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Abstract

We produce an integral model for the modular curve X(Npm) over
the ring of integers of a sufficiently ramified extension of Zp whose spe-
cial fiber is a semistable curve in the sense that its only singularities are
normal crossings. This is done by constructing a semistable covering
(in the sense of Coleman) of the supersingular part of X(Npm), which
is a union of copies of a Lubin-Tate curve. In doing so we tie together
non-abelian Lubin-Tate theory to the representation-theoretic point of
view afforded by Bushnell-Kutzko types.

For our analysis it was essential to work with the Lubin-Tate curve
not at level pm but rather at infinite level. We show that the infinite-
level Lubin-Tate space (in arbitrary dimension, over an arbitrary nonar-
chimedean local field) has the structure of a perfectoid space, which is
in many ways simpler than the Lubin-Tate spaces of finite level.
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1 Introduction: The Lubin-Tate tower

Let K be a non-archimedean local field with uniformizer π and residue
field k ∼= Fq, and let n ≥ 1. The Lubin-Tate tower is a projective system
of affine formal schemes Mm which parameterize deformations with level
πm structure of a one-dimensional formal OK-module of height n over Fq.
(For precise definitions, see §2.1; for a comprehensive historical overview of
Lubin-Tate spaces, see the introduction to [Str08b].) After extending scalars
to a separable closure of K, the Lubin-Tate tower admits an action of the
triple product group GLn(K)×D××WK, where D/K is the central division
algebra of invariant 1/n, and WK is the Weil group of K. Significantly, the
`-adic étale cohomology of the Lubin-Tate tower realizes both the Jacquet-
Langlands correspondence (between GLn(K) and D×) and the local Lang-
lands correspondence (between GLn(K) and WK). When n = 1, this state-
ment reduces to classical Lubin-Tate theory [LT65]. For n = 2 the result was
proved by Deligne and Carayol (see [Car83], [Car86]); Carayol conjectured
the general phenomenon under the name “non-abelian Lubin-Tate theory”.
Non-abelian Lubin-Tate theory was established for all n by Boyer [Boy99] for
K of positive characteristic and by Harris and Taylor [HT01] for p-adic K.
In both cases, the result is established by embedding K into a global field
and appealing to results from the theory of Shimura varieties or Drinfeld
modular varieties.

In this paper we focus on the case that n = 2 and q is odd. We construct
a compatible family of semistable models M̂m for each Mm over the ring
of integers of a sufficiently ramified extension of K. For our purposes this
means that the rigid generic fiber of M̂m is the same as that ofMm, but that
the special fiber of M̂m is a locally finitely presented scheme of dimension
1 with only ordinary double points as singularities. The weight spectral
sequence would then allow for the computation of the cohomology of the
Lubin-Tate tower of curves (along with the actions of the three relevant
groups), and one could recover the result of Deligne-Carayol in a purely
local manner, although we do not do this here.

The study of semistable models for modular curves begins with the
Deligne-Rapoport model for X0(Np) in [DR73]. A semistable model for
X0(Np

2) was constructed by Edixhoven in [Edi90]. A stable model for
X(p) was constructed by Bouw and Wewers in [BW04]. A stable model
for X0(Np

3) was constructed by Coleman and McMurdy in [CM10], using
the notion of semistable coverings of a rigid-analytic curve by “basic wide
opens”. The special fiber of their model is a union of Igusa curves which
are linked at each supersingular point of X0(N) ⊗ Fp by a certain config-
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uration of projective curves, including in every case a number of copies of
the curve with affine model yp − y = x2. The same method was employed
by Tsushima [Tsu11] and Imai-Tsushima [IT11] for the curves X0(p

4) and
X1(p

3), respectively; the curve yp + y = xp+1 appears in the former. In
each of these cases the interesting part of the special fiber of the modular
curve is the supersingular locus. Inasmuch a Lubin-Tate curve (for K = Qp)
appears as the rigid space attached to the p-adic completion of a modular
curve at one of its mod p supersingular points, the problem of finding a
semistable model for a modular curve is essentially the same as finding one
for the corresponding Lubin-Tate curve. In this sense our result subsumes
the foregoing results; however our method cannot produce the “intersection
multiplicities” for the singular points of the special fiber.

We now summarize our main result. Let K̂nr be the completion of the
maximal unramified extension of K; thenMm is defined over SpfOK̂nr.

Theorem 1.0.1. Assume that q is odd. For each m ≥ 1, there is a finite
extension Lm/K̂

nr for which Mm admits a semistable model M̂m; every
connected component of the special fiber of M̂m admits a purely inseparable
morphism to one of the following smooth projective curves over Fq:

1. The projective line P1,

2. The curve with affine model xyq − xqy = 1,

3. The curve with affine model yq + y = xq+1,

4. The curve with affine model yq − y = x2.

Remark 1.0.2. The mere existence of a semistable model of Mm (after
passing to a finite extension of the field of scalars) follows from the corre-
sponding theorem about proper (algebraic) curves. The formal schemeMm

appears as the completion along a point in the special fiber of a proper curve
over OK (e.g., the appropriate modular curve), and a semistable model of
the proper curve restricts to a semistable model ofMm. Furthermore, the
theorem Drinfeld-Carayol allows one to predict in advance the field Lm over
which a semistable model appears. The real content of the theorem is the
assertion about the equations for the list of curves appearing therein. A
semistable model is unique up to blowing up, so the above theorem holds
for all semistable models ofMm if it holds for one of them.

Remark 1.0.3. A purely inseparable morphism between nonsingular pro-
jective curves induces an equivalence on the level of étale sites and therefore
an isomorphism on the level of `-adic cohomology.
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Remark 1.0.4. The equations for the curves appearing in Thm. 1.0.1 were
known some time ago by S. Wewers to appear in the stable reduction ofMm

(unpublished work). Furthermore, it so happens that xyq − xqy = 1 and
yq + y = xq+1 determine isomorphic projective curves, but we have listed
them separately because the nature of the group actions on these curves is
different.

Let us explain some more features of our semistable models M̂m. It
is not the case that one can arrange for the semistable models M̂m to be
compatible: there is no tower · · · → M̂2 → M̂1 with finite transition maps.
Loosely speaking, the problem is that as m → ∞, the singularities of the
M̂m accumulate around the CM points, that is, the points corresponding to
deformations of G0 with extra endomorphisms.

This problem can be remedied by removing the CM points entirely. Let
Mad

m,η be the geometric adic generic fiber1 ofMm. The CM points constitute

a closed subset ofMad
m,η whose topology is locally profinite. LetMad,non-CM

m,η

be the complement inMad
m,η of the set of CM points. This is an adic space

(indeed we give a covering of it by affinoids). Then Mad,non-CM
m,η admits a

semistable model which varies compatibly in m. In fact much more is true.

Theorem 1.0.5. The tower of adic spaces Mad,non-CM
m,η admits a tower of

semistable models M̂non-CM
m with finite transition maps. Let M̂non-CM

m,s be the

special fiber of M̂non-CM
m . For each m, let Cm be an irreducible component of

M̂non-CM
m,s , such that the transition maps carry Cm+1 onto Cm. Assume that

Cm has positive genus for some m. Then for m large enough, the morphism
Cm+1 → Cm is purely inseparable, and lim

←−
Cm is the perfection of one of the

curves listed in Thm. 1.0.1.

Thm. 1.0.5 allows us to associate a “dual graph” T to the tower of
semistable models M̂non-CM

m . The vertices of T will correspond to towers
· · ·Cm+1 → Cm → · · · of irreducible components of M̂non-CM

m,s ; two of these
are adjacent when the corresponding irreducible components cross. The
graph T admits an action of the triple product group GL2(K)×D××WK ,
and the stabilizer in this group of a vertex of T acts on the corresponding
scheme lim

←−
Cm.

1In much of this paper we work with adic spaces rather than rigid spaces, because
presently we will be using adic spaces which do not come from rigid spaces. There is
a fully faithful functor (see [Hub96]) from the category of rigid analytic varieties to the
category of adic spaces, which identifies admissible opens with opens, and admissible open
covers with open covers. A separated adic space lies in the image of this functor if it is
locally topologically of finite type.
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The geometric generic fiber ofMm is highly disconnected, owing to the
existence of the determinant morphism (see §2.5). In the limit, the set of
connected components is a principal homogeneous space for K×. The graph
T has the same set of connected components. One connected component of
T is displayed in §7, where it is called T ◦.

In theory one could draw a picture of the special fiber of any particular
M̂m by forming the quotient of the pictures described in §7 by the con-
gruence subgroup 1 + πmM2(OK). This would allow one to determine the
structure of the reduction of a semistable model of the appropriate modular
curve at level m, see §7.

1.1 Lubin-Tate space at infinite level

Before elaborating further, let us give some precise definitions. Much of our
notation has been borrowed from §2.1.1 of [Str08a].

Let G0 be a one-dimensional formal OK -module over Fq of height2 n.
Then G0 is unique up to isomorphism. Let K0 = K̂nr be the completion of
the maximal unramified extension of K. Let C be the category of complete
local Noetherian OK0 -algebras with residue field Fq. Let j ∈ Z. We consider

the functor M
(j)
G0,0

which associates to each R ∈ C the set of pairs (G, ι),

where G is a formal OK-module over R and ι : G0 → G ⊗R Fq is a quasi-
isogeny of height j. An isomorphism between pairs (G, ι) and (G′, ι′) is a
quasi-isogeny of formal OK -modules f : G→ G′ which intertwines ι with ι′.

Since D = EndG0⊗OK
K is a division algebra, a quasi-isogeny from G0

to another formal OK -module over Fq has height 0 if and only if it is an

isomorphism. ThusM
(0)
G0,0

classifies formal OK -modules G together with an

isomorphism ι : G0 → G ⊗R Fq. By [Dri74], Prop. 4.2, M
(0)
G0,0

= Spf A0,
where A0 is a (noncanonically) isomorphic to the formal power series ring
OK0Ju1, . . . , un−1K.

One adds level structures to the moduli problem (see 2.1) to obtain

formal schemesM
(j)
G0,m

, m ≥ 1. We put

MG0,m =
∐

j∈Z

M
(j)
G0,m

.

We note that M
(j)
G0,m

is isomorphic to M
(0)
G0,m

, though not canonically so.

2Through the paper, the “height” of a formal OK -module will be understood to mean
its height relative to K. The same convention holds for quasi-isogenies between formal
OK -modules.
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In some of the paper we work withMG0,m rather thanM
(0)
G0,m

, so that we
can take advantage of larger symmetry groups. When G0 is fixed in the

discussion, we will drop it from the notation and simply write M
(j)
m and

Mm.
The formal schemesMm are rather mysterious. Even at level zero,M

(0)
0

is the formal open unit ball of dimension n− 1, but the action of the group

O×
D = AutG0 onM

(0)
0 is very difficult to write down. It turns out however

that the infinite-level deformation space

M∞ = lim
←−
Mm

seems to be simpler than all of the spaces at finite level. To prove Thm.
1.0.1 it was indispensable to work at infinite level, where a surprisingly
nice description ofM∞ emerges. Results gathered aboutM∞ can then be
translated into results about the individualMm.

It will be helpful to first describe the case of n = 1, so that M
(0)
0 pa-

rameterizes lifts of a Lubin-Tate formal OK -module G0 over Fq. One can
find a coordinate T on G0 with respect to which [π]G0(T ) = T q. G0 lifts

uniquely to G/OK̂nr , so that M
(0)
0 = SpfOK̂nr. For each m ≥ 0 we have

M
(0)
m = SpfOKm , where Km/K̂

nr is the field obtained by adjoining a πm-
torsion element λm of G (chosen compatibly). Let K∞ = ∪m≥1Km and let
K̂∞ be its completion; then K̂∞ is the completion of the maximal abelian

extension of K. We have M
(0)
∞ = SpfOK̂∞

. One finds in K̂∞ an element

t = limm→∞ λq
m

m which admits arbitrary qth power roots. If K has pos-
itive characteristic, then in fact OK̂∞

∼= FqJt
1/q∞K is a ring of fractional

power series in t. If K has characteristic 0, then we can form the inverse
limit OK[

∞
= lim
←−
OK∞

/π along the Frobenius map, and then once again

OK[
∞

∼= FqJt
1/q∞K. The fraction field K [

∞ of OK[
∞

is the field of norms of

K∞, as in [FW79]. In either case the field K̂∞ is an example of a perfectoid
field; see [Sch12]. See §2.3 for proofs of these claims.

Now return to the case of general n. Let Am be the coordinate ring of

M
(0)
m , so that M

(0)
m = Spf Am. Each Am is complete with respect to the

topology induced by the maximal ideal I of A0. Let A be the completion of

lim
−→

Am with respect to the I-adic topology, so thatM
(0)
∞ = Spf A. We show

in Cor. 2.8.14 that if K has positive characteristic, then

A ∼= FqJX
1/q∞

1 , . . . , X1/q∞

n K

is a ring of fractional power series in n variables. This is defined as the

completion of Fq[X
1/q∞

1 , . . . , X
1/q∞
n ] with respect to the ideal (X1, . . . , Xn).
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If K has characteristic 0, then A contains topologically nilpotent elements
X1, . . . , Xn admitting arbitrary qth power roots in A. We define A[ =
lim
←−

A/π, where the limit is taken with respect to the qth power Frobenius
map. Then

A[ ∼= FqJX
1/q∞

1 , . . . , X1/q∞

n K.

See Cor. 2.8.14.
In either case, the parameters X1, . . . , Xn arise from Drinfeld’s parame-

ters on Am through a limiting process. Furthermore, the action of the group
GLn(OK) × O×

D on these parameters can be determined directly from the
formal OK -module G0 itself.

There is a continuous homomorphism OK̂∞
→ A, which sends t to a

rather complicated fractional power series in X1, . . . , Xn. This power series
can be interpreted as the determinant of a formal vector space, see §2.6. Let

M
(0),ad
∞,η be the geometric adic generic fiber ofM

(0)
∞ , where η = Spa(C,OC)

and C/K is a complete algebraically closed field. That is,M
(0),ad
∞,η is the set

of continuous valuations | | (in the sense of Huber, [Hub94]) on A⊗̂OC for
which |π| 6= 0. The above descriptions of A show thatMad

∞,η is a perfectoid
space, see [Sch12]. In light of the above description of A it would appear that
Mad

∞,η is a very simple sort of space, let alone that it encodes the Langlands
correspondence! In fact it is the complexity of the element t ∈ A which
accounts for the interesting cohomological behavior ofMad

∞,η.
Much of the above was probably known to the experts, although perhaps

not in this precise form. In [FGL08], an isomorphism between the Lubin-
Tate and Drinfeld towers is constructed. For this it is necessary to work
with the infinite-level versions of both towers. Roughly speaking, the au-
thors work with an integral model not of the whole Lubin-Tate space (as we
have done), but rather with an integral model of a “fundamental domain”,
whose coordinate ring carries the structure of a perfectoid affinoid algebra.
Certainly the important role of the determinant is recognized in [FGL08].

All Rapoport-Zink spaces at infinite level are perfectoid spaces which
can be described in terms of p-adic Hodge theory, [SW13]. There we prove a
general duality theorem relating basic Rapoport-Zink spaces to one another,
and in particular we arrive at an isomorphism between the infinite-level
Lubin-Tate and Drinfeld spaces which does not require any integral models
at all.
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1.2 Outline of the paper

In §2, we review the construction of the Lubin-Tate tower attached to a
one-dimensional formal OK -module G0. We consider G̃ = lim

←−
G (limit along

multiplication by π), where G is any lift of G0. Then G̃ does not depend
on the choice of lift. G̃ carries the structure of a K-vector space object
in the category of formal schemes. Following [FF11], we call G̃ a formal
vector space. A choice of coordinate on G0 allows us to identify G̃ with
SpfOK̂nrJT 1/q∞K.

