a perfect field k of characteristic p, and write Perfyy ;)1 for the
category of perfectoid spaces over W (k)[1/p]. Given a p-divisible group H over k with covariant isocrystal
N, if H has slopes s1,...,s; € Q, then N has the slopes 1 —s1,...,1 — s;. For an object S in Perfyy (x)[1/p]
we define the vector bundle Eg(H) on Xg by

gS(H) = 5S(N) ®(9xs OXs(l)'

Under this normalization, the Harder-Narasimhan slopes of Eg(H) are (pointwise on S) the same as the
slopes of H.
Let us write HY(E(H)) for the sheafification of the functor on Perfyy (4)[1/,], which sends S to H(Xg, Es(H)).

Proposition 3.2.1. Let H be a p-divisible group over a perfect field k of characteristic p, with isocrystal N .
There is an isomorphism Hf,‘d >~ HY%(&(H)) of sheaves on Perfyy 1)[1/p) making the diagram commute:

Hye HO(&(H))

N ®w )11/p] Gas

where the morphism H°(E(H)) — N ®w (k)[1/p] Ga sends a global section of E(H) to its fiber at oo.

Proof. Let S = Spa(R, R") be an affinoid perfectoid space over W (k)[1/p]. Then ﬂgd(R, R*) =~ H(R°) =
H(R°/p). Observe that H(R°/p) = Hompe/,(Qp/Zy, H)[1/p], where the Hom is taken in the category of
p-divisible groups over R°/p. Recall the crystalline Dieudonné functor G — M(G) from p-divisible groups
to Dieudonné crystals [Mes72]. Since the base ring R°/p is semiperfect, the latter category is equivalent to



the category of finite projective modules over Fontaine’s period ring Aeis(R°/p) = Awis(R°), equipped with
Frobenius and Verschiebung.

Now we apply |[SW13, Theorem A]: since R°/p is f-semiperfect, the crystalline Dieudonné functor is fully
faithful up to isogeny. Thus

Hom ge ) (Qp/Zy, H)[1/p] = Homa, ;. (re),6 (M (Qp/Zp), M(H))[1/p],

where the latter Hom is in the category of modules over A.is(R°) equipped with Frobenius. Recall that
BX(R°) = Acis(R°)[1/p]. Since H arises via base change from k, we have M (H)[1/p] = B (R°)®w (k)[1/p]
N. For its part, M(Q,/Z,)[1/p] = B}

s (R°)e, for a basis element e on which Frobenius acts as p. Therefore

H(R®) = (B (R°) @w(ioyiym NP

On the Fargues-Fontaine curve side, we have by definition H(Xg,Es(H)) = (Bs ®w (k)[1/p] N)?~P. The
isomorphism between (Bgs®w ()(1/p) N)?~7 and (B (R°) Qw (x)[1/p) V) ?=? is discussed in [LB18, Remarque
6.6].

The commutativity of the diagram in the proposition is [SW13| Proposition 5.1.6(ii)], at least in the case
that S is a geometric point, but this suffices to prove the general case. O

With Proposition [3.2.1] we can reinterpret the infinite-level Rapoport Zink spaces as moduli spaces of
modifications of vector bundles on the Fargues-Fontaine curve. First we do this for .#p . In the following,
we consider .#y o as a sheaf on the category of perfectoid spaces over W (k)[1/p].

Proposition 3.2.2. Let H be a p-divisible group of height n and dimension d over a perfect field k. Let
N be the associated isocrystal over k. Then My« is isomorphic to the functor which inputs an affinoid
perfectoid space S = Spa(R, R™) over W (k)[1/p] and outputs the set of exact sequences

0— Ok, = Es(H) — iopx W — 0, (3.2.1)

where i Spec R — X is the inclusion, and W is a projective Og-module quotient of N Qw (r)[1/p) Os of
rank d.

Proof. We briefly describe this isomorphism on the level of points over S = Spa(R, RT). Suppose that we
are given a point of #y «(S), corresponding to a p-divisible group G over R°, together with a quasi-isogeny
t: H®, R°/p - G ®pgo R°/p and an isomorphism «: Qp — VG of sheaves of Q,-vector spaces on S. The
logarithm map on G fits into an exact sequence of sheaves of Z,-modules on S,

ad ad :
0 — Gi°[p*] — G3° — LieG[1/p] — 0.

After taking projective limits along multiplication-by-p, this turns into an exact sequence of sheaves of
Q,-vector spaces on S,
0> VG — G — LieG[1/p] — 0.

The quasi-isogeny induces an isomorphism ﬁgd X Spa W (k)[1/p] S = G’f;d; composing this with the level
structure gives an injective map Qp — H, ad(§) whose cokernel W is isomorphic to the projective R-module
LieG of rank d. In light of Theorem , the map Q) — Hf;d(S) corresponds to an Ox,-linear map

s: O%, — Es(H), which fits into the exact sequence in (3.2.1)). O

Similarly, we have a description of .#p « in terms of modifications.



Proposition 3.2.3. Let D = (B,V, H, i) be a rational EL datum. Then Mp « is isomorphic to the functor
which inputs an affinoid perfectoid space S over E and outputs the set of exact sequences of B ®q, Ox-

modules
O — V®Qp OXS :> SS(H) - Z@*W g 0,

where W is a finite projective Og-module, which is locally isomorphic to Vo ®q, Os as a B ®q, Os-module
(using notation from Definition .

3.3 The determinant morphism, and connected components

If we are given a rational EL datum D, there is a determinant morphism det: #p o, — Mget D,0v, Which
we review below. For an algebraically closed perfectoid field C' containing W (k)[1/p], the base change
Maet D,oo,c 15 a locally profinite set of copies of SpaC. For a point 7 € Aget o0 (C), let M}, be the fiber of
Mp, o — Maey D, Over T. We will prove in Section [5[ that each ///g’rolgn‘sl) is cohomologically smooth if D is
basic. This implies that mo (.25, ") is discrete, so that cohomogical smoothness of .7 "™ is inherited
by each of its connected components. This is Theorem In certain cases (for example Lubin-Tate space)
it is known that .Zf, , is already connected [Chel4].

We first review the determinant morphism for the space .#x o, where H is a p-divisible group of height
n and dimension d over a perfect field k of characteristic p. Let £ = W (k)[1/p]. For a perfectoid space
S = Spa(R, R*) over E, we have the vector bundle £g(H) and its determinant det Es(H), a line bundle of
degree d. (This does not correspond to a p-divisible group “det H” unless d < 1.) We define e ,50(5) to
be the set of morphisms s: Ox, — det Eg(H), such that the cokernel of s is a projective B (R)/(£)%-module
of rank 1, where () is the kernel of BJ;(R) — R. Then for an algebraically closed perfectoid field C /E, the
set Maet 11,50(C) is a Q, -torsor. The morphism det: A o — AMaet 0,00 1S simply s — det s.