We also review relevant results on determinants of formal OK-modules,
as these play an important role. Let ∧nG0 be the top exterior power of
G0. Then ∧nG0 is a formal OK-module of height one and dimension one;
i.e. it is a Lubin-Tate formal OK-module. If MG0,∞ is the Lubin-Tate
deformation space of G0 at infinite level, and similarly for M∧nG0,∞, then
there is a determinant morphismMG0,∞ →M∧nG0,∞. The main result of
the section is that there is a Cartesian diagram

MG0,∞
//

��

M∧nG0,∞

��

G̃n // ∧̃nG

where the horizontal arrows are determinant morphisms (Thm. 2.7.3). Pass-
ing to the geometric generic fiber, we arrive at the infinite-level Lubin-Tate
spaceMad

G0,η
, which is a perfectoid space.

In §3 we review Carayol’s description of the cohomology of the Lubin-
Tate tower for GL2(K) (non-abelian Lubin-Tate theory), see Thm. 3.1.1. In-
formally, the cohomology splits up into a sum of representations of GL2(K)×
D× ×WK of the form Π ⊗ JL(Π̌) ⊗ H(Π)′, where Π runs over discrete se-
ries representations, JL is the Jacquet-Langlands correspondence and Π 7→
H(Π)′ is a normalized local Langlands correspondence. We also review the
theory of Bushnell-Kutzko types for GL2(K) and its inner form D×, as these
play a major role in our work. This theory furnishes a classification of su-
percuspidal representations of these groups according to which “strata” they
contain. A stratum is essentially a one-dimensional character of a compact
subgroup of GL2(K) (or D×) which belongs to a certain explicit class.

In §4 we specialize to the case that G0 has height 2. We consider the
set of CM points in Mad

G0,∞,η, where G0 has height 2. Points in Mad
G0,∞,η

with CM by a quadratic extension L/K correspond to pairs of embeddings
L ↪→ M2(K) and L ↪→ D. If x is a point with CM by L, then its stabilizer
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in GL2(K)×D× is the diagonally embedded L×. To each such x and each
integer m ≥ 0 we associate the following data:

1. An OL-order Lx,m ⊂ M2(K) ×D, which is normalized by the diago-
nally embedded L×,

2. The group Kx,m = L×L×x,m and its subgroup K1
x,m consisting of pairs

(g1, g2) ∈ Kx,m with det(g1) = N(g2), where N : D → K is the reduced
norm,

3. A smooth affine curve Cx,m/k equipped with an action of K1
x,m (only

given outside the case that L/K is ramified and m is even).

The orders Lx,m, which we call “linking orders”, were first constructed
in [Wei10]. Their study links together the Bushnell-Kutzko type theories
for GL2(K) and D×. In Thm. 4.3.3 we show that if Π is a supercuspidal
representation of GL2(K) with coefficients in Q` (` - q), then there exists a
pair (x,m) (depending on the strata contained in Π) such that Π ⊗ JL(Π̌)
is contained in the representation of GL2(K)×D× induced from the repre-
sentation of K1

x,m on H1
c (Cx,m,Q`).

In §5 we identify a family of special affinoid subspaces {Zx,m} of the
Mad

∞,η, parameterized by pairs (x,m). These have the following properties
(Thm. 5.1.2):

1. Zx,m is stabilized by K1
x,m, and

2. There exists a nonconstant K1
x,m-equivariant map Zx,m → Cx,m, where

Zx,m is the reduction of the affinoid Zx,m (once again the case of L/K
ramified and m even is excluded).

The proof of Thm. 5.1.2 is a long, delicate calculation, and we regret that
we could not find a coordinate-free method. The payoff of Thm. 5.1.2 is the
observation that the special affinoids Zx,m exhaust the entire supercuspidal
part of the cohomology of the Lubin-Tate tower.

In §6, we translate the results of §5 back to finite level. We construct
a GL2(K)×D×-equivariant graph T whose vertices are equivalence classes
of pairs (x,m), and also a finite-level version T (m). For every vertex v of

T (m) we get an open affinoid Z
(m)
v ⊂Mad

m,η, equal to the image of the corre-

sponding Zx,m. The cohomology of the Z
(m)
v exhausts all of H1

c (Mm,η ,Q`),
except for the part coming from the boundary. At this point our argument
starts to resemble the method employed in [CM10]. We find a covering of

10



Mad
m,η by “wide opens”, whose underlying affinoids are the Z

(m)
v . For coho-

mological reasons this must be a semistable covering. This means that pairs

of wide opens intersect in annuli, and that the Z
(m)
v have smooth reduction.

By the general theory of [Col03], a semistable covering ofMad
m,η corresponds

to a semistable model M̂m. The dual graph of this model is T (m). Finally,
we complete the proof of Thm. 1.0.5.

The tree T (or rather one of its connected component T ◦) is depicted in
§7. We note that T ◦ contains a copy of the Bruhat-Tits tree for PGL2(K):
this reflects the structure of fundamental domains inMad

∞,η already observed
in [FGL08]. The ends (infinite paths) of the Bruhat-Tits tree are in corre-
spondence with P1(K). On the other hand T has additional ends which are
in correspondence with the set of CM points. We sketch a procedure for
computing the special fiber of M̂m.
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2 The Lubin-Tate deformation space at infinite

level

2.1 Moduli of one-dimensional formal modules

Let K0 = K̂nr. Recall that the functorMG0,0 is represented by the formal
scheme Spf A0, where A0 is (noncanonically) isomorphic to a formal power
series ring OK0Ju1, . . . , un−1K in one variable. Thus there is a universal
formal OK -module Guniv defined over A0. We follow the construction of
Guniv in [GH94], §5 and §12. Over the polynomial ring OK0 [v1, v2, . . . ] we
can consider the universal p-typical formal OK-module F , whose logarithm
f(T ) = logF (T ) satisfies Hazewinkel’s “functional equation”

f(T ) = T +
∑

i≥1

vi
π
f q

i
(Xqi).
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Here f q
i
is the series obtained from f(X) by replacing each variable vj by

vq
i

j . Then multiplication by π in F satisfies the congruences

[π]F (T ) ≡ vkT
qk (mod π, v1, . . . , vk−1, T

qk+1), (2.1.1)

as in [GH94], Prop. 5.7. Then Guniv is the push-forward of F through the
homomorphism OK0 [v1, v2, . . . ]→ A0 which sends

vi 7→





ui, i = 1, . . . , n− 1

1, i = n

0, i > n.

Let [π]Guniv(T ) = c1T + c2T
2 + . . . . (Thus c1 = π.) It follows from Eq.

(2.1.1) that in A0 = OK0Ju1, . . . , un−1K we have the congruences

cq ≡ u1 (mod π)
cq2 ≡ u2 (mod π, u1)

...
cqn−1 ≡ un−1 (mod π, u1, . . . , un−2)
cqn ≡ 1 (mod π, u1, . . . , un−1).

These congruences have the following immediate consequence.

Lemma 2.1.1. The coefficients c1, cq, . . . , cqn−1 of [π]Guniv(T ) generate the
maximal ideal of A0, and cqn ∈ A0 is a unit.

2.2 Level structures

For an algebra R ∈ C and a deformation (G, ι) ∈MG0,0(R), a Drinfeld level
πm structure on G is an OK -module homomorphism

φ : (π−mOK/OK)⊕n → G(R)

for which the relation

∏

x∈(p−1
K /OK)⊕n

(X − φ(x))

∣∣∣∣ [π]G(X)

holds in RJXK. The images under φ of the standard basis elements (π−n, 0)
and (0, π−n) of (π−n/OK)⊕n form a Drinfeld basis of G[πm] over R.

12



Remark 2.2.1. Note that x1, . . . , xn is a Drinfeld basis of G[πm](R) if and
only if πm−1x1, . . . , π

m−1xn is a Drinfeld basis of G[π](R).

Let M
(j)
G0,m

denote the functor which assigns to each R ∈ C the set of

deformations (G, ι) ∈M
(j)
G0,0

(R) together with a Drinfeld level πm structure

on G over R. LetMG0,m be the union of theM
(j)
G0,m

, j ∈ Z.

By [Dri74], Prop. 4.3, the functor M
(0)
G0,m

is represented by a for-
mal scheme Spf Am, where Am is finite, flat, and generically étale over
A0
∼= OK0Ju1, . . . , un−1K. The universal Drinfeld level structure on Am cor-

responds to m topologically nilpotent elements X
(m)
1 , . . . , X

(m)
n ∈ Am. Drin-

feld shows that Am is a regular local ring with parameters X
(m)
1 , . . . , X

(m)
n .

2.3 The case of height one

In this paragraph we assume n = 1. Then G0 is a Lubin-Tate formal OK -
module over Fq, which admits a unique deformation G to OK0 . In fact after
choosing a suitable coordinate on G, we may assume [π]G(T ) = πT + T q.
For each m ≥ 1, write Φm(T ) = [πm]G(T )/[π

m−1]G(T ). Then Φm(T ) is an
Eisenstein polynomial of degree qm−1(q − 1) and a unit in OK0JT K.

Lemma 2.3.1. Let R ∈ C. An element x ∈ G[πm](R) constitutes a Drinfeld
basis if and only if it is a root of Φm(T ).

Proof. By Remark 2.2.1, and because Φ1([π
m−1]G(T )) = Φm(T ), we may

assume m = 1. The condition for x to be is a Drinfeld basis of G[π](R) is
the condition that T

∏
a∈k×(T − [a]G(x)) is divisible by [π]G(T ) = TΦ1(T ).

This is equivalent to the condition that x is a root of Φ1(T ).

Let Km be the field obtained by adjoining the πm-torsion in G to K0.

Lemma 2.3 implies that M
(0)
G0,m

= SpfOKm . Note that by local class field
theory, the union K∞ =

⋃
mKm is the compositum of K0 with the maximal

abelian extension of K. The following fact will be useful later.

Lemma 2.3.2. The qth power Frobenius map is surjective on OK∞
/π.

Proof. Let λ1, λ2, · · · ∈ OK∞
be a compatible sequence of roots of [πm]G(T ),

m ≥ 1. Then λm generates OKm over OK0 . Since λm = [π]G(λm+1), and
[π]G(T ) (mod π) is a power series in T q, we have that every element of
OKm/π is a qth power in OKm+1/π. The result follows.

Let K̂∞ be the π-adic completion of K∞.
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Proposition 2.3.3. IfK has positive characteristic, then OK̂∞

∼= FqJt
1/q∞K,

where FqJt
1/q∞K is the t-adic completion of Fq[t

1/q∞ ]. If K has character-
istic 0, let OK[

∞
= lim
←−
OK∞

/π, where the inverse limit is taken with respect

to the qth power Frobenius map. Then OK[
∞

∼= FqJt
1/q∞K.

Proof. The element $ = limm→∞ λq
m−1

m belongs to K̂∞ and has an obvious
system of qth power roots, which we write as $1/qm , m ≥ 1. We have the

congruences λm ≡ λqm−1 ≡ λq
2

m2 ≡ . . . modulo πOK∞
, which shows that

λm ≡ $
1/qm−1

(mod πOK̂∞
), and therefore (since OK∞

is generated by the

λm) there is a surjection Fq[t
1/q∞ ]→ OK∞

/π which sends t to $.
Assume K has positive characteristic. Then there is a continuous Fq-

algebra homomorphism φ : FqJt
1/q∞K→ OK̂∞

which sends t to $ and which
is a surjection modulo π. In particular it is a surjection modulo $, because
in K̂∞ we have |$| = |π|1/(q−1). Thus any b ∈ OK̂∞

can be written b =

φ(a1) + $b1 = φ(a1) + φ(t)b1, with a1 ∈ Fq[t
1/q∞ ] and b1 ∈ OK̂∞

. But
then we can write b1 = φ(a2) + φ(t)b2, and so forth, the result being that
b = φ(a1 + ta2 + . . . ). Thus φ is surjective. The injectivity of φ follows
from the fact that any nonzero element of FqJt

1/q∞K equals tα times a unit
for some α ∈ Z[1/q], so that if φ has a nonzero kernel, we would have
φ(tα) = $α = 0 for some α, which is absurd. Thus φ is an isomorphism.

Now assume K has characteristic 0. We have put OK[
∞

= lim
←−
OK∞

/π;
this makes OK[ the ring of integers in a complete nonarchimedean valuation
field K[ containing Fq. We have a continuous Fq-algebra homomorphism
φ : FqJt

1/q∞K→ OK[ which sends t to the sequence $[ = ($,$1/q, . . . ). We
have an isomorphism OK[

∞
/$[ → OK̂∞

/$ given by projection onto the first
coordinate. We see that φ is once again surjective modulo $. The argument
now continues as in the previous paragraph.

2.4 Formal vector spaces

Suppose A is a topological ring which is separated and complete for the
topology induced by an ideal of definition I. For such a ring we write
Nil(A) for the set of topologically nilpotent elements of A, which is to say
that Nil(A) is the radical of I. Of course we allow for the trivial case in
which I = 0 and A is discrete, in which case Nil(A) is the set of nilpotent
elements of A. Let AlgA be the category of topological A-algebras R which
are separated and complete for the topology induced by an ideal J (which
may be assumed to contain the image of I). Also let ModOK

be the category
of OK -modules, and let VectK be the category of K-vector spaces.
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Recall that G0 is a formal OK-module over Fq of dimension 1 and height
n. G0 induces a functor AlgFq

→ ModOK
whose value on an object R

is Nil(R) with the OK -module structure afforded by G0. This functor is
representable by a formal scheme which we will simply call G0. A choice of
coordinate on G0 is equivalent to a choice of isomorphism G0

∼= Spf FqJXK.
Now consider the functor G̃0 : AlgFq

→ VectK defined by

G̃0(R) = lim
←−

G0(R),

where the transition map is multiplication by a uniformizer π. Let us call
G̃ the formal K-vector space associated to G.

Proposition 2.4.1. G̃0 is representable by an affine formal scheme isomor-
phic to FqJX

1/q∞K.

See Prop. 3.1.2 of [Wei12] for a proof (in that context K has positive
characteristic, but it makes no difference).

Now let A be an object of AlgOK0
with ideal of definition I.

Proposition 2.4.2. Let G be a one-dimensional formal OK-module over
A, and define a functor G̃ : AlgA → VectK by G̃(R) = lim

←−
G(R) (inverse

limit along multiplication by π).

1. The natural reduction map G̃(R)→ G̃(R/I) is an isomorphism.

2. If A/I is a perfect field, and if G ⊗ A/I has finite height, then G̃ is
representable by AJX1/q∞K.

Proof. Choose a coordinate on G, so that the G(R) may be identified with
Nil(R) of R. Let IR be the extension of I to R, so that IR is nilpotent. If
(x1, x2, . . . ) ∈ G̃(R) lies in the kernel of G̃(R)→ G̃0(R/I), then each xi lies
in IR. But the power series giving multiplication by π in G has π ∈ I as
its linear terms, so it carries ImR onto Im+1

R . It follows that each xi lies in
∩m≥1I

m
R = 0.

We show that G̃(R) → G̃0(R/I) is surjective using the standard “Te-
ichmüller lift”. Suppose (x1, x2, . . . ) ∈ G̃0(R/I). Since I is nilpotent in R,
we may lift each xi to an element yi ∈ G(R). Then the sequence yi,πyi+1,
π2yi+2, . . . must converge to an element zi ∈ G(R). Then (z1, z2, . . . ) ∈
G̃(R) lifts (x1, x2, . . . ) ∈ G̃(R/I). This settles part (1).

For part (2), letG0 = G⊗AA/I. By Lemma 2.4.1, the functor G̃0 : AlgR/I →

VectK is representable by a formal scheme isomorphic to Spf(A/I)JX 1/q∞K.
Thus if R is an A/I-algebra, then G̃0(R) may be identified with lim

←−
Nil(R)
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(limit taken with respect to x 7→ xq). Now suppose R is an object of AlgA;
then by part (1) we have

G̃(R) ∼= G̃(R/I)

= G̃0(R/I)
∼= lim

←−
x7→xq

Nil(R/I)

∼= lim
←−
x7→xq

Nil(R).