For the general case, let D = (B,V, H, i) be a rational EL datum. Let F' = Z(B) be the center of B.
Then F is a semisimple commutative Qp-algebra; i.e., it is a product of fields. The idea is now to construct
the determinant datum (F,detz V,det H, det pt), noting once again that there may not be a p-divisible group
“det H”. The determinant detr V is a free F-module of rank 1. For a perfectoid space S = Spa(R, R")
over E, we have the F ®q, Oxg-module Eg(H) and its determinant detr Es(H ); the latter is a locally free
F ®q, Oxs-module of rank 1. Let d be the degree of detr Es(H ), considered as a function on Spec F'. We
define .Zyct D, (S) to be the set of F-linear morphisms s: detr V ®q, Ox; — detp E5(H), such that the
cokernel of s is (locally on Spec F) a projective B (R)/(£)%module of rank 1. Then for an algebraically
closed perfectoid field C/E, the set e p.oo(C) is an F*-torsor. (We remark here that det y means the
composition of y with the morphism from G = Autp (V) to G* = Autp(detp V) = Resp/q, Gm. If det pisa
minuscule cocharacter, then det D is an honest rational EL datum.) The morphism .#p o, — Mget D0 Sends
a B®q, Oxg-linear map s: V ®q, Ox; — Es(H) to the F ®q, Ox4-linear map det s: detrp V ®q, Oxs —
detr Es(H).

3.4 Basic Rapoport-Zink spaces

The main theorem of this article concerns basic Rapoport-Zink spaces, so we recall some facts about these
here.

Let H be a p-divisible group over a perfect field k of characteristic p. The space My o is said to be
basic when the p-divisible group H (or rather, its Dieudonné module M (H)) is isoclinic. This is equivalent
to saying that the natural map

End® H ®q, W (k)[1/p] — Endyy [1/p) M (H)[1/p]



is an isomorphism, where on the right the endomorphisms are not required to commute with Frobenius.
More generally we have a notion of basicness for a rational EL datum (B, H,V,u), referring to the
following equivalent conditions:

e The G-isocrystal (G = Autp V) associated to H is basic in the sense of Kottwitz [Kot85|.

e The natural map
Endg (H) ®q, W (k)[1/p] = Endpgq, wk)1/p M (H)[1/p]

is an isomorphism.

e Considered as an algebraic group over Q,, the automorphism group J = Auty H is an inner form of
G.

e Let D' = End} H. For any algebraically closed perfectoid field C' containing W (k), the map
D’ ®q, Ox, — é"ﬂa/(B(@onxc) Ec(H)

is an isomorphism.

In brief, the duality theorem from |[SW13| says the following. Given a basic EL datum D, there is a dual
datum D, for which the roles of the groups G and J are reversed. There is a G(Qp) x J(Qp)-equivariant
isomorphism #p o = .#p ,, which exchanges the roles of mga and Ty

3.5 The special locus

Let D = (B,V, H, i) be a basic rational EL datum relative to a perfect field k of characteristic p, with reflex
field E. Let F be the center of B. Define F-algebras D and D’ by

D
D/

EndB 14
Endg H

Finally, let G = Autp V and J = Autp H, considered as algebraic groups over Q,. Then G and J both
contain Resp/q, G-

Let C be an algebraically closed perfectoid field containing E, and let z € AMp (C). Then z corresponds
to a p-divisible group G over O¢ with endomorphisms by B, and also it corresponds to a B ®q, Ox-linear
map s: V ®q, Ox — Ec(N) as in Proposition Define A, = Endp G (endomorphisms in the isogeny
category). Then A, is a semisimple F-algebra. In light of Proposition an element of A, is a pair
(a,@), where o € Endpgqg 0y, V ® Ox, = EndpV = D and o' € Endpgq 0y, éc(H) = D’ (the last
equality is due to basicness), such that soa = o’ o s. Thus:

Ay = {(a,o/) eDxD

SOO(ZO(IOS}.

Lemma 3.5.1. The following are equivalent:
1. The F-algebra A, strictly contains F.
2. The stabilizer of mgu(x) € FL,(C) in J(Q,) strictly contains F*.

3. The stabilizer of mur(z) € FC,(C) in G(Qp) strictly contains F'*.



Proof. As in Proposition let s: V ®q, Oxs > £5(H) be the modification corresponding to .

Note that the condition (1) is equivalent to the existence of an invertible element (o,a’) € A, not
contained in (the diagonally embedded) F. Also note that if one of «, @’ lies in F', then so does the other,
in which case they are equal.

Suppose (a, ') € A, is invertible. The point mga(2) € FE,, corresponds to the cokernel of the fiber of s
at 0o. Since o 0 s = s o o, the cokernels of o’ o s and s are the same, which means exactly that o/ € J(Q,)
stabilizes mgar(z). Thus (1) implies (2). Conversely, if there exists o’ € J(Q,)\EF'™ which stabilizes mgas (),
it means that the B ®q, Ox.-linear maps s and o’ o s have the same cokernel, and therefore there exists
o € Endpgq, 0y, V ®q, Oxc = D such that soa = o’ os, and then (a,a’) € A;\F*. This shows that (2)
implies (1).

The equivalence between (1) and (3) is proved similarly. O

Definition 3.5.2. The special locus in .#p « is the subset ,///%I?OO defined by the condition A, # F. The
non-special locus .47 " is the complement of the special locus.

The special locus is built out of “smaller” Rapoport-Zink spaces, in the following sense. Let A be
a semisimple F-algebra, equipped with two F-embeddings A — D and A — D', so that A ®r B acts
on V and H. Also assume that a cocharacter in the conjugacy class p factors through a cocharacter
to: G — Autag,.p V. Let Dy = (A®p B,V, H, j19). Then there is an evident morphism .#p, o — D, -
The special locus ///%Ijoo is the union of the images of all the .#p, «, as A ranges through all semisimple
F-subalgebras of D x D’ strictly containing F.

4 Cohomological smoothness

Let Perf be the category of perfectoid spaces in characteristic p, with its pro-étale topology |Sch17, Definition
8.1]. For a prime ¢ # p, there is a notion of ¢-cohomological smoothness [Sch17, Definition 23.8]. We only
need the notion for morphisms f: Y’ — Y between sheaves on Perf which are separated and representable
in locally spatial diamonds. If such an f is /~-cohomologically smooth, and A is an ¢-power torsion ring, then
the relative dualizing complex Rf'A is an invertible object in Dg(Y’, A) (thus, it is v-locally isomorphic to
A[n] for some n € Z), and the natural transformation Rf'A ® f* — Rf' of functors Dy (Y, A) — Dgi (Y, A)
is an equivalence [Sch17, Proposition 23.12]. In particular, if f is projection onto a point, and Rf'A = A[n],
one derives a statement of Poincaré duality for Y':

RHom(RT.(Y",A),A) = RT(Y’, A)[n].