In the last step, we have used the standard Teichmüller lift procedure. This
functor is representable by Spf AJX1/q∞K.

Remark 2.4.3. The first part of the proposition shows that the functor G̃
only depends on G0 = G ⊗A A/I, in a functorial sense. That is, there is a
functor

{Formal OK -modules over A/I} → {Formal schemes over Spf A}

G0 7→ G̃,

where G̃ represents the functor R 7→ G̃0(R/π) for any object R of AlgA.
Then if G′ is a lift of G0 to a formal OK-module over R, then we have a
canonical isomorphism of functors G̃′ ∼= G̃.

Remark 2.4.4. In the situation of the second part of the proposition, where
A/I is a perfect field and G is a formal OK -module over A, we will often
use boldface letters, such as X, to denote elements of the K-vector space
G̃(R), where R is an object of AlgA. Such an element corresponds to a
compatible sequence (X(1),X(2), . . . ) in the inverse limit lim

←−
G(R). Assume

that a coordinate on G has been chosen, so that G(R) may be identified
as a set with Nil(R). Then the proposition shows that X corresponds to a
topologically nilpotent element X ∈ R admitting arbitrary qth roots, which
will simply be written X1/q∞ .

Let us record the relationship between X and X. The formal module
G0 has height n, so [π]G0(T ) is a power series in T qn . If A/I is algebraically
closed, we may even perform a change of coordinate so that [π]G0(T ) = T qn .
Then

X = lim
m→∞

(
X(m)

)qmn

.

This pattern (boldface for elements of G̃(R), Roman for elements of R) will
be useful later on.
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2.5 Determinants of formal modules

Assume for the moment that K has characteristic 0. Let ∧nG0 be the formal
group whose (covariant) Dieudonné module is the top exterior power of the
Dieudonné module of G0. Then ∧nG0 has height one and dimension one;
i.e. it is the Lubin-Tate formal OK -module over Fq. Therefore ∧

nG0 admits
a unique deformation ∧nG to any R ∈ C.

Now let (G, ι) be a deformation of G0 to R ∈ C.

Theorem 2.5.1. For every m ≥ 1 there exists an alternating and multilin-
ear map of OK-module schemes

λm : G[πm]n → ∧nG[πm]

of formal OK-module schemes over R, which is universal in the sense that
any alternating and multilinear map from G[πm]n into another OK-module
scheme must factor through λ.

Proof. This is a special case of the main theorem of Hadi Hedayatzadeh’s
thesis, [Hed10], Thm. 9.2.36. There the author constructs arbitrary ex-
terior powers of arbitrary π-divisible OK -modules G over arbitary locally
Noetherian OK -schemes, so long as dimG ≤ 1. Hedayatzadeh shows that if

dimG = 1 then ∧kG has dimension

(
n
k

)
and height

(
n− 1
k − 1

)
. Thus in our

case, the nth exterior power of G has dimension one and height one; i.e. it
is isomorphic to the unique Lubin-Tate formal module, which we have called
∧nG.

Proposition 2.5.2. Let R ∈ C, let (G, ι) be a deformation of G0 to R,
and let x1, . . . , xn ∈ G[πm] be a Drinfeld level πm level structure. Then
λm(x1, . . . , xn) ∈ ∧

nG[πm] is a Drinfeld level πm structure.

Proof. It suffices to treat the universal case, where R = Am, G is the univer-
sal deformation, and X1, . . . , Xn ∈ G[π

m](Am) is the universal level struc-
ture. Let X = λm(X1, . . . , Xn). By Remark 2.2.1, we can reduce to the case
that m = 1. It suffices to show that X is a primitive element of ∧nG[π](A1).
Now we appeal to the fact that A1 is a domain: if X isn’t a primitive el-
ement, then it must be 0. But this would mean that λ1 = 0, which would
contradict the fact that ∧nG[π] 6= 0.

Thm 2.5.1 and Prop. 2.5.2 are true in the case that K has positive
characteristic; see [Wei12], Prop. 4.4.1.
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From Prop. 2.5.2 we deduce the existence of a morphism of formal

schemes M
(0)
G0,m

→ M
(0)
∧nG0,m

. Recall from §2.3 that M
(0)
∧nG0,m

= SpfOKn .
After passing to the geometric generic fiber, it breaks up as the union of

qm−1(q − 1) points. The fibers of M
(0)
G0,m

over each of these points are
connected; this is the main result of [Str08b].

2.6 Determinants of formal vector spaces

For an object R of AlgFq
, one has an injection

lim
←−
m

G0[π
m](R) ↪→ lim

←−
G0(R) = G̃0(R).

Since G̃0(R) is a K-vector space, and lim
←−m

G0[π
m](R) is a torsion-free OK -

module, this extends to an injective map of K-vector spaces

lim
←−
m

G0[π
m](R)⊗K ↪→ G̃0(R).

Lemma 2.6.1. Suppose R is discrete. Then lim
←−m

G0[π
m](R) ⊗OK

K →

G̃0(R) is an isomorphism.

Proof. The only thing to check is surjectivity. Since R is discrete, every
element of G0(R) is π

m-torsion for some m. Let x = (x0, x1, . . . ) ∈ G̃0(R).
If πmx0 = 0, then πmx lies in lim

←−m
G0[π

m](R).

Now let R be an object of AlgOK0
with ideal of definition I which we

assume contains π. Then R/I is a discrete Fq-algebra. Let G be a lift of
G0 ⊗Fq

R/I to R. Thm. 2.5.1 applied to G0 shows that there exists an
alternating OK -multilinear map

λm : G0[π
m](R/I)n → ∧nG0[π

m](R/I).

Taking inverse limits and tensoring withK, we get an alternatingK-multilinear
map

λ : lim
←−
m

G0[π
m](R/I)n ⊗OK

K → lim
←−
m

∧nG0[π
m](R/I)⊗OK

K.

By Lemmas 2.4.2 and 2.6.1, there are isomorphisms

G̃(R) ∼= G̃0(R/I) ∼= lim
←−
m

G0[π
m](R/I)⊗OK

K
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(and similarly for ∧nG). Thus we have defined an alternating K-multilinear
map

λ : G̃n → ∧̃nG

of formal K-vector spaces over OK0 .
After choosing coordinates on G and ∧nG, we get isomorphisms G̃ ∼=

SpfOK0JX
1/q∞K and ∧nG ∼= SpfOK0JT

1/q∞K. The morphism λ above
amounts to having an element

δ(X1, . . . , Xn) ∈ OK0JX
1/q∞

1 , . . . , X1/q∞
n K

which comes equipped with a distinguished family of qmth power roots for
m = 1, 2, . . . . These will simply be written δ(X1, . . . , Xn)

1/qm .

2.7 The structure of the Lubin-Tate moduli problem at in-

finite level

Definition 2.7.1. WriteM
(j)
G0,m

= Spf A
(j)
m . Let A(j) be the completion of

lim
−→

A
(j)
m with respect to the topology induced by the maximal ideal of A

(j)
0

(or any A
(j)
m , it doesn’t matter). Let M

(j)
G0,∞

= Spf A(j), and let MG0,∞ =
∐

j∈ZM
(j)
G0,∞

. MG0,∞ is the Lubin-Tate deformation space at infinite level.

Write A = A(0).

Remark 2.7.2. The completion of a non-noetherian ring at an ideal I
is not necessarily I-adically complete. However, this is true if I is finitely
generated. Thus the A(j) are complete, and Spf A(j) makes sense as a formal

scheme. We have Spf A(j) = lim
←−

Spf A
(j)
m in the category of formal schemes

over SpfOK0 .

Recall that if G0 has height n, then ∧nG0 has height 1. By §2.3 we

have M
(0)
∧nG0,m

= SpfOKm , where Km/K0 is the totally ramified abelian

extension of degree qm−1(q−1). Let K̂∞ be the π-adic completion of K∞ =⋃
mKm. ThenM

(0)
∧nG0,∞

= SpfOK̂∞
.

In §2.5 we constructed a morphismM
(0)
G0,m

→M
(0)
∧nG0,m

. Taking inverse

limits with respect to m, we get a morphismM
(0)
G0,∞

→M
(0)
∧nG0,∞

.

Let Guniv be the universal deformation of G0 to A0. Then over Am, we

have a universal Drinfeld basis X
(m)
1 , . . . , X

(m)
n ∈ Guniv[πm](Am). In the

limit, we get n distinguished elements

X1, . . . ,Xn ∈ G̃
univ(A). (2.7.1)
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Now suppose that G is an arbitrary lift of G0 to OK0 . Let I0 ⊂ A0 be the
maximal ideal, so that A0/I0 = Fq. We have G⊗OK0

Fq = Guniv⊗A0A0/I0 =
G0. Twice applying part (1) of Prop. 2.4.2, we get isomorphisms

G̃univ(A) ∼= G̃univ(A/I0) = G̃0(A/I0) = G̃(A/I0) ∼= G̃(A).

Let Zi be the image of Xi under the above isomorphism. By unwinding
the proof of Lemma 2.4.2, we can say what these are explicitly. Choose
coordinates on G and Guniv, so that G(A) and Guniv(A) may be identified

with Nil(A). Then Zi = (Z
(1)
i , Z

(2)
i , . . . ) ∈ lim

←−
G(A), where

Z
(m)
i = lim

r→∞
[πr]G

(
X

(r+m)
i

)
. (2.7.2)

The tuple (Z1, . . . ,Zn) represents an A-point of G̃, which is to say a mor-

phism of formal schemes M
(0)
G0
→ G̃n over SpfOK0 . Recall by Prop. 2.4.2,

G̃ is representable by a formal scheme isomorphic to SpfOK0JX
1/q∞K. Thus

in fact we have a continuous OK0 -algebra homomorphism OK0JX
1/q∞K→ A

which sends X
1/qm

i to Z
1/qm

i .
Applying the same constructions to ∧nG0, we have a morphism of formal

schemesM∧nG0,∞ → ∧̃
nG. By the naturality of the determinant morphism,

the diagram

M
(0)
G0,∞

//

��

M
(0)
∧nG0,∞

��

G̃n
λ

//
∧̃nG

(2.7.3)

commutes.

Theorem 2.7.3. The above diagram is Cartesian. That is, M
(0)
G0,∞

is iso-

morphic to the fiber product of G̃n and M
(0)
∧nG0,∞

over ∧̃nG.

We remark there is a similar diagram for the entire spaceMG0,∞.

2.8 Proof of Thm. 2.7.3

The fiber product of G̃n andM
(0)
∧nG0,∞

over ∧̃nG is an affine formal scheme,
say Spf B, where B is a complete local ring. We have a homomorphism of
local rings φ : A → B which we claim is an isomorphism. We need a few
lemmas.
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Lemma 2.8.1. Let R be an object of C in which π = 0. Any n-tuple
of elements in G0[π

m−1](R) constitutes a Drinfeld basis for G0[π
m](R).

Similarly, any element in ∧nG0[π
m−1](R) constitutes a Drinfeld basis for

∧nG0[π
m](R).

Proof. The claim for G0 is equivalent to the assertion that the n elements
0, . . . , 0 constitute a Drinfeld basis for G0[π](R). This in turn is equivalent
to the assertion that T qn be divisible by [π]G0(T ) in RJT K. But [π]G0(T )
equals T qn times a unit in FqJT K, because G0 has height n. The claim for
∧nG0 is proved similarly.

Recall the parameters X
(m)
1 , . . . , X

(m)
n ∈ Am, which represent the univer-

sal Drinfeld basis for the Guniv[πm](Am). Let I ⊂ A1 be the ideal generated

by (X
(1)
1 , . . . , X

(1)
n ), which is to say that I is the maximal ideal of A1. We

will often be considering the extension of I to the rings Am and A, and we
will abuse notation in calling these ideals I as well. Note that I ⊂ A1 is the
maximal ideal of A1, so that A1/I = Fq. In particular π ∈ I.

Recall that I0 is the maximal ideal of A0. Thus I0 ⊂ I. In fact:

Lemma 2.8.2. I0 ⊂ I
2.

Proof. X
(1)
1 , . . . , X

(1)
n is a Drinfeld basis for Guniv[π](A1). Thus the polyno-

mial
∏

(a1,...,an)∈kn

(
T − ([a1]Guniv

(X
(1)
1 ) +Guniv · · ·+Guniv [an]Guniv(X(1)

n )
)

is divisible by [π]Guniv(T ) in A1JT K. This product is congruent to T qn modulo
I2. Now we apply Lemma 2.1.1. Since the coefficient of T qn in [π]Guniv(T )
is a unit, we find that the the coefficients of T, T 2, . . . , T qn−1 in [π]Guniv(T )
must lie in I2. But these coefficients generate I0, whence the lemma.

Lemma 2.8.3. In A1JT K, The congruence [π]Guniv(T ) ≡ [π]G(T ) holds mod-
ulo I2JT K.

Proof. Indeed, both sides of the congruence lie in A0JT K and are both con-
gruent to [π]G0(T ) modulo I0JT K, so this follows from Lemma 2.8.2.

The next lemma describes the closed subscheme SpecAm/I of the formal
schemeMG0,m = Spf Am.

Lemma 2.8.4. There is an isomorphism of affine k-schemes SpecAm/I →
G0[π

m−1]n.
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Proof. For an object R of C in which π = 0, we have that HomC(Am/I,R)
is the set of deformations G′ of G0 to R equipped with a Drinfeld basis
x1, . . . , xn for G′[πm](R) which satisfy πm−1xi = 0, i = 1, . . . , n. For such a
deformation we have

G′ = Guniv ⊗A0 R = (Guniv ⊗A0 A0/I0)⊗A0/I0 R = G0 ⊗Fq
R

Thus HomC(Am/I,R) is the set of Drinfeld bases x1, . . . , xn for G0[π
m](R)

which satisfy πm−1xi = 0, i = 1, . . . , n; that is, x1, . . . , xn ∈ G0[π
m−1](R).

But by Lemma 2.8.1, any such n-tuple is automatically a Drinfeld ba-
sis. Thus HomC(Am/I,R) is simply the set of n-tuples of elements of
G0[π

m−1](R). This identifies SpecAm/I with G0[π
m−1]n.

We now turn to B, which by definition is the coordinate ring of the affine

formal scheme G̃n
0 ×∧̃nG

M
(0)
∧nG0,∞

.

Lemma 2.8.5. The qth power Frobenius map is surjective on B/π.

Proof. We have the following presentation of B:

B ≈ OK0JX
1/q∞

1 , . . . , X1/q∞

n K⊗̂OK0
JX1/q∞ KOK̂∞

(2.8.1)

Since the Frobenius map is surjective on OK̂∞
/π (Lemma 2.3.2) and on

OK0/π = Fq , it is surjective on B/π.

For an object R of AlgOK0
, Hom(B,R) is in bijection with the set of

n-tuples x1, . . . , xn ∈ G̃(R) such that λ(x1, . . . , xn), a priori just an element

of ∧̃nG(R), actually lies in T (∧nG)(R) = lim
←−m

∧nG[πm](R), and consti-
tutes a Drinfeld basis for each ∧nG[πm](R). The identity homomorphism
Hom(B,B) corresponds to an n-tuple of universal elements Y1, . . . , Yn ∈

G̃(B). For i = 1, . . . , n, let us write Yi = (Y
(1)
i , Y

(2)
i , . . . ). After choosing

a coordinate on G, we can identify Y
(m)
i with a (topologically nilpotent)

element of B.
Let J ⊂ B be the ideal generated by π and by Y

(1)
1 , . . . , Y

(1)
n .

Lemma 2.8.6. φ(J) ⊂ I, and φ descends to an isomorphism B/J → A/I.

Proof. For an OK0 -algebra R in which π = 0, Hom(B/J,R) is in bijection

with the set of n-tuples x1, . . . , xn ∈ G̃0(R) such that (a) x
(1)
i = 0 for

i = 1, . . . , n and such that (b) λ(x1, . . . , xn) constitutes a compatible family

22



of Drinfeld bases for ∧nG0[π
m](R). However, if condition (a) is satisfied,

then
λ(x1, . . . , xn)

(1) = λ1(x
(1)
1 , . . . , x(1)n ) = 0,

and 0 is always a Drinfeld basis for ∧nG[π](R) by Lemma 2.8.1, so that
condition (b) is satisfied as well.