We will say that f is cohomologically smooth if it is ¢-cohomologically smooth for all / # p. As an
example, if f: Y' — Y is a separated smooth morphism of rigid-analytic spaces over Q,, then the associated
morphism of diamonds f°: (Y')® — Y is cohomologically smooth [Sch17, Proposition 24.3]. There are other
examples where f does not arise from a finite-type map of adic spaces. For instance, if B = SpaC <T1/ pw> is
the perfectoid closed ball over an algebraically closed perfectoid field C, then B¢ is cohomologically smooth
over C.

If Y is a perfectoid space over an algebraically closed perfectoid field C, it seems quite difficult to detect
whether Y is cohomologically smooth over C. We will review in Section a “Jacobian criterion” from [FS|
which applies to certain kinds of Y. But first we give a classical analogue of this criterion in the context of
schemes.
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4.1 The Jacobian criterion: classical setting

Proposition 4.1.1. Let X be a smooth projective curve over an algebraically closed field k. Let Z — X be
a smooth morphism. Define Mz to be the functor which inputs a k-scheme T and outputs the set of sections
of Z — X over Xr, that is, the set of morphisms s making

/Z
X xpyT—>X

commute, subject to the condition that, fiberwise on T, the vector bundle s* Tany, x has vanishing H'. Then
Mz — Speck is formally smooth.

Here Tany,x is the tangent bundle, equal to the Oz-linear dual of the sheaf of differentials 2/ x,
which is locally free of finite rank. Let m: X x; T' — T be the projection. For ¢t € T, let X; be the
fiber of 7 over ¢, and let s;: X; — Z be the restriction of s to X;. By proper base change, the fiber of
Rlr,s* Tang/x at te T is HY(Xy, s¥ Tany,x ). The condition about the vanishing of H' in the proposition
is equivalent to H'(Xy, sf Tany /x) = 0 for each ¢t € T. By Nakayama’s lemma, this condition is equivalent
to Rlmys* Tany x = 0.

Proof. Suppose we are given a commutative diagram

To —— M7 (4.1.1)

L

T —— Speck,

where Ty — T is a first-order thickening of affine schemes; thus Tj is the vanishing locus of a square-zero
ideal sheaf I < Or. Note that I becomes an Or,-module.
The morphism Ty — .#7 in (4.1.1) corresponds to a section of Z — X over Ty. Thus there is a solid
diagram
X x, Ty 22—~ 7 (4.1.2)

| =7
X x, T —> X,

We claim that there exists a dotted arrow making the diagram commute. Since Z — X is smooth, it is
formally smooth, and therefore this arrow exists Zariski-locally on X. Let m: X x;T — T and mp: X xx Ty —
To be the projections. Then X xj Ty is the vanishing locus of the ideal sheaf 7*I < Oxy,r. Note that
sheaves of sets on X xj T are equivalent to sheaves of sets on X xj, Tp; under this equivalence, 7*I and 7T
correspond. By [Staldl |Remark 36.9.6], the set of such morphisms form a (Zariski) sheaf of sets on X xj T
which when viewed as a sheaf on X x; T} is a torsor for

e%ﬂmoXXkTO (Sé‘QZ/X,ﬂ'gI) ~ Sg TanZ/X ®7T8‘].
This torsor corresponds to class in

HY (X xj, Ty, s§ Tang x @mi1).
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This H' is the limit of a spectral sequence with terms
HP(Ty, Rimo+(sg Tang x @mp1)).

But since Ty is affine and RI7o4(sg Tany /x @il ) is quasi-coherent, the above terms vanish for all p > 0,
and therefore
HY (X x5, Ty, s§ Tang/x @ngI) = H°(Ty, R'mox (s§ Tang, x @mi1)).

Since si Tany,x is locally free, we have s§ Tany x @75l = s§ Tang/x ®VmosI, and we may apply the
projection formula [Stald, Lemma 35.21.1] to obtain

Rmos (s Tang/x ®mg1) = Rmoysy Tanyx QLI.

Now we apply the hypothesis about vanishing of H', which implies that R4 s Tany /x is quasi-isomorphic
to the locally free sheaf o4 s§ Tany,x in degree 0. Therefore the complex displayed above has H L=0.
Thus our torsor is trivial, and so a morphism s: X x; T — Z exists filling in . The final thing to
check is that s corresponds to a morphism T — .#z, i.e., that it satisfies the fiberwise H' = 0 condition.
But this is automatic, since Ty and T" have the same schematic points. O

In the setup of Proposition let s: X Xy #z — Z be the universal section. That is, the pullback
of s along a morphism T — .# is the section X X, T — Z to which this morphism corresponds. Let
w: X Xy My — Mz be the projection. By Proposition Mz — Speck is formally smooth. There is an
isomorphism

mes* Tany x = Tan 4, /speck -

Indeed, the proof of Proposition shows that 7, s* Tany, x has the same universal property with respect
to first order deformations as Tan s,/ spec k-

The following example is of similar spirit as our main application of the perfectoid Jacobian criterion
below.

Example 4.1.2. Let X = P! over the algebraically closed field k. For d € Z, let V = Specy Sym, (O(—d))
be the geometric vector bundle over X whose global sections are I'(X,O(d)). Fix integers n,d,d > 0
and let P be a homogeneous polynomial over k of degree § in n variables. Then P defines a morphism
P: [T, Va — Vas, by sending sections (s;)_; of Vg to the section P(s1,...,s,) of Vgs. Fix a global section
f+ X — Vg5 to the projection morphism and consider the pull-back of P along f:

2e—> P(f) — X

T

[T Va LV ——>X

Moreover, let Z be the smooth locus of P~1(f) over X. It is an open subset. The derivatives STI; of P
are homogeneous polynomials of degree § — 1 in n variables, hence can be regarded as functions [ [, Vy —
Vis—1)- A point y € P7L(f) lies in Z if and only if g—i(y), i = 1,...,n are not all zero. We wish to
apply Proposition to Z/X. Let .4}, denote the space of global sections of Z over X, that is for a
k-scheme T, 4}, (T) is the set of morphisms s: X x; T — Z as in the proposition (without any further
conditions). A k-point g € .4} (k) corresponds to a section g: X — [[_, V4, satisfying Pog = f. In
general, for a (geometric) vector bundle V' on X with corresponding locally free Ox-module &, the pull-
back of the tangent space Tany  x along a section s: X — V' is canonically isomorphic to &. Hence in our
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situation (using that Z = P~'(f) is open) the tangent space g*Tanyz x can be computed from the short
exact sequence,
" - D,P
0 — g*Tang/x — @ O(d) => O(dd) — 0,
i=1

where D, P is the derivative of P at g. It is the Ox-linear map given by (¢;)7; — >.i"; g—i(g)ti (note that
%Z(g) are global sections of O(d(§ — 1))). Note that D,P is surjective: by Nakayama, it suffices to check
this fiberwise, where it is true by the condition defining Z.