Therefore SpecB/J = lim
←−m

G[π(m−1)]n. By Lemma 2.8.4 this is isomor-
phic to lim

←−m
SpecAm/I = SpecA/I.

Lemma 2.8.7. φ(J)A is a dense subset of I.

Proof. By Eq. (2.7.2) we have

φ(Y
(r)
i ) = lim

m→∞
[πm]G

(
X

(m+r)
i

)
.

Since the limit converges I-adically, φ
(
Y

(1)
i

)
≡ [πm−1]G0

(
X

(m)
i

)
(mod I2)

for some sufficiently large m. By Lemma 2.8.3 we have

X
(1)
i = [πm−1]Guniv

(
X

(m)
i

)
≡ [πm−1]G

(
X

(m)
i

)
≡ φ

(
Y

(1)
i

)
(mod I2),

and therefore X
(1)
i ∈ φ(J)A + I2. Since the X

(1)
i generate I, we have I ⊂

φ(J)A+ I2, which when iterated yields I ⊂ φ(J)A+ Im for all m ≥ 1. Since
I generates the topology on A, the closure of φ(J)A must equal I.

Lemma 2.8.8. The qth power Frobenius map on A/π has dense image.

Proof. Let A = A/π, and let I be the image of I in A, so that I generates
the topology on A. Similarly define B and J . By Lemma 2.8.6 we have
A/I ∼= B/J , so the qth power Frobenius map is also surjective on A/I .
Thus A = A

q
+ I.

We will prove by induction that for all m ≥ 1, A = A
q
+ I

m
and I =

(A
q
∩ I) + I

m
. The first claim proves the lemma, since I generates the

topology on A. As for the base case m = 1, the first claim is discussed above,
and the second claim is vacuous. For the induction step, assume both claims

for m. By Lemma 2.8.7, φ(J)A is dense in I, so that I = φ(J)A + I
m+1

.
Since Frobenius is surjective on B (Lemma 2.8.5), we have φ(J) ⊂ A

q
∩ I.

Thus

I ⊂ (A
q
∩ I)A+ I

m+1

= (A
q
∩ I)(A

q
+ I

m
) + I

m+1

⊂ (A
q
∩ I) + I

m+1
.

23



The reverse containment is obvious, so that I = (A
q
∩ I) + I

m+1
, thus

establishing the second claim for m+1. Inserting this into A = A
q
+ I gives

A = A
q
+ I

m+1
, which establishes the first claim for m+ 1.

Lemma 2.8.9. The qth power Frobenius map on A/π is surjective.

Proof. Once again let A = A/π and let I be the image of I in A. The ideal
I is finitely generated; let f1, . . . , fn be a set of generators (e.g., the images

of the elements X
(1)
i , i = 1, . . . , n). Recall that for m ≥ 0, I

[qm]
is the ideal

generated by the qmth powers of elements of I , so that I
[qm]

is generated

by the f q
m

i , i = 1, . . . , n. Obviously we have I
[qm]
⊂ I

qm
. But also we have

I
qN
⊂ I

[qm]
for N large enough. Thus the sequence of ideals I

[qm]
generates

the topology on A.

Let a ∈ A. By Lemma 2.8.8 there exists b ∈ A such that a − bq ∈ I
[q]
.

Let us write
a = bq +

∑

i

aif
q
i , ai ∈ A.

For each i we may also find bi ∈ A with ai−b
q
i ∈ I

[q]
; write ai = bqi+

∑
j aijf

q
j ,

aij ∈ A. Thus

a = bq +
∑

i

bqi f
q
i +

∑

i,j

aijf
q
i f

q
j .

Continuing this process, we find a qth root of a in A, namely

b+
∑

i

bifi +
∑

i,j

bijfifj + . . . .

This completes the proof.

Lemma 2.8.10. The induced map B/π → A/π is surjective.

Proof. Let us write φ : B → A for the induced map. Let a ∈ A. By Lemma
2.8.6, there exists b0 ∈ B and a0 ∈ I with a = φ(b0) + a0. By Lemma

2.8.9, a0 has a qth root in A, call it a
1/q
0 . Apply Lemma 2.8.6 to write

a
1/q
0 = φ(b1) + a1, with b1 ∈ B, a1 ∈ I. Then φ(bq1) = a0 − a

q
1 ∈ I, so that

(by Lemma 2.8.6) bq1 ∈ J . Similarly write a
1/q
1 = φ(b2) + a2, and so on. We

have bqm ∈ J for all m ≥ 1. Therefore the series b0 + bq1 + bq
2

2 + . . . converges
to an element b with φ(b) = a.
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Recall that Am is a regular local ring. Let Im be the maximal ideal
of Am. Then for m ≥ 1, Am is generated by the Drinfeld parameters

X
(m)
1 , . . . , X

(m)
n . We have [π]Guniv

(
X

(m+1)
i

)
= X

(m)
i for m ≥ 1. Also recall

that we had set I = I1.

Lemma 2.8.11. As ideals in Am we have IAm ⊂ I
[qn(m−1)]

m . Furthermore,

Inq
n(m−1)

m ⊂ IAm.

Proof. From Lemma 2.8.3 we have [π]Guniv(T ) ≡ [π]G0(T ) modulo I2JT K.
Since G0 has height n, [π]Guniv(T ) is congruent to a power series in T qn

modulo I0JT K ⊂ I2JT K (see Lemma 2.8.2). Thus

(
X

(m)
i

)qn(m−1)

≡ [πm−1]G0

(
X

(m)
i

)
≡ [πm−1]Guniv

(
X

(m)
i

)
≡ X

(1)
i (mod I2Am).

Since the X
(1)
i generate I we have I ⊂ I

[qn(m−1)]
m + I2Am. Iterating this

containment shows that I ⊂ I
[qn(m−1)]
m + INAm for any N . IAm generates

the topology on Am, and I
[qn(m−1)]
m is open, so that IN ⊂ I

(qn(m−1)
m for

sufficiently large N . Thus IAm ⊂ I
[qn(m−1)]
m .

For the second claim, note that Im has n generators X
(m)
1 , . . . , X

(m)
n , so

that Inq
n(m−1)

m is contained in the ideal generated by the
(
X

(m)
i

)qn(m−1)

. The

above congruence shows that each of these elements lies in IAm.

Lemma 2.8.12. Let R be a regular local ring with maximal ideal M whose
residue field has characteristic p. Let Q be a power of p. Let η ∈ R be
an element for which ηQ divides p in R. Suppose N ≥ 1. If xQ ∈ ηQR +
MQN+1, then x ∈ ηR+MN+1.

Proof. For x ∈ R, let v(x) ∈ Z≥0 ∪ {∞} denote the maximal s ≥ 0 such
that x ∈M s. If x satisfies the hypothesis of the lemma, then every element
of x+ ηR satisfies the hypothesis as well. Indeed if x′ = x+ ηy for y ∈ R,
then (x′)Q ∈ xQ + pR+ ηQR ⊂ xQ + ηQR ∈ ηQR+MQN+1. Similarly, if x
satisfies the conclusion of the lemma, then so does every element of x+ ηR.
Thus to prove the lemma, we assume that x satisfies v(x) ≥ v(x+ηy) for all
y ∈ R. Under this assumption, we will show that x ∈MN+1, which suffices.

Assume otherwise, so that v(x) ≤ N . Consider the graded ring GrR =⊕
i≥0M

i/M i+1. Since R is a regular local ring, GrR is isomorphic to a power
series ring over the residue field of R. If z ∈ R, define z ∈ GrR as follows. If

z ∈ R is nonzero, let z ∈ GrR denote the image of z in I
v(z)
m /I

v(z)+1
m . Define

0 = 0. We have xQ ∈ ηQR +MQN+1 and v(xQ) ≤ QN . This implies that
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ηQ divides xQ in GrR, and therefore (since this ring is a unique factorization
domain) η divides x. Thus we can find y ∈ R with v(x − ηy) > v(x). But
this contradicts our assumption about x.

Lemma 2.8.13. For every r ≥ 1, A contains an element ηr with ηq
r

r A =
πA. If f ∈ A satisfies f qr ∈ πA, then f ∈ ηrA.

Proof. We have seen that Ar contains the ring of integers OKr in the Lubin-

Tate extension Kr/K0. A uniformizer πr of OKr satisfies π
qr−1(q−1)
r OKr =

πOKr . Thus ηr = πq−1
r+1 satisfies ηq

r

r A = πA.
Now suppose that f ∈ A satisfies f qr ∈ πA. Let N ≥ 1 be arbitrary.

Since A is the I-adic completion of the direct limit of the Am, there exist
m ≥ 1 and fm ∈ Am such that f − fm ∈ I

nqrN+1A. Then f q
r

m ∈ πAm +

Inq
rN+1Am. By Lemma 2.8.11 we have f q

r

m ∈ πAm + I
[qn(m−1)](nqrN+1)
m ⊂

πAm+Inq
r+n(m−1)N+1

m . After possibly enlarging m we may assume that ηr ∈

Am. Applying Lemma 2.8.12 we find fm ∈ ηrAm + Inq
n(m−1)N+1

m . Applying
Lemma 2.8.11 again, we get fm ∈ ηrAm+INA. Thus f ∈ ηrA+INA. Since
N was arbitrary, f lies in the closure of ηrA, which is ηrA itself.

We are now ready to show that that φ : B → A is an isomorphism. We
will first show it is surjective. If a ∈ A, use Lemma 2.8.10 to find b ∈ B
with a = φ(b0) + πa1, a1 ∈ A. Write a1 = φ(b1) + πa2, and so on. Then
b = b0 + πb1 + π2b2 + . . . satisfies φ(b) = a.

We now turn to injectivity. Suppose that b ∈ B is an element with
φ(b) = 0. Let m ≥ 1. Since Frobenius is surjective on B/π (Lemma 2.8.5),
we may write b ≡ cq

m
(mod πB), with c ∈ B. Then φ(c)q

m
∈ πA. By

Lemma 2.8.13, φ(c) ∈ ηmA. Since φ is an isomorphism B/J → A/I (Lemma
2.8.6), we have c ∈ ηmB + J , and therefore b ∈ πB + J [qm] for all m ≥ 1.
Since B is J -adically complete, this implies that b lies in the closure of πB,
which is πB itself. This shows that kerφ ⊂ πB. But then b/π ∈ kerφ, so
that in fact b ∈ π2B. Inductively, we find b ∈ πmB for all m ≥ 1. Since B
is π-adically separated, b = 0. This completes the proof of Theorem 2.7.3.

Corollary 2.8.14. If K has positive characteristic, then

A ∼= FqJX
1/q∞

1 , . . . , X1/q∞
n K.

If K has characteristic 0, then put A[ = lim
←−

A/π, where the limit is taken
with respect to the qth power Frobenius map. Then

A[ ∼= FqJX
1/q∞

1 , . . . , X1/q∞
n K
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Proof. By Thm. 2.7.3, we have an isomorphism of complete local OK̂∞
-

algebras

OK0JX
1/q∞

1 , . . . , X1/q∞

n K⊗̂OK0
JX1/q∞ KOK̂∞

→ A (2.8.2)

In the tensor product appearing in Eq. (2.8.2), the image ofX ∈ OK0JX
1/q∞K

is δ(X1, . . . , Xn) in the left factor and t in the right. First assume that K
has positive characteristic. Then the map OK0JX

1/q∞K → OK̂∞
is surjec-

tive with kernel generated by π − g(X) for some fractional power series
g(X) ∈ FqJX

1/q∞K without constant term. Recalling that OK0 = FqJπK, we
have

A ∼= OK0JX
1/q∞

1 , . . . , X1/q∞

n K/(π − g(δ(X1, . . . , Xn)))

= FqJX
1/q∞

1 , . . . , X1/q∞

n K.

Now assume K has characteristic 0. We have

A/π ∼= FqJX
1/q∞

1 , . . . , X1/q∞
n K⊗̂FqJX1/q∞ KOK∞

/π.

Now take the inverse limit along the qth power Frobenius maps. In doing so,
the surjection FqJX

1/q∞K→ OK∞
/π becomes an isomorphism FqJX

1/q∞K→

OK[
∞
. Thus A[ = FqJX

1/q∞

1 , . . . , X
1/q∞
n K as required.

2.9 Group actions and geometrically connected components

Thm. 2.7.3 extends to the entire formal scheme MG0,∞, so that we get a
cartesian diagram

MG0,∞
//

��

M∧nG0,∞

��

G̃n
λ

// ∧̃nG

(2.9.1)

The action of GLn(K) ×D× onMG0,∞ can be described directly in terms
of this diagram. GLn(K) acts on the right on G̃n via the usual right action
of matrices on row vectors. The determinant morphism λ transforms the
action of g1 ∈ GLn(K) into det g1 ∈ K

×, which preserves M∧nG0,∞. Thus
g1 preservesMG0,∞.

Recall that D = EndG0 ⊗OK
K. An element g2 ∈ D

× determines an
autmorphism of G̃0, hence of G̃ by Prop. 2.4.2. The determinant morphism
transforms the action of g2 into N(g2) ∈ K×, where N : D → K is the
reduced norm map. Thus g2 preservesMG0,∞ as well. However, in order to
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get a right action of D× onMG0,∞ which is consistent with the previously
described action on the finite-level spaces, we define

(X1, . . . ,Xn)g2 = (g−1
2 X1, . . . , g

−1
2 Xn),

whenever X1, . . . ,Xn are sections of G̃.
Let C be the completion of an algebraic closure of K. Choose an embed-

ding K̂∞ ↪→ C. This is tantamount to choosing a generator t for the free
rank one OK -module lim

←−
∧nG[πm](OC). The inclusion lim

←−
∧nG[πm](OC) ⊂

lim
←−
∧nG(OC) allows us to view t as an element of ∧̃nG(OC). This in turn

corresponds (see Rmk. 2.4.4) to a topologically nilpotent element t ∈ OC

together with a compatible system of qth power roots t1/q
m

for m ≥ 1.
Let

A◦
m = Am⊗̂OKm

OC,

and let A◦ be the completion of lim
−→m

A◦
m. Let M◦

G0,∞
= Spf A◦. From

Thm. 2.7.3 we may identify M◦
G0,∞

with the fiber of λ : G̃n
OC
→ ∧̃nGOC

over the single point t ∈ ∧̃nG(OC). Thus

A◦ ∼= OCJX
1/q∞

1 , . . . , X1/q∞

n K/
(
δ(X1, . . . , Xn)

1/qm − t1/q
m
)
. (2.9.2)

The OC-algebra A◦ admits an action of the group (GLn(K) × D×)det=N

consisting of pairs (g, b) with det g = N(b).

2.10 The Lubin-Tate space at infinite level as a perfectoid

space

We wish to take the adic generic fiber of the formal schemeM
(0)
∞ =M

(0)
G0,∞

.

The construction of this generic fiber is as follows. LetM
(0),ad
∞ = Spa(A,A)

be the set of continuous valuations on A, as in [Hub94]. This is fibered over

the two-point space Spa(OK ,OK), and we can letM
(0),ad
∞,η be the fiber over

η = Spa(K,OK). The trouble with this is that the structure presheaf of
Spa(A,A) isn’t necessarily a sheaf, and therefore we don’t know a priori

that M
(0),ad
∞,η is an adic space. We will resolve this problem by observing

that M
(0),ad
∞,η is a perfectoid space after passing to C. It is known that the

structure presheaf on a perfectoid affinoid is a sheaf ([Sch12], Thm. 6.3).

Let η = Spa(C,OC), and letM
(0),ad
∞,η be the base change to C.