The space .#7 is the subfunctor of .#7 consisting of all g such that (fiberwise) g*Tany, x = ker(D,P)
has vanishing H'. Writing ker(D,P) = @._, O(m;) (m; € Z), this is equivalent to m; > —1. By the
Proposition we conclude that .# is formally smooth over k.

Consider now a numerical example. Let n = 3, d = 1 and § = 4 and let g € .#,(k). Then D,P €
Homo, (O(1)®3,0(4)) = I'(X,0(3)®3), a 12-dimensional k-vector space, and moreover, D, P lies in the
open subspace of surjective maps. We have the short exact sequence of Ox-modules

0 = g*Tany,x — O(1)® 225 0(4) - 0 (4.1.3)

This shows that g*Tany,x has rank 2 and degree —1. Moreover, being a subbundle of O(1)®3 it only can
have slopes < 1. There are only two options, either g*Tany,x = O(~1) @ O or g*Tany,x = O(-2) @ O(1).
The point g lies in .# if and only if the first option occurs for g. Which option occurs can be seen from the
long exact cohomology sequence associated to (4.1.3)):

0 — T(X, g*Tanz,x) — T(X,0(1)® "257 1(X, 0(4)) - H(X, g* Tanz,x) — 0,
| A — —
6-dim’l 5-dim’l

It is clear that I'(X, g*Tany,x) is 1-dimesional if and only if g*Tany,/x = O(—1) ® O and 2-dimensional
otherwise. The first option is generic, i.e., .#z is an open subscheme of .Z/,.

4.2 The Jacobian criterion: perfectoid setting
We present here the perfectoid version of Proposition [I.1.1]

Theorem 4.2.1 (Fargues-Scholze |FS|). Let S = Spa(R, R™) be an affinoid perfectoid space in characteristic
p. Let Z — Xg be a smooth morphism of schemes. Let #7° be the functor which inputs a perfectoid space
T — S and outputs the set of sections of Z — Xg over T, that is, the set of morphisms s making

A

XTHXS

commute, subject to the condition that, fiberwise on T, all Harder-Narasimhan slopes of the vector bundle
s* Tany x, are positive. Then M7° — S is a cohomologically smooth morphism of locally spatial diamonds.

Example 4.2.2. Let S = n = Spa(C, O¢), where C is an algebraically closed perfectoid field of characteristic
0, and let Z = V(Es(H)) — Xs be the geometric vector bundle attached to £s(H), where H is a p-divisible
group over the residue field of C. Then .#; = H°(Es(H)) is isomorphic to ﬁj;d by Proposition @ Let
s: X g4, — Z be the universal morphism; then s* Tany,x is the constant Banach-Colmez space associated
to H (i.e., the pull-back of £s(H) along X 4, — Xs). This has vanishing H! if and only if H has no étale
part. This is true if and only if .#7° is isomorphic to a perfectoid open ball. The perfectoid open ball is
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cohomologically smooth, in accord with Theorem In contrast, if the étale quotient H®* has height
d > 0, then mg (H;d) ~ Qg implies that H;;d is not cohomologically smooth.

In the setup of Theorem suppose that x = Spa(C,0O¢) — S is a geometric point, and that
x — #7° is an S-morphism, corresponding to a section s: X — Z. Then s* Tany /x 18 a vector bundle on
Xc. In light of the discussion in the previous section, we are tempted to interpret H°(X¢, s* Tang/x,) as
the “tangent space of .#;° — S at 2”. At points = where s* Tang, x, has only positive Harder-Narasimhan
slopes, this tangent space is a perfectoid open ball.

5 Proof of the main theorem

5.1 Dilatations and modifications

As preparation for the proof of Theorem [I.0.1} we review the notion of a dilatation of a scheme at a locally
closed subscheme [BLR90, §3.2].

Throughout this subsection, we fix some data. Let X be a curve, meaning that X is a scheme which is
locally the spectrum of a Dedekind ring. Let oo € X be a closed point with residue field C. Let i, : Spec C' —
X be the embedding, and let £ € Ox « be a local uniformizer at co.

Proposition 5.1.1. Let V — X be a morphism of finite type, and let Y < Vi, be a locally closed subscheme
of the fiber of V at 0.

There exists a morphism of X-schemes V' — V which is universal for the following property: V' — X
is flat at 0o, and V}, — Vi, factors through Y < V.

The X-scheme V' is the dilatation of V at Y. We review here its construction.

First suppose that Y < V, is closed. Let .# < Oy be the ideal sheaf which cuts out Y. Let B — V be
the blow-up of V along Y. Then .# - Op is a locally principal ideal sheaf. The dilatation V' of V at Y is
the open subscheme of B obtained by imposing the condition that the ideal (.# - Op), € Op , is generated
by £ at all x € B lying over 0.

We give here an explicit local description of the dilatation V’. Let Spec A be an affine neighborhood of
o0, such that £ € A, and let Spec R < V be an open subset lying over Spec A. Let I = (f1,..., fn) be the
restriction of .# to Spec R, so that I cuts out Y n Spec A. Then the restriction of V/ — V to Spec R is
Spec R’, where
hoh
£ E
Now suppose Y < V, is only locally closed, so that Y is open in its closure Y. Then the dilatation of V/

at Y is the dilatation of V\(Y\Y) at Y.
Note that a dilatation V/ — V is an isomorphism away from oo, and that it is affine.

R' =R [ ] /(&-torsion).

Example 5.1.2. Let

be an exact sequence of O x-modules, where £ (and thus £’) is locally free, and W is a C-vector space. (This
is an elementary modification of the vector bundle £.) Let K = ker(E,, — W).

Let V(£) — X be the geometric vector bundle corresponding to £. Similarly, we have V(') — X, and
an X-morphism V(&) — V(&). Let V(K) < V(€)y be the affine space associated to K < £,,. We claim
that V(&) is isomorphic to the dilatation V(£) of V(€) at V(K). Indeed, by the universal property of
dilatations, there is a morphism V(€’) — V(£)’, which is an isomorphism away from oo.
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To see that V(&) — V(€)' is an isomorphism, it suffices to work over Ox 4. Over this base, we may give
a basis f1,..., fn of global sections of £, with fi,..., fx lifting a basis for K < £,. Then the localization of
V(€)Y — V(&) at o is isomorphic to

S Tk
o

This agrees with the localization of V(£') — V(&) at co.

Spec Ox . [ Fertse s fu| = SpecOx ool fis e fol

Lemma 5.1.3. Let V — X be a smooth morphism, let Y < V, be a smooth locally closed subscheme, and
let m: V! —V be the dilatation of V at Y. Then V' — X is smooth, and Tany x lies in an evact sequence
of Oy :-modules

0—>TanV//X —>7T*’]:‘8,IIV/X—>’]T*j,,<]\fy/vOC —>0, (511)

where Ny v, is the normal bundle of Y < Vo, and j: Y — V is the inclusion.

Finally, let T — X be a morphism which is flat at 00, and let s: T — V be a morphism of X -schemes,
such that so, factors through Y. By the universal property of dilatations, s factors through a morphism
s': T — V'. Then we have an exact sequence of Oy -modules

0 — (s')* Tany, x — s* Tany x — i1, 55 Ny v, — 0. (5.1.2)

Proof. One reduces to the case that Y is closed in Vi,. The smoothness of V! — X is [BLR90, §3.2,
Proposition 3]. We turn to the exact sequence (5.1.1). The morphism Tany. x — 7* Tany,x comes from
functoriality of the tangent bundle. To construct the morphism 7* Tany,x — 7*j« Ny v, , we consider the
diagram

!
ﬂ:ﬁ
(AN e

SN

iy Vo J
;
% —V

in which the outer rectangle is cartesian. For its part, the normal bundle Ny, sits in an exact sequence of
Oy -modules
0— Tany/c - ZT/ Tanvw/c i NY/Vw — 0.

The composite

iézﬂ'* TanV/X = W;Z%‘/ TanV/X

lle

*
Ty Lany, /o

= (m)*iy Tany ¢
- (7720 ) *N Y/ Vo
induces by adjunction a morphism

7 Tany /x — ivis(7)* Ny v, = 7%« Ny v, ,

where the last step is justified because j is a closed immersion.
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We check that is exact using our explicit description of V’. The sequence is clearly exact away
from the preimage of Y in V', since on the complement of this locus, the morphism 7 is an isomorphism,
and 7*j, = 0. Therefore we let y € Y and check exactness after localization at y. Let Z < Oy be the
ideal sheaf which cuts out Y, and let I < Oy, be the localization of Z at y. Then Oy, , = Oy, /€. Since
Y <V, are both smooth at y, we can find a system of local coordinates f,..., f, € Ov,,y (meaning that
the differentials df; form a basis for Q%/w/C,y)’ such that fy.q,...,f, generate I/. If 0/df, are the dual
basis, then the stalk of Ny, at y is the free Oy,,-module with basis 0/0f)1,...,0/0f,.

Choose lifts f; € Oy, of the f;. Then I is generated by &, fx, ..., fn. The localization of V' — V over y
is Spec Oy, where Oy y = Oy ylgk+1, - - -, gn)/(§-torsion), where {g; = f; for i = k +1,...,n. Then the
stalk of Tany./x at y is the free Oy ,-module with basis d/0f1,...,0/0fx,0/0gr+1,-..,0/0gn, whereas the
stalk of 7* Tany,x at y is the free Oy ,-module with basis d/0f1,...,0/0f,. The quotient between these
stalks is evidently the free module over Oy, /¢ with basis 0/0 fr41,...,0/0fn, and this agrees with the stalk
of 7™ js« Ny v, .

Given a morphism of X-schemes s: T — V as in the lemma, we apply (s')* to ; this is exact
because s’ is flat. The term on the right is s*j, Ny v, = i, 5% Ny v, (once again, this is valid because j
is a closed immersion). O

5.2 The space .#y, as global sections of a scheme over X

We will prove Theorem for the Rapoport-Zink spaces of the form .#y o before proceeding to the
general case. Let H be a p-divisible group of height n and dimension d over a perfect field k. In this context,
E = W(K)[1/p]. Let & = Ec(H). Throughout, we will be interpreting .#p o, as a functor on Perf 4 as in
Proposition [3.2.2]

We have a determinant morphism det: #p oo — Maet H,00- Let T € Maet 11,50(C) be a geometric point of
Maet H,oo- This point corresponds to a section 7 of V(det &) — X, which we also call 7. Let ///Ig@o be the
fiber of det over 7.

Our first order of business is to express .#}; ,, as the space of global sections of a smooth morphism
Z — X, defined as follows. We have the geometric vector bundle V(") — X, whose global sections
parametrize morphisms s: O%_ — &. Let U,_q be the locally closed subscheme of the fiber of V(£") over
o0, which parametrizes all morphisms of rank n — d. We consider the dilatation V(£7)™k==n=d _ V(£n)
of V(€M) along U,,_,4. For any flat Xo-scheme T, V(£7)"k==n=4(T) is the set of all s: O% — E7 such that
cok(s) ® C is projective Or ® C-module of rank d. Define Z as the Cartesian product:

Z —— V(En)ke=n—d (5.2.1)

T

Xo ——V(det ).
Lemma 5.2.1. Let #y be the functor which inputs a perfectoid space T/C and outputs the set of sections
of Z — Xc¢ over Xr. Then Mz is isomorphic to M .

Proof. Let T = Spa(R, R") be an affinoid perfectoid space over C. The morphism X7 — X is flat. (This
can be checked locally: BJ; (R) is torsion-free over the discrete valuation ring By (C), and so it is flat.) By
the description in (5.2.1)), an X7-point of .47 corresponds to a morphism o: O% — Er(H) which has the
properties:

(1) The cokernel of oy, is a projective R-module quotient of Er(H )y of rank d.

(2) The determinant of o equals 7.
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On the other hand, by Proposition MH,(T) is the set of morphisms o: O%  — Er(H) satisfying
(1') The cokernel of o is ix W, for a projective R-module quotient W of Er(H )y, of rank d.
(2) The determinant of o equals 7.

We claim the two sets of conditions are equivalent for a morphism o: O%  — &r(H). Clearly (1') implies
(1), so that (1') and (2) together imply (1) and (2) together. Conversely, suppose (1) and (2) hold. Since 7
represents a point of .#qet 1,00, it is an isomorphism outside of 00, and therefore so is o. This means that cok o
is supported at co. Thus cok o is a Bl (R)-module. For degree reasons, the length of (cok J)®B§R(R) Bi:(C"
has length d for every geometric point Spa(C’, (C’)*) — T. Whereas condition (1) says that (cok a)@B;R(R)R
is a projective R-module of rank d. This shows that (coko) is already a projective R-module of rank d,
which is condition (1'). O

Lemma 5.2.2. The morphism Z — X is smooth.