Lemma 2.10.1. M
(0),ad
∞,η can be covered by perfectoid affinoids (and there-

fore is a perfectoid space).
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Proof. This is a consequence of the fact that AOC
= A⊗̂OC is a reduced

complete flat adic OC-algebra admitting a finitely generated ideal of defini-
tion I containing π, such that the Frobenius map is surjective on AOC

/π.
Indeed, let f1, . . . , fn be a set of generators for I (such as the elements

X
(1)
i ). Then any valuation | | belonging toM

(0),ad
∞,η must satisfy |fi| < 1 for

i = 1, . . . , n. Since |π| 6= 0, there exists r ≥ 1 for which |f r
i | ≤ |π|. Let Rr =

AOC
〈f ri /π〉 [1/π], and let R+

r ⊂ Rr be the integral closure of AOC
〈f ri /π〉

in Rr. The Frobenius map is surjective on R+
r /π (this follows quickly from

the corresponding property of A), and thus (Rr, R
+
r ) is a perfectoid OK̂∞

-
algebra, cf. [Sch12], Def. 6.1. The valuation | | extends uniquely to Rr and
satisfies |R+

r | ≤ 1, so it belongs to Spa(Rr, R
+
r ). We have thus shown that

M
(0),ad
η is the union of perfectoid affinoids Spa(Rr, R

+
r ).

3 Representation-Theoretic preparations

3.1 Non-abelian Lubin-Tate theory

Let Mad
m,η be the adic geometric generic fiber of the formal scheme Mm,

and let
Hi

c = lim
−→
m

Hi
c

(
Mad

m,η,Q`

)
,

where ` is a prime distinct from the residue characteristic of K.
Then H i

c admits an action of GLn(K) × D× ×WK , in which elements
of the form (α, α, 1), α ∈ K×, act trivially. (See [Str08a], §2.2.2 for a
detailed discussion of this action.) Non-abelian Lubin-Tate theory refers to
the realization of Langlands functoriality by the H i

c, as predicted by the
conjectures made in [Car90]. Carayol’s conjectures have been settled (at
least for supercuspidal representations) in [HT01] as part of the proof of
the local Langlands conjectures for GLn over a p-adic field. For a complete
historical account of non-abelian Lubin-Tate theory, see the introduction to
[Str08a].

For the remainder of this discussion we assume that n = 2. In that case,
a complete description of H1

c was given in [Car86], 12.4 Proposition. See
also [Car90], §3.3. We present it here because it will be indispensable to the
proof of our main theorem.

Let Π 7→ LLC(Π) be the bijection between irreducible admissible rep-
resentations of GL2(K) (with complex coefficients) and two-dimensional
Frobenius-semisimple Weil-Deligne representations of K afforded by the lo-
cal Langlands correspondence. Write H(Π) = LLC(Π ⊗ |det|−1/2); then
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Π 7→ H(Π) is compatible under automorphisms of the complex field. Thus
Π 7→ H(Π) may be extended unambiguously to representations with coeffi-
cients in any algebraically closed field of characteristic zero, e.g. Q`.

Let χ : K× → Q
×
` be a character, and let H1

c [χ] be the subspace of H1
c

on which the center K× of GL2(K) acts as χ.

Theorem 3.1.1. The representation H1
c [χ] decomposes as the direct sum:

H1
c [χ] =

⊕

Π∈A2(χ)

Π⊗ JL(Π̌)⊗H(Π)′,

where Π varies through the set A2(χ) of discrete series representations of
GL2(K) with central character χ. The representation H(Π)′ is the unique
irreducible quotient of H(Π).

Thus if Π is supercuspidal then H(Π)′ = H(Π). The non-supercuspidal
discrete series representations of GL2(K) are exactly the representations
St⊗(ψ◦det), where ψ is a character of K× and St is the Steinberg represen-
tation. We will write St⊗ψ as a shorthand for St⊗(ψ ◦ det). Note that the
central character of St⊗ψ is ψ2. For Π of this form we have dimH(Π)′ = 1.

Proof. We use the notation of [Car90], §3.3. Carayol shows that if U v is the
space of vanishing cycles in degree 1 attached to the tower of formal schemes
Mm, then the χ-isotypic component of U v decomposes as in the theorem.
By using the comparison theorem of [Ber96], Prop. 2.4, Uv is isomorphic to
our H1

c . See [Str08a], proof of Lemma 2.5.1 for details.

LetMad
m,η/π

Z denote the quotient ofMad
m,η by the subgroup of GLn(K)

generated by the central element diag(π, π). Multiplication by this matrix

induces an isomorphism between M
(j),ad
m,η and M

(j+2),ad
m,η , so the quotient

Mad
m,η/π

Z is isomorphic to two copies ofM
(0),ad
m,η . As a consequence of Thm.

3.1.1 we can give a formula for the dimension of the cohomology ofMad
m,η/π

Z.

Corollary 3.1.2. We have

dimH1
c (M

ad
m,η/π

Z,Q`) =
∑

χΠ(π)=1

2 dimΠΓ(πm) ⊗ JL(Π)

+2qm−1(q − 1)(#P1(OK/π
m)− 1),

where Π runs over supercuspidal representations of GL2(K) whose central
character χΠ is trivial on π, and Γ(πm) is the congruence subgroup 1 +
πmM2(OK).
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Proof. In Thm. 3.1.1, taking Γ(πm)-invariants and summing over all χ with
χ(Π) = 1 yields

H1
c (M

ad
m,η/π

Z,Q`) =
⊕

χΠ(π)=1

ΠΓ(πm) ⊗ JL(Π)⊗H(Π)′.

For supercuspidal representations Π we have dimH(Π)′ = 2. All other
representations are of the form Π = St⊗ψ, where ψ runs over characters of
K× with ψ(π) = ±1. For such Π, we have that dimJL(Π) = dimH(St)′ = 1.

It remains to compute dim(St⊗ψ)Γ(π
m). Certainly this is only nonzero

if ψ(1 + πmOK) = 1. In that case, dim(St⊗ψ)Γ(π
m) = dimStΓ(π

m). Now
recall that St can be modeled on the space of all locally constant functions on
P1(K), modulo constants. It follows that dimStΓ(π

m) = #P1(OK/π
m)− 1.

We conclude the proof by noting that the number of characters ψ of K×

satisfying ψ(π) = ±1 and ψ(1 + πmOK) = 1 is 2#(OK/π
m) = 2qm−1(q −

1).

3.2 Chain orders and strata

We now review the theory of types for GL2(K) as presented in [BH06].
A lattice chain is an K-stable family of lattices Λ = {Li}, with each

Li ⊂ K ⊕K an OK -lattice and Li+1 ⊂ Li for all i ∈ Z. There is a unique
integer e(Λ) ∈ {1, 2} for which πLi = Li+e(Λ). Let AΛ be the stabilizer in
M2(K) of Λ. Up to conjugacy by GL2(K) we have

AΛ =





M2(OK), eΛ = 1,(
OK OK

pK OK

)
, eΛ = 2

Definition 3.2.1. A chain order in M2(K) is an OK-order A ⊂ M2(K)
which is equal to AΛ for some lattice chain Λ. We say A is unramified or
ramified as eΛ is 1 or 2, respectively.

Suppose A is a chain order in M2(K); let P be its Jacobson radical.

Then P = πA if A is unramified and P =

(
pK OK

pK pK

)
in the case that

A =

(
OK OK

pF OK

)
. We have a filtration of A× by subgroups Un

A = 1 +Pn,

n ≥ 1.
These constructions have obvious analogues in the quaternion algebra

D: If A = OD is the maximal order in D, then the maximal two-sided ideal
of A is generated by a prime element πD of D. We let Un

A = 1 + πnDOD.
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3.3 Characters and Bushnell-Kutzko types

In the following discussion, ψ : K → Q
×
` is a fixed additive character. We

assume that ψ is of level one, which means that ψ(pK) is trivial but ψ(OK)
is not. (The choice of level of ψ is essentially arbitrary, but it has become
customary to use characters of level one.) Write ψM2(K) for the (addi-
tive) character of M2(K) defined by ψM2(K)(x) = ψ(tr x). Similarly define
ψD : D → C by ψD(x) = ψ(trD/K(x)), where trD/K is the reduced trace.

Now let A be either M2(K) or D. Let A ⊂ A be an OK -order which
equals a chain order (if A =M2(K)) or the maximal order in D (if A = D).
Let n ≥ 1. We have a character ψα of Um

A defined by

Um
A /U

m+1
A → Q

×
`

1 + x 7→ ψ(αx)

If π is an admissible irreducible representation of GL2(K), one may ask for
which α is the character ψ contained in π|Um

A
. This is the basis for the

classification of representations by Bushnell-Kutzko types, c.f. [BK93].

Definition 3.3.1. A stratum in A is a triple of the form S = (A,m, α),
where m ≥ 1 and α ∈ P−m

A . Two strata (A,m, α) and (A,m, α′) are
equivalent if α ≡ α′ (mod P1−m).

Definition 3.3.2. Let S = (A,m, α) be a stratum.

1. S is ramified simple if L = K(α) is a ramified quadratic extension field
of K, m is odd, and α ∈ L has valuation exactly −m.

2. S is unramified simple if L = K(α) is an unramified quadratic exten-
sion field of K, α ∈ L has valuation exactly −m, and the minimal
polynomial of πmα over K is irreducible mod π.

3. S is simple if it is ramified simple or unramified simple.

If S = (A,m, α) is a stratum inM2(K) (resp., D) and Π is an admissible
representation of GL2(K) (resp., smooth representation of D×), we say that
Π contains the stratum S if π|Um

A
contains the character ψα.

We call Π minimal if its conductor cannot be lowered by twisting by
one-dimensional characters of F×.

From [BH06] we have the following classification of supercuspidal repre-
sentations of GL2(K):

Theorem 3.3.3. A minimal irreducible admissible representation Π of GL2(K)
is supercuspidal if and only if one of the following holds:
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1. Π contains the trivial character of U 1
M2(OK) (i.e. Π has “depth zero”).

2. Π contains a simple stratum.

The analogous statement for D is:

Theorem 3.3.4. A minimal irreducible representation Π of D× of dimen-
sion greater than 1 satisfies exactly one of the following properties:

1. Π contains the trivial character of U 1
OD

(i.e. Π has “depth zero”).

2. Π contains a simple stratum.

4 CM points and linking orders

4.1 CM points

Once again, let G0 be a one-dimensional formal OK-module of height 2
over k. Let L/K be a separable quadratic extension, which we consider
embedded in a fixed complete algebraically closed field C/K. In this section
we pay special attention to those deformations (G, ι) of G0 which admit
endomorphisms by an order in L. These are investigated in [Gro86].

Definition 4.1.1. Let x be an OC-point of M∞ =MG0,∞ corresponding
to the triple (G, ι, φ), where (G, ι) is a deformation of G0 and φ : K

2 → V (G)
is a basis for its rational Tate module. Say that x has CM by L if G admits
endomorphisms by an order in L.

Suppose x is a CM point. Recall that D is the quaternion algebra of
endomorphisms of G0 up to isogeny. Then x induces embeddings i1 : L →
Mn(K) and i2 : L→ D, characterized by the commutativity of the diagrams

K2

i1(α)

��

φ
// V (G)

α

��

K2
φ

// V (G)

and

G0

i2(α)
��

ι
// G

α

��

G0 ι
// G
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for α ∈ K. At the risk of minor confusion, from this point forward we will
usually suppress i1, i2 from the notation and instead think of L as a subfield
of Mn(K) and D. Let ∆x : L → Mn(K) × D be the diagonal embedding.
The group GLn(K) × D× acts transitively on the set of C-points of M∞

with CM by L; the stabilizer of x is ∆x(L
×). We note that after replacing

G by an isogenous OK -module one can assume that EndG is the maximal
order OL.

Points in M∞(OC) which have CM by some L/K will be called CM
points. These points give rise to C-points of the perfectoid space Mad

∞,η,
which we will also call CM points.

4.2 Linking Orders

To a CM point x and an integer m ≥ 0 we will associate an OK-order
Lx,m ⊂M2(K)×D which we have called a “linking order” in [Wei10].

The CM point x corresponds to a triple (G, ι, φ), where (G, ι) is a de-
formation of G0 to OC such that EndG = OL and φ : K2 → V (G) is an
isomorphism. The isomorphism φ allows us to identify M2(K) with the
algebra of K-linear endomorphisms of V (G) ∼= K2.

The integral Tate module T (G) is a lattice in the V (G). Since G admits
endomorphisms by L up to isogeny, V (G) becomes an L-vector space of
dimension 1, and it makes sense to talk about the family of lattices piLT (G) ⊂
V (G), for i ∈ Z. Observe that these form a lattice chain, cf. §3.2.

Definition 4.2.1. Let Ax ⊂ M2(K) be the chain order corresponding to
the lattice chain

{
piLT (G)

}
i∈Z

.

Up to conjugacy by an element of GL2(K) we have

Ax =





M2(OK), L/K unramified,(
OK OK

pK OK

)
, L/K ramified.

Since T (G) is an OL-module, Ax contains OL. It will be helpful to
give a basis for Ax as an OL-module. The basis of the OK -module T (G)
corresponding to φ takes the form {α1w,α2w}, where w generates T (G) as
an OL-module and α1, α2 is a basis for OL/OK . Let σ be the nontrivial
automorphism of L/K. Define $1 ∈ EndOK

T (G) by $1(αiw) = ασ
i w,

i = 1, 2. Then we have
A = OL ⊕OL$1.
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In fact this is an orthogonal decomposition with respect to the trace pairing
on M2(K). Note that $2

1 = 1 in GL2(K).
Now we turn to the corresponding structures in the quaternion algebra

D. We have an L-linear pairing D × D → L given by the reduced trace,
which induces an orthogonal decomposition D = L⊕ C. Then C ∩ OD is a
free OL-module of rank 1, generated by an element $2, and then

OD = OL ⊕OL$2.

Since trD/K($2) = 0, we have $2
2 ∈ OK . Note that $2

2 lies in O×
K if

L/K is ramified, and $2
2 is a uniformizer of OK if L/K is unramified.

We are now ready to define the linking orders Lx,m. Let ∆x : L →
M2(K)×D be the diagonal embedding α 7→ (α, α).

Definition 4.2.2. Let m ≥ 0 be an integer. The linking order of conductor
m associated to the CM point x is

Lx,m = ∆x(OL) + (pmL × pmL ) +
(
p
r1(m)
L $1 × p

r2(m)
L $2

)
,

where r1(m) = b(m+ 1)/2c and r2(m) is defined by

r2(m) =

{
bm/2c , L/K unramified

b(m+ 1)/2c , L/K ramified.

We also define a double-sided ideal L◦
x,m ⊂ L by

L◦x,m = ∆x(pL) + (pm+1
L × pm+1

L ) +
(
p
r1(m+1)
L $1 × p

r2(m+1)
L $2

)
.

Let Rx,m = Lx,m/L
◦
x,m, a finite-dimensional algebra over OL/pL. Finally,

let R1
x,m be the image of L×x,m ∩ (GL2(K)×D×)det=N in R×

x,m.

Remark 4.2.3. The values of r1(m) and r2(m) are the least possible such
that the expression given for Lx,m is closed under multiplication. Also note
that if L/K is unramified then Lx,0 is conjugate to M2(OK)×OD. Finally,
note that L×x,m is normalized by ∆x(L

×).

The following Lemma is [Wei10], Prop. 4.3.4.

Lemma 4.2.4. The ring Rx,m and the subgroup R1
x,m ⊂ R

×
x,m take the

following values.

1. If L/K is unramified, then Rx,0
∼= M2(Fq) × Fq2, and R1

x,0 is the

subgroup of pairs (g1, g2) with det g1 = gq+1
2 .
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2. If L/K is unramified and m > 0, then Lx,m/L
◦
x,m is isomorphic to the

ring of 3× 3 matrices of the form

[α, β, γ] :=



α β γ

αq βq

α




with α, β, γ ∈ kL = OL/pL ∼= Fq2 . The description of this isomor-
phism depends on the parity of m.

If m ≥ 2 is even, then a typical element of Lx,m is of the form
∆(α) + (πmγ, 0) + (πm/2β$1, π

m/2δ$2), with α, β, γ, δ ∈ OL. The
isomorphism carries the image of this element in Rx,m onto the ma-
trix [α, β, γ]. (The overline indicates reduction modulo pL.)

If m is odd, then a typical element of Lx,m is of the form ∆(α) +
(0, πmγ)+ (π(m+1)/2δ$1, π

(m−1)/2β$2), with α, β, γ, δ ∈ OL. The iso-
morphism carries the image of this element in Rx,m onto the matrix
[α, β, γ].

In either case, the subgroup R1
x,m ⊂ R

×
x,m corresponds to the group of

matrices [α, β, γ] with αγq + αqγ = βq+1.

3. If L/K is ramified and m is odd, then we have an isomorphism Rx,m
∼=

k[e]/e2. A typical element of Lx,m is of the form ∆(α) + (βπm
L , 0) +

(π(m+1)/2γ$1, π
(m+1)/2δε), with α, β, γ, δ ∈ OL. The isomorphism

carries the image of this element in Rx,m onto α + βe. We have
R1

x,m = R×
x,m.

We will not be needing an explicit presentation for Rx,m in the case that
L/K is ramified and m is even.

Definition 4.2.5. Define groups Kx,m and K1
x,m by

Kx,m = ∆x(L
×)L×x,m

K1
x,m = Kx,m ∩ (GL2(K)×D×)det=N

We now construct a family of representations of the groups Kx,m, as in
Thm. 5.0.3 of [Wei10].

Definition 4.2.6. Let x be a CM point, and Let S be a simple stratum
of the form (Ax,m, α). We define a certain irreducible representation ρS of
Kx,m with coefficients in Q`. The representation ρS will have the following
properties:
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1. The restriction of ρS to L×x,m factors through R×
x,m.

2. The restriction of ρS to ∆(K×) ⊂ Kx,m is a sum of copies of the trivial
representation.

3. The restriction of ρS to Um
Ax
× Um

OD
is sum of copies of the character

(1 + x, 1 + y) 7→ ψM2(K)(αx)ψD(αx)
−1.

If L/K is ramified, then we have an isomorphism R×
x,m
∼= (k[e]/e2)×

under which Um
Ax
× Um

OD
corresponds to 1 + ke. The stratum S determines

a nontrivial character of this group, which we extend to all of R×
x,m by

requiring that it be trivial on k×. Inflate this to get a character ρS of L×x,m.
Finally, extend ρS to all of Kx,m = ∆x(L

×)L×x,m by declaring ρS(∆x(πL)) =
−1.

If L/K is unramified and m ≥ 1, then R×
x,m is isomorphic to the group

of matrices of the form

[α, β, γ] =



α β γ

αq βq

α


 , α ∈ k×L , β, γ ∈ kL.

Under this isomorphism, the image of Um
Ax
×Um

OD
inR×

x,m corresponds to the
subgroup U = {[0, 0, γ]|γ ∈ kL}, which lies in the center of Rx,m. The most
direct way to construct ρS uses the `-adic cohomology of a curve admitting
an action by R×

x,m. Recall that R1
x,m is isomorphic to the subgroup of

GL3(kL) consisting of matrices of the form [α, β, γ] with βq+1 = αqγ +αγq.
Observe that this group preserves the affine plane curve C 1 defined by the
equation Zq

1 + Z1 = Zq+1
2 , under the action (Z1, Z2) 7→ (Z1 + α−1βqZ2 +

α−1γ, αq−1Z2 + α−1β). Let C = Rx,m ×R1
x,m

C1. By inflation, we get an

action of L×x,m on C. Extend this action to all of Kx,m by having ∆x(π) act
trivially.

Let ρ be the action of Kx,m on H1
c (C,Q`). Since U lies in the center of

R×
x,m, and ψ is a character of U , it makes sense to define ρS as the ψ-isotypic

component of ρ. It is irreducible of dimension q. For proofs of these claims,
see [Wei10], §5.1.

Finally, we turn to the case L/K unramified andm = 0. We have Rx,0 =
M2(OK)×kL. Let θ be a character of k×L which does not factor through the
norm map k×L → k×. There exists an irreducible cuspidal representation ηθ
of GL2(k) corresponding to θ. The character of this representation takes the
value −(θ(α) + θ(αq)) on an element g ∈ GL2(k) with distinct eigenvalues
α, αq ∈ kE not lying in k. Let ρθ be the character ηθ ⊗ θ−1 of R×

x,0 =

GL2(k)× k
×
L . Extend ρθ to all of Kx,0 by having ∆x(π) act trivially.
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Theorem 4.2.7. Let x be a point with CM by L.

1. Let S be a simple stratum of the form (Ax,m, α), with α ∈ L. Let ρS
be the representation of Kx,m described in Defn. 4.2.6. Let

ΠS = Ind
GL2(K)×D×

Kx,m
ρS

(compactly supported smooth induction). For a character χ of K×,
let ΠS [χ] be the subspace of ΠS on which the center of GL2(K) acts
through χ. Then ΠS [χ] is the direct sum of representations of GL2(K)×
D× of the form Π ⊗ JL(Π̌), where Π is a minimal supercuspidal rep-
resentation having central character χ and containing the stratum S.
Every such Π appears in ΠS [χ].

2. Now suppose L/K is unramified, and let θ be a character of k×L which
does not factor through the norm map k×L → k×. Let

Πθ = Ind
GL2(K)×D×

Kx,0
ρθ,

and define Πθ[χ] as above. Then Πθ[χ] is the direct sum of representa-
tions of GL2(K)×D× of the form Π⊗ JL(Π̌), where Π is a minimal
supercuspidal representation of depth 0 and central character χ. Every
such Π appears in some Πθ[χ].

Proof. This is a restatement of Thm. 6.0.1 of [Wei10]. There, the center
is treated a little differently. In [Wei10] one first defines a representation
ρS of L×x,m, and then (after choosing a central character χ) extends of ρS
to a representation ρS,χ of (K× ×K×)L×x,m = (K× × {1})K×

x,m by having
K××{1} act through χ. Thm. 6.0.1 of [Wei10] says that the representation
of GL2(K) ×D× induced from ρS,χ is a direct sum of representations Π ⊗
JL Π̌ as claimed in Thm. 4.2.7. But it is easy to see that the induced
representation of ρS,χ is the same thing as our ΠS [χ] above. The argument
for depth zero supercuspidals is similar.

4.3 Curves over Fq and the Jacquet-Langlands correspon-

dence

Definition 4.3.1. We define a smooth affine curve Cx,m over Fq. In each
case we will define an action of K1

x,m on Cx,m, whose restriction to L×
x,m

factors through the finite group R×
x,m.
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1. When L/K is unramified and m = 0, let Cx,0 be the affine plane curve
with equation Z1Z

q
2 −Z

q
1Z2 = 1. An element of R1

x,0 corresponds to a

pair (g1, g2) in GL2(Fq)× F×
q2

satisfying det g1 = gq+1
2 . Suppose g1 =(

a b
c d

)
. This pair will act on Cx,0 by sending (Z1, Z2) to g

−1
2 (aZ1 +

cZ2, bZ1 + dZ2).

2. When L/K is unramified and m > 0 is even, let Cx,m be the affine

plane curve with equation Zq
1 + Z1 = Zq+1

2 . An element of R1
x,m

corresponds to a matrix [α, β, γ] ∈ GL3(Fq2) which satisfies αγq +
αqγ = βq+1. This element will act on Cx,m by sending (Z1, Z2) to
α−1(αZ1 + βqZ2 + γ, αqZ2 + β).

3. When L/K is unramified andm > 0 is odd, let Cx,m be the affine plane

curve with equation Zq
1 + Z1 = Zq+1

2 . The action of Kx,m is defined
as follows: [α, 1, 1] acts as (Z1, Z2) 7→ (Z1, α

q−1Z2) (as it did in the m
even case), but [1, β, γ]−1 acts as (Z1, Z2) 7→ (Z1 +βqZ2 + γq, Z2 +β).

4. When L/K is ramified and m is odd, let Cx,m be the affine plane curve
with affine equation Zq

1 − Z1 = Z2
2 . An element of R1

x,m corresponds
to an element a+ be ∈ Fq[e]/e

2, a 6= 0. This element will act on Cx,m

by sending (Z1, Z2) to (Z1 + a−1b, Z2).

In each case Cx,m has an action of R×
x,m, hence of L×x,m. Extend this to

an action of Kx,m by the following rule: if L/K is unramified, have ∆x(π)
act trivially, and if L/K is ramified, with uniformizer πL, have ∆x(πL) send
(Z1, Z2) to (Z1,−Z2).

The compactly supported cohomology H1
c (Cx,m,Q`) is a smooth repre-

sentation of Kx,m.

Proposition 4.3.2. Suppose m > 0. If S = (Ax,m, α) is a simple stratum
then ρS |K1

x,m
is a direct summand of H1

c (Cx,m,Q`).

Now suppose that L/K is unramified and m = 0. If θ is character of
k×L which does not factor through the norm map k×L → k×, then ρθ|K1

x,0
is a

direct summand of H1
c (Cx,0,Q`).

Proof. The proof proceeds by cases.

1. When L/K is ramified (so that m is odd), Cx,m is the curve Zq
1−Z1 =

Z2
2 , and R

×
x,m acts through a quotient Fq acting through substitutions

(Z1, Z2) 7→ (Z1+a, Z2), with a ∈ Fq. The claim is reduced to showing
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that H1
c (Cx,0,Q`) is the direct sum of the nontrivial characters of

Fq. This is an exercise, see [Kat81], Cor. 2.2, which proves a more
general statement about curves of the form Z q

1−Z1 = ZN
2 : the isotypic

component of a nontrivial character in H1
c has dimension N − 1.

2. When L/K is unramified and m is even, Cx,m is the very curve C1

used to define the representations ρS in the first place: the ρS were
defined as summands of Ind

Rx,m

R1
x,m

H1
c (Cx,m,Q`), inflated to Lx,m and

extended to Kx,m by having ∆x(π) act trivially. From this description
it is clear that ρS |K1

x,m
is a direct summand of H1

c (Cx,m,Q`).

3. When L/K is unramified and m is odd, Cx,m carries a different action
of Rx,m as the curve C1 used to define the ρS , but the same repre-
sentations of R×

x,m appear in the cohomology H1
c (Cx,0,Q`). To prove

this, it is enough to show that the trace of an element of R×
x,m acting

on the Euler characteristic of C1 is the same in either action, and this
is easily done using the Lefschetz fixed-point formula.

4. When L/K is unramified andm = 0, Cx,0 is one connected component
of the Deligne-Lusztig curve associated to GL2(k), which is CDL =
R×

x,0 ×R1
x,0
Cx,0. The observation that H1(CDL,Q`) is the direct sum

of all representations of the form ηθ ⊗ θ−1, with θ 6= θq, goes back
to Drinfeld. It follows that if ηθ ⊗ θ

−1 is any such representation of
R×

x,0, then ηθ ⊗ θ−1|R1
x,0

is a direct summand of H1(Cx,0,Q`) as a

representation of R1
x,0. This shows that ρθ|K1

x,0
is a direct summand

of H1(Cx,0,Q`) as a representation of K1
x,0.

Theorem 4.3.3. Let x be a point with CM by L. Let m ≥ 0, assumed odd
if L/K is ramified. The representation

Vx,m = Ind
(GL2(K)×D×)/(π,1)Z

K1
x,m

H1
c (Cx,m,Q`)

(compactly supported smooth induction) contains

⊕

Π

Π⊕ JL(Π̌)⊕2,

where Π runs over supercuspidal representations of GL2(K) whose central
character is trivial on π, and which have the property that
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1. if m ≥ 1, then some twist of Π contains a simple stratum of the form
(Ax,m, α).

2. if m = 0, then some twist of Π has depth zero.

Proof. Let Π be a supercuspidal representation of GL2(K) whose central
character is trivial on π. Suppose that some twist of Π, call it Π′, contains a
simple stratum S of the form (Ax,m, α). By Thm. 4.2.7, Π′ ⊗ JL(Π̌′)|Kx,m

contains ρS . By Prop. 4.3.2, ρS |K1
x,m

is a summand of H1
c (Cx,m,Q`). This

shows that Π ⊗ JL(Π̌)|K1
x,m

= Π′ ⊗ JL(Π̌′)|K1
x,m

contains a summand of

H1
c (Cx,m,Q`). Therefore by Frobenius reciprocity, Π ⊗ JL(Π̌)|K1

x,m
is con-

tained in Vx,m. Now we observe that if Π′ contains S = (Ax,m, α), then it
also contains the distinct stratum Sσ = (Ax,m, α

σ), where ασ ∈ L = K(α)
is K-conjugate to α. By repeating the argument we find that Π⊗ JL(Π̌′) is
contained in Vx,m with multiplicity at least 2.

The argument for depth zero supercuspidals is similar.

5 Special affinoids in the Lubin-Tate tower

5.1 Special affinoids: an overview

Let Π be a supercuspidal representation of GL2(K) with coefficients in Q`.
Thm. 3.1.1 shows that Π ⊗ JL(Π̌) appears in H1

c of the Lubin-Tate tower.
On the other hand, Thm. 4.3.3 shows that there exists a nonsingular affine
curve Cx,m over k admitting an action of a subgroup K1

x,m ⊂ (GL2(K) ×

D×)det=N , such that Π ⊗ JL(Π̌) is contained in the induced representation
of H1

c (Cx,m,Q`). (Here x is a CM point and m ≥ 0 is an integer, both of
which depend on Π.) The next theorem finds a link between the Lubin-Tate
tower and the curve Cx,m. Essentially, the presence of Π ⊗ JL(Π̌) in the
cohohomology of the Lubin-Tate tower can be traced to the existence of an
open affinoid subset ofMad

∞,η whose reduction is related to Cx,m.
First we must define what we mean by the reduction of an affinoid.

Definition 5.1.1. Let Z = Spa(R,R+) be an affinoid adic space over
Spa(C,OC). The reduction of Z is Z = SpecR+/mC, where mC ⊂ OC

is the maximal ideal. It is a reduced affine scheme over k = OC/mC.

Note that if Z is a perfectoid affinoid, then Z is the spectrum of a perfect
k-algebra.

To state the theorem precisely, it is convenient to work with one con-
nected component M◦,ad

∞,η of Mad
∞,η. Recall that M◦,ad

∞,η admits an action of

(GLn(K)×D×)det=N .

41



Theorem 5.1.2. Assume that the residue characteristic of K is odd. Let
x ∈M◦,ad

∞,η(OC) be a point with CM by a quadratic field L/K. Let m ≥ 0 be
an integer, assumed to be odd if L/K is ramified. Then there exists an open

affinoid subset Zx,m ⊂M
◦,ad
∞,η with the following propoerties:

1. Zx,m is stabilized by the action of K1
x,m.

2. There exists a nonconstant morphism Zx,m → Cx,m which is equivari-
ant for the action of K1

x,m.

3. For x fixed, the Zx,m form a decreasing sequence of open neighborhoods
of x, and ∩mZx,m = {x}.

4. For g ∈ (GL2(K)×D×)det=N we have Zg
x,m = Zxg ,m.

Remark 5.1.3. If X = SpecR is a reduced affine scheme over k, we write
Xperf for the scheme SpecRperf , where Rperf = lim

←−x7→xp R is the perfect

closure of R. Since Zx,m is the spectrum of a perfect ring, Zx,m → Cx,m

factors through a morphism Zx,m → Cperf
x,m . In fact, Zx,m → Cperf

x,m is an
isomorphism, but we can only prove this a posteriori. We will also define an
affinoid Zx,m when L/K is ramified and m is even, but we will not need to
analyze it as intensely. We will show that Zx,m is the inverse limit of curves
whose completion has genus 0, also a posteriori.