Proof. Let oo’ € X be a closed point, with residue field C’. It suffices to show that the stalk of Z at o0’ is
smooth over Spec B, (C”).

If oo’ # 0, then this stalk is isomorphic to the variety (A”Z)
determinant 7. Since 7 is invertible in B, (C’), this variety is smooth.

Now suppose oo’ = o0. Let £ be a generator for the kernel of Bj;(C) — C. Then the stalk of Z at o
is isomorphic to the flat B (C)-scheme Y, whose T-points for a flat Bl (C)-scheme T' are n x n matrices
with coefficients in I'(T', Or), which are rank n — d modulo &, and which have fixed determinant 7 (which
must equal u&? for a unit u € B;R(C’)). Consider the open subset Yy c Y consisting of matrices M where
the first (n — d) columns have rank (n — d). Then the final d columns of M are congruent modulo £ to a
linear combination of the first (n —d) columns. After row reduction operations only depending on those first

(n — d) columns, M becomes
I, 4| P
0 4@ )’

with det@ = w for a unit w € BJjz(C) which only depends on the first (n — d) columns of M. We
therefore have a fibration Yy — A™"~%9 namely projection onto the first (n — d) columns, whose fibers

det=7 consisting of n x n matrices with fixed

are Ad(n—d) x (AdQ)G‘et:“’7 which is smooth. Therefore Yj is smooth. The variety Y is covered by opens
isomorphic to Yy, and so it is smooth. O

We intend to apply Theorem [£:2.1] to the morphism Z — X, and so we need some preparations regarding
the relative tangent space of V(En)ko=n=d _, X

5.3 A linear algebra lemma

Let f: V' — V be a rank r linear map between n-dimensional vector spaces over a field C. Thus there is an
exact sequence

0w v Lviw_o.

with dimW = dim W' =n —r.
Consider the minor map A: Hom(V’,V) — Hom(A" ™ V', A"*' V) given by ¢ — A" o. This is a
polynomial map, whose derivative at f is a linear map

r+1 r+1
DyA: Hom(V', V) — Hom (/\ LWAN V> .
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Explicitly, this map is

r+1
DiA(o)(v1 A -+ AVps1) = Z f) A foa) Ao Ana(v) A A fupgr).
i=1
Lemma 5.3.1. Let
K = ker (Hom(V', V) — Hom(W',W))

be the kernel of the map o — qo (o|w). Then ker DfA = K.

Proof. Suppose o € K. Since f has rank r, the exterior power /\TJr1 V' is spanned over C by elements of
the form vy A -+ A Up11, where v.41 € ker f = W', Since f(vy41) = 0, the sum in (5.3)) reduces to

DyA@) (w1 A -+ Avrar) = F(01) Ao A F(00) A 0 (vr41).

Since 0 € K and v,41 € W’ we have o(v,41) € kerq = f(V'), which means that D;A(0)(v1,...,0r41) €
N F(V') = 0. Thus o € ker DA.

Now suppose o € ker DyA. Let w € W’. We wish to show that o(w) € f(V’). Let v1,...,v, € V' be vectors
for which f(v1),---, f(v,) is a basis for f(V'). Since o € ker DA, we have DyA(o)(vi A -+ A v, Aw) = 0.
On the other hand,

DiA(o)(vr A~ Avp Aw) = f(u) A A flon) A o(w),

because all other terms in the sum in (5.3) are 0, owing to f(w) = 0. Since the wedge product above is 0,
and the f(v;) are a basis for f(V'), we must have o(w) € f(V'). Thus o € K. O

We interpret Lemma [5.3.1] as the calculation of a certain normal bundle. Let Y = V(Hom(V’,V)) be the
affine space over C' representing morphisms V/ — V over a C-scheme, and let j: Y™=" — Y be the locally
closed subscheme representing morphisms which are everywhere of rank r. Thus, Y™ =" is an open subset of
the fiber over 0 of (the geometric version of) the minor map A. It is well known that Y™="/C is smooth of
codimension (n —)? in Y /C, and so the normal bundle Ny:-ry is locally free of this rank.

We have a universal morphism of Oyk=--modules o: Oy=r ®c V' — Oyn=r ®c V. Let W = kero
and W = cok o, so that W’ and W are locally free Oy-x=r-modules of rank n — r. We also have the Oy x=r-
linear morphism DA : Oy=r ®c Hom(V’', V) — Oyri=r @c Hom (A" 1V’ A"V whose kernel is precisely
Tany-r /. The geometric interpretation of Lemma is a commutative diagram with short exact rows:

ker DA ——— Oywi=r ®c Hom(V', V) —— o0 (W', W) (5.3.1)

Tal’lyrk:r/c —— ]* Tal’ly/c NYrk:'r'/Y .

5.4 Moduli of morphisms of vector bundles with fixed rank at «©

We return to the setup of §5.1] We have a curve X and a closed point o0 € X, with inclusion map i, and
residue field C.

Let £ and &’ be rank n vector bundles over X, with fibers V = £, and V' = £/,. We have the geometric
vector bundle V(5#27.(E',E)) — X. If f: T — X is a morphism, then T-points of V(2. (E’,E)) classify
Or-linear maps f*& — f*&.

Let V(2 (€', E))™ =" be the dilatation of V(#2s.(E, £)) at the locally closed subscheme V (Hom(V', V))rk="
of the fiber V(#2272 (€', €)oo = V(Hom(V’,V)). This has the following property, for a flat morphism f: 7" —
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X: the X-morphisms s: T — V(H#sn(E',E))™ =" parametrize those Op-linear maps o: f*& — f*&, for
which the fiber o4 : fXV' — fXV has rank r everywhere on Ty,.
Given a morphism s as above, corresponding to a morphism o: f*£' — f*&, we let W and W denote
the kernel and cokernel of o0o,. Then W' and W are locally free Or, -modules of rank r. Let ir, : Too — T
denote the pullback of i, through f.
We intend to use Lemmato compute s* Tany (s, (e £)yn=r/x - The tangent bundle Tanvy (g g,£))/x
is isomorphic to the pullback f* J#7s-. (£, E). Also, we have identified the normal bundle Ny (tom(v7,v))r=r /v (Hom(v",V)
in (5.3.1). So when we apply the lemma to this situation, we obtain an exact sequence of Or-modules

0 — s*Tany (s (e &)yko—r)x — f* Hom(E',E) — imy s Hom (W' , W) — 0, (5.4.1)
where the third arrow is adjoint to the map
i, ¥ Hom(E,€) = Hom( [V, F1V) — Ao (W W),
which sends o € o (fEV', fEV) to the composite
W — AV I3 XV > W,

The short exact sequence in ([5.4.1)) identifies the Or-module s* Tany (4. (¢7,¢))0=r/x as a modification
of f* Horr(E',E) at the divisor T,,. We can say a little more in the case that o itself is a modification. Let
us assume that o fits into an exact sequence

0— f*&' 5 ¥ S WV — 0.
Dualizing gives another exact sequence
0= FHE) D FH(E) S in (V)" =0,
Then

S*Tanv(%ﬁm(‘g/"g))rkm:r/x = ker [f* %ﬂm(gl, (9) - iToo* %%m(W', W)]
ker(a ® o)

IIe

The kernel of a®a’ can be computed in terms of ker a = f*&’ and ker o/ = f*(€"), see Lemma below.
It sits in a diagram
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f* Ao (E,E")

f* %&m(f, g) @ f* %ﬂm(fl, g’) e S*Tanv(jfm(g/’g))rkgo:r/x —0.

Tory (igox W', i V)

(5.4.2)
Lemma 5.4.1. Let A be an abelian ®-category. Let

0-K5AL B0
0K S48 B 0
be two ezact sequences in A, with A, A', K, K’ projective. The homology of the complex

K@K O A e k)@ (K4 20, sga

is given by Hy = 0, Hy =~ Tor (B, B’), and Hy ~ BQB’. Thus, K" =ker(f® f': AQ A’ - BR B’) appears
n a diagram

0

K®K'

0 L ARKN®(K®A) —=K'"——0

Tory (B, B')

where both sequences are exact.

Proof. Let C, be the complex K — A, and let C, be the complex K’ — A’. Since C/ is a projective
resolution of B’, we have a Tor spectral sequence [Stald), Tag 0617Z]

EiQ,j: Tor;(H;(C.), B") = H;;;(Ca ®CY).
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We have Ej , = B® B’ and Ef,; = Tor1(B, B'), and E}; = 0 for all other (i,7). Therefore Hy(C\ ® C?) =
B® B’ and H;(C, ® C}) =~ Tory (B, B’), which is the lemma. O

5.5 A tangent space calculation

We return to the setup of §.2l Thus we have fixed a p-divisible group H over a perfect field k, and an
algebraically closed perfectoid field C' containing W (k)[1/p]. But now we specialize to the case that H is
isoclinic. Therefore D = End H (up to isogeny) is a central simple Q,-algebra. Let & = Ec(H); we have
%m(g,g) ~ D®Qp OXc-

Recall the scheme Z — X, defined as a fiber product in (5.2.1). Let s: Xc — Z be a section. This
corresponds to a morphism o: O%  — £. Let W' and W be the cokernel of o4 ; these are C-vector spaces.

We are interested in the vector bundle s*Tan /xc- This is the kernel of the derivative of the determinant
map:

s*Tangx,, = ker (Dydet: s*Tany (gnyio-n-d/x, — det€) .

We apply (5.4.2) to give a description of s*Tany gnyrke=n-a/x,. We get a diagram of Ox,-modules

0 (5.5.1)

0 F (Mn(Qp) X D) ® OXC _— S*Tanv(gn)rkw:n—d/xc —0.

TOrl (Z@* I/I//7 ZOC* W)

0

On the other hand, the horizontal exact sequence fits into a diagram

0——F —— (Mn(Qp) X D) ® OXC e S*Tal'lv(gn)rkwgn—d/xc —0 (552)
trl lDS det
Oxe . det

The arrow labeled tr is induced from the Q,-linear map M, (Q,) x D — Q,, carrying (¢/, «) to tr(a’) —
tr(a) (reduced trace on D). The commutativity of the lower right square boils down to the identity, valid
for sections s1,...,s, € H*(X¢,€) and a € D:

((as)) Asa A ASy)+ -+ (51 A A (asy)) =(ra)(sy A Asy).

(There is a similar identity for o’/ € M,(Q,).) Because the arrow labeled 7 is injective, we can combine
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(5.5.1) and (5.5.2)) to arrive at a description of s* Tany,x,.:

0 (5.5.3)

0 F (M, (Qp) x D)= ® Ox — s*Tany,x, — 0.

TOrl (Z.OO*W/’ ZOO* W)

0

We pass to duals to obtain

0 —— (s*Tanz)xc )" — (Mn(Qp) x D)/Qp) ®q, Oxc 7 0

Tory (toos (W)Y iox W)

0
(5.5.4)
The dotted arrow is induced from the map (M, (Q,) x D)®q, Ox, — £" sending (¢/,a)®1 to aoog —coa’.

Theorem 5.5.1. If s is a section to Z — X¢ corresponding, under the isomorphism of Lemmal[5.2.]], to a
point x € MYy (C), then the following are equivalent:

1. The vector bundle s*Tany,x, has a Harder-Narasimhan slope which is < 0.
2. The point x lies in the special locus A"y .

Proof. Let o: O%_ — & denote the homomorphism corresponding to z. Condition (1) is true if and only if
H%(Xc, s*Tany,x ) # 0. We now take HO of (5.5.4), noting that H°(X¢c, F¥) — H°(X¢,EM) is injective.
We find that

HO(XQS*Tan}/Xc) ~ {(0/70é) € M,(Qp) x D

= AI/QP'

aoa=aoa’}/Qp.

This is nonzero exactly when x lies in the special locus. O
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Combining Theorem with the criterion for cohomological smoothness in Theorem proves
Theorem for the space A .

Naturally we wonder whether it is possible to give a complete discription of s* Tany,x,,, as this is the
“tangent space” of .4 .o at the point z. Note that s* Tany,x, can only have nonnegative slopes, since it is
a quotient of a trivial bundle. Therefore Theorem says that 0 appears as a slope of s* Tany/x,, if and
only if s corresponds to a special point of .#}; .

Example 5.5.2. Consider the case that H has dimension 1 and height n, so that .#  is an infinite-level
Lubin-Tate space. Suppose that o € .#,(C) corresponds to a section s: Xo — Z. Then s* Tang,x, is a
vector bundle of rank n% —1 and degree n— 1, with slopes lying in [0, 1/n]; this already limits the possibilities
for the slopes to a finite list.

If n = 2 there are only two possibilities for the slopes appearing in s* Tany,x,: {1/3} and {0,1/2}. These
correspond exactly to the nonspecial and special loci, respectively.