The proof of Thm. 5.1.2 is a case-by-case calculation which we will
undertake in the following sections. This calculation fits the following pat-
tern. Recall that Mad

∞,η is isomorphic to a subspace of G̃ad
η × G̃ad

η . We

will first construct an open affinoid Yx,m ⊂ G̃ad
η × G̃ad

η , and then define

Zx,m = Yx,m ∩M
◦,ad
η . We will show that the group Kx,m stabilizes Yx,m,

and therefore that K1
x,m stabilizes Zx,m. For its part, Yx,m may be described

as a “rectangle” centered around x: it is given by a pair of bounds on two
linear forms which vanish on x. As m → ∞, the bounds decrease to 0, so
that ∩mYx,m = {x}.

The affinoids Yx,m will be defined in §5.4. In the meantime we need to
develop some language for the geometry of the formal vector space G̃.

5.2 Some convenient coordinate systems

In our calculations it will be helpful to fix coordinates on the formal OK -
modules G and ∧2G. By a coordinate on G mean an isomorphism G ∼=
SpfOKJT K, or equivalently a collection of power series (a “law”) defining a
formal OK -module isomorphic to G.
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For G we take the formal OK -module law whose logarithm is

logG(T ) = T +
T q2

π
+
T q4

π2
+ . . . .

This is the series obtained by setting v1 = 0, v2 = 1 and vn = 0 for n ≥ 3 in
Hazewinkel’s functional equation, cf. §2.1.

The formal OK-module ∧2G is the (unique up to isomorphism) formal
OK -module over OK0 of dimension 1 and height 1. Let us fix ∧2G0 =
SpfOKJT K by specifying its logarithm as

log∧2G(T ) = T −
T q

π
+
T q2

π2
−
T q3

π3
+ . . . .

Lemma 5.2.1. 1. [π]G(T ) ≡ T
q2 modulo (π, T q2+1).

2. [π]∧2G(T ) ≡ −T
q modulo (π, T q+1).

3. X1 +G X2 ≡ X1 +X2 modulo terms of total degree q2.

4. X1 +∧2G X2 ≡ X1 +X2 modulo terms of total degree q.

Proof. The first two claims are special cases of the congruences in Eq.
(2.1.1). For the third, note that logG(X1 +G X2) = logG(X1) + logG(X2)
and use the fact that logG(T ) ≡ T modulo terms of degree q2. The fourth
claim is similar.

Now we turn to formal vector spaces. Our choice of coordinate G ∼=
SpfOK0JT K gives rise to a coordinate G̃ ∼= SpfOK0JT

1/q∞K, along the lines
of Rmk. 2.4.4. Suppose R ∈ AlgOK0

and X ∈ G̃(R). Suppose X =

(X0, X1, . . . ) with Xi ∈ Nil(R) satisfying [π]G(Xi+1) = Xi, i ≥ 0. Let

X = lim
i→∞

Xqi

i .

We call X the coordinate of X, and we write

X = [X]

Note that X comes equipped with a privileged root X 1/qi for every i ≥ 1.
Recall that D = EndG0 ⊗ K acts on G̃. It will be helpful to give an

approximation for this action in terms of coordinates. Let R be a Banach
C-algebra, with norm | |, and let R+ ⊂ R be the OC-subalgebra of elements
f with |f | ≤ 1. Assume that R+ is bounded (and thus complete for the
π-adic topology). We say that X1, X2 ∈ R are equal up to smaller terms
if |X1 −X2| < |X1| = |X2|. Finally, let πD ∈ D be the Frobenius element
T 7→ T q, which is a uniformizer for D.

43



Lemma 5.2.2. 1. Let X,Y ∈ G̃(R+). Then [X + Y] = [X] + [Y] up
to smaller terms. Let g ∈ D×. Suppose that g = uπm

D , with u ∈ O×
D,

m ∈ Z. Let u be the image of u in OD/πD ↪→ k. Then [gX] = u[X]q
m

up to smaller terms. In particular [πX] = X q2 plus smaller terms.

2. Similarly, suppose X,Y ∈ ∧̃2G(R). Then [X+Y] = [X] + [Y] up to
smaller terms. Let g ∈ K×, with g = uπm, u ∈ O×

K , m ∈ Z. Then
[gX] = (−1)mu[X]q

m
up to smaller terms.

Proof. These statements follow easily from the corresponding statements
about the formal group laws G and ∧2G. For instance, if X,Y ∈ G̃(R+)
with X = [X], Y = [Y], then

[X+Y] = lim
i→∞

(X1/qi +G Y
1/qi)q

i
.

Thus for some i large enough, [X +Y] = (X1/qi +G Y
1/qi)q

i
up to smaller

terms. Since +G = + up to quadratic terms, and because exponentiation
by qi commutes with addition up to smaller terms, we get [X+Y] = X+Y
up to smaller terms.

5.3 An approximation for the determinant morphism

Recall from §2.5 that we have a determinant map λ : G̃ × G̃ → ∧̃2G. This
map corresponds to a continuous homomorphism from OK0JT

1/q∞K into

OK0JX
1/q∞

1 , X
1/q∞

2 K. Let δ(X1, X2) be the image of T under this homo-
morphism, and let δ(X1, X2)

1/qm be the image of T 1/qm , for m ≥ 1. Let

δ0(X1, X2) be the image of δ(X1, X2) in kJX
1/q∞

1 , X
1/q∞

2 K.

Proposition 5.3.1. Possibly after replacing δ0 with [α]
∧̃2G

(δ0) for some

α ∈ K×, the congruence

δ0(X1, X2) ≡ X1X
q
2 −X

q
1X2

holds modulo terms of total degree q2.

Proof. Let d be the least degree of any term appearing in δ0(X1, X2), and
let F be the homogeneous part of d of degree d. We have that δ is OK -
alternating with respect to the operations +G0 and [g]G0 (g ∈ OK), and
similarly for ∧2G0. These operations are simply addition and scalar multi-
plication modulo quadratic terms. Thus F is a k-bilinear alternating form,
which is to say it is of the form

F =
∑

(a1 ,a2)

ca1 ,a2X
qa1
1 Xqa2

2
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where (a1, a2) runs over pairs of integers with qa1 + qa2 = d, and ca1,a2 ∈ k
satisfies ca2,a1 = −ca1,a2 . After replacing δ0 with [πm]

∧̃2G0
(δ0) for some m,

we may assume that F contains a nonzero term of the form c0,a2X1X
qa2
2 ,

with a2 ≥ 1.
Since

δ0([π]G0(X1), X2)) = [π]∧2G0
(δ0(X1, X2)),

we find (using Lemma 5.2.1) that −δq0 contains the term c0,a2X
q2

1 X
qa2
2 , which

shows that δ0 contains the term −c
1/q
0,a2

Xq
1X

qa2−1

2 . By definition of d we have

d ≤ q + qa2−1, but on the other hand d = 1 + qa2 , which shows that a2 = 1
and d = q + 1.

The only integral solutions to qa1 +qa2 = q+1 are (1, 0) and (0, 1). Thus

F = c0,1(X1X
q
2 −X

q
1X2).

By the above observation, δ0 contains the term −c
1/q
0,1X

q
1X2, which shows

that c0,1 = cq0,1, thus c0,1 ∈ k
∼= Fq. After replacing δ0 with some multiple

[α]∧2G0
(δ0), we can assume that c0,1 = 1, so that F = X1X

q
2 −X

q
1X2.

Now consider the difference E = δ − F . By Lemma 5.2.1, the addition
and scalar multiplication laws in G0 and ∧G0 equal ordinary addition and
scalar multiplication up to degree q2. This shows that E is also OK -bilinear
and alternating modulo degree q2. Suppose for the sake of contradiction
that the leading homogeneous part of E, call it F ′, has degree d′ < q2.
Then F ′ is k-bilinear and alternating. The foregoing argument shows that
[α]∧2G0

(F ′) = X1X
q
2 −X

q
1X2 for some α ∈ K×. If α ∈ OK , this contradicts

d′ > d = q + 1, and if α 6∈ OK , this contradicts d < q2. Thus the degree of
E is at least q2.

We need to translate Prop. 5.3.1 into an approximation for δ. We have
shown that δ ≡ F + E modulo π, where F (X1, X2) = X1X

q
2 − X

q
1X2 and

E(X1, X2) ∈ OK0JX
1/q∞

1 , Y
1/q∞

1 K has degree ≥ q2. Then

δ = lim
m→∞

(
F (X

1/qm

1 , X
1/qm

2 ) +E(X
1/qm

1 , X
1/qm

2 )
)qm

(5.3.1)

Lemma 5.3.2. Let R be a Banach C-algebra with multiplicative norm | |,
and let R+ ⊂ R be OC-subalgebra of elements f with |f | ≤ 1. Assume that
R+ is bounded (and thus complete for the π-adic topology). Let Y1,Y2 ∈
G̃(R+), and let Y1, Y2 ∈ R+ be the topologically nilpotent elements which
correspond to Y1,Y2. Finally, let λ ∈ R+ be the topologically nilpotent

element corresponding to the determinant λ(Y1, Y2) ∈ ∧̃2G(R+).
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1. Suppose that |Y2|
q ≤ |Y1| < |Y2|. Then λ = Y1Y

q
2 plus smaller terms.

2. Suppose that |Y1| = |Y2|. Then λ = Y1Y
q
2 − Y

q
1 Y2 plus smaller terms.

3. In general, there exists a unique m ∈ Z such that one of the following
inequalities holds:

(a) |Y2|
q ≤ |Y1|

q−2m

< |Y2|

(b) |Y1|
q ≤ |Y2|

q−2m

< |Y1|

(c) |Y1| = |Y2|
q−2m

.

Then respectively we have

(a) λ = (−1)mY qm

1 Y q1−m

2

(b) λ = (−1)m+1Y q1−m

1 Y qm

2

(c) λ = (−1)m(Y qm

1 Y q1−m

2 − Y qm+1

1 Y q−m

2 )

plus smaller terms.

Proof. To prove the lemma we will show that F (Y1, Y2) − E(Y1, Y2) equals
the desired approximation plus strictly smaller terms. The same arguments

will apply to F (Y
1/qm

1 , Y
1/qm

2 ) − E(X
1/qm

1 , X
1/qm

2 )). Then Eq. (5.3.1) will
show that δ(X,Y ) equals the desired approximation plus strictly smaller
terms.

We have λ = δ(Y1, Y2). If |Y1| = |Y2|, then |E(Y1, Y2)| < |F (Y1, Y2)|
and we get claim (2). If |Y2|

q ≤ |Y1| < |Y2|, then F (Y1, Y2) = Y1Y
q
2 plus

smaller terms. Since E(X1, 0) = E(0, X2) = 0 (this follows from the same
properties of δ0 and F ) we observe that every term of E(Y1, Y2) contains
both Y1 and Y2, and therefore (since E has degree ≥ q2) we have a strict

inequality |E(Y1, Y2)| < |Y2|
q2 . This is bounded by |Y2|

q2 = |Y2|
q |Y2|

q2−q ≤∣∣∣Y1Y q2−q
2

∣∣∣ ≤ |Y1Y q
2 | = |F (Y1, Y2)|, which establishes claim (1).

In claim (3), the existence and uniqueness of m is easy to see. In the
first case, apply claim (1) to the pair Y1, π

−mY2 and note that λ(Y1,Y2) =
πmλ(π−mY1,Y2). For the second case, apply claim (1) to the pairY2, π

−mY1

(and recall that λ is alternating). For the third case, apply claim (2) to
Y1, π

−mY2.
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5.4 Definition of the affinoids Yx,m

Let B be the coordinate ring of the affine formal scheme G̃OC
×G̃OC

, so that
G̃OC

× G̃OC
= Spf B. We have two distinguished elements X1,X2 ∈ G̃(B),

corresponding to the two projections G̃ × G̃ → G̃. Let Xi = [Xi] be their
coordinates; then we have

B ∼= OCJX
1/q∞

1 , X
1/q∞

2 K.

Recall that GL2(K)×D× acts on the right of G̃×G̃. By our conventions,
an element g = (g1, g2) acts by the rule

(g(X1), g(X2)) = (g−1
2 X1, g

−1
2 X2)g1.

Let (x1,x2) ∈ G̃(OC) × G̃(OC) denote the image of x under the mor-
phism M∞(OC) → G̃(OC) × G̃(OC). Then there exists a basis α1, α2 for
L/K and an element x0 ∈ G̃(OC) for which xi = αix0. Let A ∈ GL2(L) be
the matrix

A =

(
α1 α2

ασ
1 ασ

2

)
,

where σ denotes the nontrivial automorphism of L/K. Then we have

(x0, 0)A = (x1,x2).

Recall the elements $1 ∈ Ax and $2 ∈ OD from §4.2.

Lemma 5.4.1. 1. Let α ∈ L×, and let g be the image of α in GL2(K).

Then AgA−1 =

(
α

ασ

)
(equality in GL2(L)).

2. We have A$1A
−1 =

(
1

1

)
(equality in GL2(L)).

3. We have A$2A
−1 =

(
1

1

)
$2 (equality in GL2(D), with $2 consid-

ered as a scalar matrix).

Proof. By the definition of the embedding of L× into GL2(K), we have
(x1,x2)g = (αx1, αx2), so that (α1, α2)g = (αα1, αα2). Applying σ, we see
that (ασ

1 , α
σ
2 )g = (ασασ

1 , α
σασ

2 ), and so

Ag =

(
α1 α2

ασ
1 ασ

2

)
g =

(
αα1 αα2

ασασ
1 ασασ

2

)
=

(
α

ασ

)
A,
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proving (1).
Similarly, (2) and (3) follow from (α1, α2)$1 = (ασ

1 , α
σ
2 ) and (α1, α2)$2 =

$2(α
σ
1 , α

σ
2 ).

Define elements Y1,Y2 ∈ G̃(B) through an affine change of variables

(X1,X2) = (x1,x2) + (Y1,Y2)A. (5.4.1)

Let Yi = [Yi], i = 1, 2. Also let x0 = [x0].

Definition 5.4.2. The affinoid Yx,m is defined by the inequalities

|Yi| ≤ |x0|
si , i = 1, 2,

where s1 and s2 are defined by the following table.

s1 s2
L/K unramified q2m qm

L/K ramified, m even qm qm/2

L/K ramified, m odd qm q+1
2 q(m+1)/2

Thus if we let Zi = Yi/x
si
0 , then Yx,m = Spa(R,R+), where

R+ = OC

〈
Z

1/q∞

1 , Z
1/q∞

2

〉
.

The reduction of Yx,m is then Yx,m = Spec k[Z
1/q∞

1 , Z
1/q∞

2 ] = A2,perf

k
.

We intend to prove Thm. 5.1.2 for the affinoid Zx,m = Yx,m ∩M
◦,ad
∞,η ,

under the assumption that m is odd if L/K is ramified. The calculations
(presented in §5.5-§5.8) follow the same general pattern. First we verify that
Yx,m is stabilized by the group Kx,m, and we compute the action of Kx,m on
Y in terms of the variables Z1, Z2. In each case the formulas are identical
to the formulas given in Defn. 4.3.1.

We then prove the existence of the claimed map Zx,m → Cperf
x,m . Re-

call the determinant morphism G̃ × G̃ → ˜∧2G from §2.5. After choosing
coordinates on the formal groups G and ∧2G, this morphism corresponds
to an element δ(X1, X2) ∈ B admitting arbitrary qth power roots. Let
t = δ(x1, x2) ∈ OC. The key calculation is an approximation for δ(X1, X2)
in terms of the variables Z1, Z2 inside the ring R+:

δ(X1, X2) ≡ t+ trf(Z1, Z2) + smaller terms (5.4.2)

where r ≥ 1 and f(Z1, Z2) a polynomial which (up to replacing the Zi with
qth powers) equals the polynomial defining the curve Cx,m from Thm. 4.3.3.
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By Thm. 2.7.3,M◦,ad
∞,η is the fiber of the determinant map G̃ad

η × G̃
ad
η →

∧̃G
ad

η over t. Thus δ(X1, X2) = t on M◦,ad
∞,η . Combining this fact with

Eq. (5.4.2) shows that f(Z1, Z2) = 0 holds in the coordinate ring of the
reduction Z . Since Z is the spectrum of a perfect ring, there must exist a
map Z → Cperf

x,m as claimed.
It will be helpful to record the action of element of GL2(K)×D× on the

elements Y1,Y2 ∈ G̃(B).