If n = 3, there are a priori five possibilities for the slopes appearing in s* Tany,/x: {1/4,1/4}, {1/3,1/5},
{1/3,1/3,0,0}, {2/7,0}, and {1/3,1/4,0}. But in fact the final two cases cannot occur: if 0 appears as a
slope, then z lies in the special locus, so that A, # Q,. But as A, is isomorphic to a subalgebra of End® H,
the division algebra of invariant 1/3, it must be the case that dimq, A, = 3, which forces 0 to appear as a
slope with multiplicity dimq, A,/Q, = 2. On the nonspecial locus, we suspect that the generic (semistable)
case {1/4,1/4} always occurs, as otherwise there would be some unexpected stratification of .4 70", But
currently we do not know how to rule out the case {1/3,1/5}.

5.6 The general case

Let D = (B,V, H, u) be a rational EL datum over k, with reflex field E. Let F' be the center of B. As in
Section let D = Endg V and D’ = Endg H, so that D and D’ are both F-algebras.

Let C be a perfectoid field containing E, and let 7 € Mot D,0(C). Let M} o, be the fiber of the
determinant map over 7. We will sketch the proof that ///{)m — SpaC' is cohomologically smooth. It is
along the same lines as the proof for .#y o, but with some extra linear algebra added.

The space .#7, ,, may be expressed as the space of global sections of a smooth morphism Z — Xc,
defined as follows. We have the geometric vector bundle V(22 p(V ®q, Ox,Ec(H))). In its fiber over oo,
we have the locally closed subscheme whose R-points for a C-algebra R are morphisms, whose cokernel is as a
B®q, R-module isomorphic to Vo ®j R, where V; is the weight 0 subspace of V ®q, E determined by p. We
then have the dilatation V(2. 5(V ®q, Ox.,Ec(H)))H* of V(Hzmep(V Rq, Ox,Ec(H))) at this locally
closed subscheme. Its points over S = Spa(R, R*) parametrize B-linear morphisms s: V®q, Oxs — £s(H),
such that (locally on S) the cokernel of the fiber s is isomorphic as a (B®q, R)-module to Vo ® R. Finally,
the morphism Z — X¢ is defined by the cartesian diagram

Z V(%WB(V ®Qp OXcng(H)))M

J{ det

XC *7_> V(%mp(detp V ®Qp OXC, detp (‘:c(H)))

Let 2 € 4D (C) correspond to a B-linear morphism s: V ®q, Ox. — £c(H) and a section of Z — X¢
which we also call s. Define B ®q, C-modules W’ and W by

0->W > V®q,C3E(H)w — W — 0.
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The analogue of (5.5.4)) is a diagram which computes the dual of s* Tany,x,.:

0 (5.6.1)

0 —— (s*Tany/x,)" — (D" x D)/F) ®q, Ox, FY 0

s

Hem(V ®q, Oxc.Ec(H))

Torf(ioo*((W')V,iOO*WV)

0

This time, the dotted arrow is induced from the map (D’ x D) ®q, Ox, — Hom(V ®q, Ox.,Ec(H))
sending (o/,a) ®1 to aos—soa’. Taking H in (5.6.1)) shows that H°(X, s* Tanyx,) = A;/F, and this
is nonzero exactly when x lies in the special locus.

5.7 Proof of Corollary

We conclude with a discussion of the infinite-level modular curve X (p®). Recall from [Schl15| the following
facts about the Hodge-Tate period map mgr: X (p*) — P'. The ordinary locus in X (p*) is sent to P1(Q,).
The supersingular locus is isomorphic to finitely many copies of .#Z o, c, where H is a connected p-divisible
group of height 2 and dimension 1 over the residue field of C'; the restriction of mg7 to this locus agrees with
the Ty we had already defined on each A o .-

We claim that the following are equivalent for a C-point = of X (p*)°:

1. The point z corresponds to an elliptic curve E/O¢, such that the p-divisible group E[p*] has End E[p*] =
Z,.

2. The stabilizer of mgr(z) in PGL2(Q,) is trivial.
3. There is a neighborhood of = in X (p®)° which is cohomologically smooth over C.

First we discuss the equivalence of (1) and (2). If E is ordinary, then E[p*] = Q,/Z, x pp certainly has
endomorphism ring larger than Z,, so that (1) is false. Meanwhile, the stabilizer of g7 (x) in PGL2(Q,) is
a Borel subgroup, so that (2) is false as well. The equivalence between (1) and (2) in the supersingular case
is a special case of the equivalence discussed in Section |3.5

Theoremtells us that .#;;)""" is cohomologically smooth, which implies that shows that (2) implies
(3). We therefore are left with showing that if (2) is false for a point « € X (p®)°, then no neighborhood of
x is cohomologically smooth.

First suppose that z lies in the ordinary locus. This locus is fibered over P*(Q,). Suppose U is a
sufficiently small neighborhood of z. Then U is contained in the ordinary locus, and so 7y (U) is nondiscrete.
This implies that H°(U, Fy) is infinite, and so U cannot be cohomologically smooth.

Now suppose that « lies in the supersingular locus, and that mg7(x) has nontrivial stabilizer in PGL2(Q,).
We can identify z with a point in .# I(}Sog (C). We intend to show that every neighborhood of x in .#7; ,, fails
to be cohomologically smooth.
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Not knowing a direct method, we appeal to the calculations in [Weil6|, which constructed semistable
formal models for each .#}; ,,. The main result we need is Theorem 5.1.2, which uses the term “CM points”
for what we have called special points. There exists a decreasing basis of neighborhoods Z, o > Z; 1 > ---
of z in M . For each affinoid Z = Spa(R, RT), let 7 = Spec Rt ®o,. k, where & is the residue field of C.
For each m > 0, there exists a nonconstant morphism nym — Cy m, where Cy, p,, is an explicit nonsingular
affine curve over . This morphism is equivariant for the action of the stabilizer of Z, ,, in SL2(Q,). For
infinitely many m, the completion C’C1 of Cy . is a projective curve with positive genus.

Let U < .4}, be an affinoid nelghborhood of . Then there exists N > 0 such that Z, ,, < U for all

> N. Let K < SLy(Q,) be a compact open subgroup which stabilizes U, so that U/K is an affinoid
subset of the rigid-analytic curve ///fI,OO/K. For each m > N, let K,,, € K be the stabilizer of Z, ,,, so that
K., acts on Cy .

There exists an integral model of U/K whose special fiber contains as a component the completion of
each Z, ,,/ K, which has positive genus. Since there is a nonconstant morphism Z, .,/ Ky, — Cym/ Ko, we
must have

dimg, H'(U/K,F) > > dimg, H'(C,,/Kpn, Fo).
m=N
Now we take a limit as K shrinks. Since U ~ limU/K, we have H' (U, Fy) = lim H'(U/K,Fy). Also, for
each m, the action of K,, on Cy ,, is trivial for all sufficiently small K. Therefore

dimg, H'(U,Fy) > ). dimg, H'(CS!

x,m>
m=N

Fg):OO

This shows that U is not cohomologically smooth.
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