Lemma 5.4.3. Suppose g ∈ GL2(K). Let g(Y1), g(Y2) denote the images
of Y1,Y2 ∈ G̃(B) under the automorphism G̃(B)→ G̃(B) coming from the
automorphism of B induced by g. Then

(g(Y1), g(Y2)) = (x0, 0)AgA
−1 − (x0, 0) + (Y1,Y2)AgA

−1.

Now suppose g ∈ D×, and define g(Y1), g(Y2) similarly. Then

(g(Y1), g(Y2)) = (x0, 0)Ag
−1A−1 − (x0, 0) + (Y1,Y2)Ag

−1A−1.

Proof. Using Eqs. (5.4.1) and (5.4.1) we have

(Y1,Y2) = (X1,X2)A
−1 − (x1,x2)A

−1 = (X1,X2)A
−1 − (x0, 0).

We have

(g(Y1), g(Y2)) = (g(X1), g(X2))A
−1 − (x0, 0)

= (X1,X2)gA
−1 − (x0, 0)

= ((x1,x2) + (Y1,Y2)A)gA
−1 − (x0, 0)

= ((x0, 0)A+ (Y1,Y2)A)gA
−1 − (x0, 0)

= (x0, 0)AgA
−1 − (x0, 0) + (Y1,Y2)AgA

−1.

The case of g ∈ D× is done the same way; the sign g−1 appears because of
our convention concerning the right action of D× on G̃× G̃.

5.5 Case: L/K ramified, m odd

Let πL be a uniformizer of L. Then πL is also a uniformizer of D. We may
assume π2L ∈ OK , so that πσL = −πL. After replacing x with a GL2(K)-
translate we may also assume that the basis α1, α2 for L/K is 1, πL. Recall
that πD ∈ D is the Frobenius endomorphism of G0; let us write πL = uπD
for some u ∈ O×

D.

49



We have the orthogonal decompositions

Ax = OL ⊕OL$1

OD = OL ⊕OL$2

where $2
1 = 1 and $2

2 ∈ O
×
K . The linking order is

Lx,m = ∆x(OL) + (pmL × pmL ) +

(
p

m+1
2

L $1 × p
m+1

2
L $2

)
.

The affinoid Yx,m = Spa(R,R+) is defined by the conditions

|Y1| ≤ |x0|
qm

|Y2| ≤ |x0|
q+1
2

q(m+1)/2

,

where Y1,Y2 are defined as in Eq. 5.4.1. We write Yi = [Yi] for the
coordinate of Yi in R

+, and define Z1, Z2 ∈ R
+ by

Y1 = xq
m

0 Zq(1−m)/2

1

Y2 = x
q+1
2

q(m+1)/2

0 Z2.

Then R = C
〈
Z

1/q∞

1 , Z
1/q∞

2

〉
. Then R is a Banach C-algebra for the sup

norm, which we write as | |. Note that | | is multiplicative (this is the
perfectoid version of Gauss’ lemma).

We wish to check that Kx,m preserves Yx,m, and to calculate the induced

action of Kx,m on the reduction Yx,m = A2,perf

k
. The groupKx,m is generated

by three types of elements:

1. ∆x(α), for α ∈ L
×.

2. Elements of GL2(K) of the form 1 + πm
L β + π

(m+1)/2
L γ$1, with β, γ ∈

OL.

3. Elements of D× of the form 1 + π
(m+1)/2
L β$2, with β ∈ OL.

Let α ∈ L×, let g = ∆x(α), and let g1 be the image of α in GL2(K). We
have xg = x. We apply Lemma 5.4.3 simultaneously to g1 ∈ GL2(K) and
α ∈ D× to get and 5.4.1, the action of g on the variables Y1, Y2 is given by

(g(Y1), g(Y2)) = (α−1Y1, α
−1Y2)Ag1A

−1

= (α−1Y1, α
−1Y2)

(
α

ασ

)
(Lemma 5.4.1)

= (Y1, α
σ/αY2).
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(The terms involving x0 cancel – this is related to the fact that g fixes x.)
Since ασ/α is always a unit in O×

L , it is clear that g preserves Yx,m.
If α ∈ O×

K , then ∆x(α) acts trivially on Yx,m, whereas ∆x(πL) acts as
(Z1, Z2) 7→ (Z1,−Z2).

Now suppose g = 1+πm
L β+π

(m+1)/2
L γ$1 ∈ GL2(K), where β and γ are

to be interpreted as lying in the image of OL in M2(K). By Lemma 5.4.1

we have AgA−1 =

(
1 + πmL β π

(m+1)/2
L γ

(−πL)
(m+1)/2γσ 1− πmL β

σ

)
, where now β and γ are

to be interpreted as scalars in L. Therefore by Lemma 5.4.3 we have

g(Y1) = Y1 + πmL βY1 + (−πL)
(m+1)/2γσY2 + πmL βx0

g(Y2) = Y2 − π
m
L β

σY2 + π
(m+1)/2
L γY1 + π

(m+1)/2
L γx0.

Taking coordinates and using Lemma 5.2.2, we find that the following
equations hold modulo smaller terms:

g(Y1) = Y1 + βxq
m

0

g(Y2) = Y2

In terms of the coordinates Z1, Z2 on the reduction Yx,m, we have

g(Z1) = Z1 + β

g(Z2) = Z2

The calculation for elements of the form g = 1 + π(m+1)/2γ$2 is similar,
with the result that such elements act trivially on Yx,m.

To complete the proof of Thm. 5.1.2 in this case, we need an approxi-
mation for the determinant λ(X1,X2) as an element of the Banach algebra
R. The elements Y1,Y2 ∈ G̃(B) are defined by

X1 = x0 +Y1 +Y2

X2 = πLx0 + πLY1 − πLY2.

Thus

λ(X1,X2) = λ(x0, πLx0)

+ λ(x0, πLY1) + λ(Y1, πLx0)

− λ(Y2, πLY2)

+ λ(Y2, πLx0)− λ(x0, πLY2)

− λ(Y1, πLY2)− λ(πLY1,Y2) + λ(Y1, πLY1)
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We analyze each of these lines in turn to find an estimate for [λ(X1, X2)]
in the ring R+. The first line is λ(x0, πLx0) = λ(x1,x2) = t. We have
[t] = t, [x0] = x0, [πLx0] = uxq0 up to smaller terms. By Lemma 5.3.2 we

get that ux2q0 = t plus smaller terms.
The other lines can be treated using Lemma 5.3.2. For instance, the first

term on the second line is λ(x0, πLY1). We have |πLY1| = |Y1|
q = |x0|

qm+1

.
Since m + 1 is even, we are in the third case of claim (3) of Lemma 5.3.2,
and so up to smaller terms we have

[λ(x0, πLY1)] = (−1)m/2
(
[x0]

q(m+1)/2
[πLY1]

q(3−m)/2
− [x0]

q(m+3)/2
[πLY1]

q(1−m)/2
)

= (−1)m/2
(
xq

(m+1)/2

0 (uxq
m+1

0 Zq(1−m)/2

1 )q
(3−m)/2

− xq
(m+3)/2

0 (uxq
m+1

0 Zq(1−m)/2

1 )q
(1−m)/2

)

= (−1)m/2ux
(q+1)q(m+1)/2

0 (Zq
1 − Z)

= (−1)m/2tq
(m+1)/2

(Zq
1 − Z1).

The second term of the second line equals the first.
For the third line, we have |πLY1| = |Y1|

q, and we are in the situation
of claim (1) of Lemma 5.3.2. Up to smaller terms we have

λ(Y2, πLY2) = −[Y2]
q[πLY2]

= −(x
q+1
2

q(m−1)/2

0 Z
1/q
2 )q(ux

q+1
2

q(m−1)/2

0 Z2)

= −ux
(q+1)q(m+1)/2

0 Z2
2

= −tq
(m+1)/2

Z2
2

The fourth line is zero on the nose, and the contribution of the fifth
line is smaller than the contributions of the previous lines. We get (up to a
benign change of the variables Z1, Z2)

δ(Y1, Y2) = t+ tq
(m+1)/2

(Zq
1 − Z1 − Z

2
2 )

up to smaller terms. Thus we have proved Prop. 5.1.2 in this case.

5.6 Case: L/K unramified, m odd

Once again we have the orthogonal decompositions

Ax = OL ⊕OL$1

OD = OL ⊕OL$2,
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but this time $2 is a uniformizer in D. The linking order is

Lx,m = ∆x(OL) + (pmL × pmL ) +

(
p

m+1
2

L $1 × p
m−1

2
L $2

)
.

Recall that Kx,m = ∆x(L
×)L×x,m.

The elements Y1,Y2 ∈ G̃(B) are defined by

X1 = α1x0 + α1Y1 + ασ
1Y2 (5.6.1)

X2 = α2x0 + α2Y1 + ασ
2Y2, (5.6.2)

and Yx,m is defined by the conditions

|Y1| ≤ |x0|
q2m

|Y2| ≤ |x0|
qm

Let Yi = [Yi], and define variables Z1, Z2 by

Y1 = xq
2m

0 Zqm

1

Y2 = xq
m

0 Z2

We wish to check that Kx,m preserves Yx,m, and to calculate the induced

action of Kx,m on the reduction Yx,m = A2,perf

k
. The groupKx,m is generated

by three types of elements:

1. ∆x(α), for α ∈ L
×,

2. Elements of g ∈ D× with g−1 = 1+πmγ+π(m−1)/2β$, with β, γ ∈ OL.

3. Elements of g ∈ GL2(K) of the form 1 + π(m+1)/2βσ, with β ∈ OL.

Let α ∈ L×, and let g = ∆x(α). As in the previous case we have
g(Y1) = Y1 and g(Y2) = ασ/αY2. Since ασ/α is always a unit in O×

L ,
it is clear that g preserves Yx,m. We have that ∆x(π) acts trivially, and if
α ∈ O×

L , then the action of g = ∆x(α) on the reduction Yx,m is given in
terms of the coordinates Z1, Z2 by g(Z1) = Z1 and g(Z2) = αq−1Z2.

Now suppose g−1 = 1 + πmγ + π(m−1)/2β$2, with β, γ lying in the
image of OL in M2(OK). By Lemma 5.4.1 we have Ag−1A−1 = 1 + πmγ +

π(m−1)/2β

(
0 1
1 0

)
$2, where now β, γ are to be interpreted as scalars in

L ⊂ D ⊂M2(D). Therefore by Eq. (5.4.3) we have

g(Y1) = Y1 + πmγY1 + π(m−1)/2β$2Y2 + πmγx0

g(Y2) = Y2 + πmγY2 + π(m−1)/2β$2Y1 + π(m−1)/2β$2x0.
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Taking coordinates and using Lemma 5.2.2, we find

g(Y1) = Y1 + βY qm

2 + γxq
2m

0

g(Y2) = Y2 + βxq
m

0

plus smaller terms.
In terms of the coordinates Z1, Z2 on the reduction Yx,m, we have

g(Z1) = Z1 + β
q
Z2 + γq

g(Z2) = Z2 + β

(Here we have used βqm = βq, because m is odd.) Note the accord with
Defn. 4.3.1. The calculation is similar for elements of GL2(K) of the form
g = 1+π(m+1)/2$1, with the result that such elements act trivially on Yx,m.

To complete the proof of Thm. 5.1.2 in this case, we need an approxi-
mation for the determinant λ(X1,X2) as an element of the Banach algebra
R. From Eq. (5.6.1) we find

λ(X1,X2) = λ(α1x0, α2x0)

+ λ(α1x0, α2Y1) + λ(α1Y1, α2x0)

+ λ(ασ
1Y2, α

σ
2Y2)

+ λ(α1x0, α
σ
2Y2) + λ(ασ

1Y2, α2x0)

+ λ(α1Y1, α2Y1) + λ(α1Y1, α
σ
2Y2) + λ(α2Y1, α

σ
1Y2).

We analyze each of these lines in turn. The first line is λ(α1x0, α2x0) = t,
which by Prop. 5.3.1 implies that (α1α

q
2−α

q
1α2)x

q+1
0 = t plus smaller terms.

The other lines can be treated using Lemma 5.3.2. For instance, the first

term of the second line is λ(α1x0, α2Y1). We have |α2Y1| = |α1x0|
q2m , so

we are in the third case of part (3) of Lemma 5.3.2. Thus up to smaller
terms we have

[λ(α1x0, α2Y1)] = −([α1x0]
qm [α2Y1]

q1−m
− [α1x0]

qm+1
[α2Y1]

q−m
]

= −((α1x0)
qm(α2x

q2m

0 Zqm

1 )q
1−m
− (α1x0)

qm+1
(α2x

q2m

0 Zqm

1 )q
−m

= −x
(q+1)qm

0 (αq
1α

2Zq
1 − α1α

q
2Z1)

Similarly, the contribution of the second term of the second line is

[λ(α1Y1, α2x0)] = x
(q+1)qm

0 (α1α
q
2Z1 − α

q
1α2Z

q
1),
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so that the total contribution of the second line is

(α1α
q
2 − α

q
1α2)x

(q+1)qm

0 (Zq
1 + Z1) = tq

m
(Zq

1 + Z1).

The contribution of the third line is tq
m
Zq+1
2 plus smaller terms. The fourth

line is zero on the nose, and the fifth line’s contribution is smaller than any
of the others. We find that

δ(X1, X2) ≡ t+ tq
m
(Zq

1 + Z1 − Z
q+1
2 )

modulo smaller terms. This proves Prop. 5.1.2 in this case.

5.7 Case: L/K unramified, m ≥ 2 even

This time the linking order is

Lx,m = ∆x,m(OL) + (pmL × pmL )×
(
p
m/2
L $1 × p

m/2
L $2

)
.

The affinoid Yx,m is defined the same way as in the previous section. We
must show that Kx,m preserves Yx,m and compute its action on the reduction
Yx,m. The calculation is very similar to what occurred in the case of m odd,
except that in a sense the actions of GL2(K) and D× are reversed.

The group Kx,m is generated by three types of elements:

1. ∆x(α), for α ∈ L
×,

2. Elements of GL2(K) of the form 1+πmγ+πm/2β$1, with β, γ ∈ OL.

3. Elements of D× of the form 1 + πm/2β$2, with β ∈ OL.

The action of ∆x(α) works the same as in the case of m odd.
Suppose g = 1 + πmγ + πm/2β$1, with β, γ ∈ OL. We have

AgA−1 = 1 + πmγ + πm/2

(
0 β
βσ 0

)
.

By Lemma 5.4.3 we get

g(Y1) = Y1 + πmγ(x+Y1) + πm/2βσY2

g(Y2) = Y2 + πmγY2 + πm/2βY1 + πm/2β(x+Y1)

Taking coordinates, we find

g(Y1) = Y1 + βσY qm

2 + γxq
2m

0

g(Y2) = Y2 + βxq
m

0
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modulo smaller terms. Recall that Y1 = xq
2m

0 Zqm

1 , Y2 = xq
m

0 Z2. In terms of
the coordinates Z1, Z2 on the reduction Yx,m, we have

g(Z1) = Z1 + β
q
Z2 + γ

g(Z2) = Z2 + β.

The approximation for δ(X1, X2) in terms of Z1 and Z2 proceeds exactly
as in the case of m odd, with the result that

δ(X1, X2) = t+ tq
m
(Zq

1 − Z1 − Z
q+1
2 )

up to smaller terms. This establishes Thm. 5.1.2 in this case.

5.8 Case: L/K unramified, m = 0

In this case the affinoid Zx,0 we construct is related to the semistable model
of the Lubin-Tate space of level 1 described by Yoshida in [Yos10].

The linking order is Lx,0 =M2(OK)×OD. In this case Yx,0 = Spa(R,R+)
is the affinoid described by the conditions

|Xi| ≤ |x0| ,

which is clearly preserved by Kx,0 = ∆x(L
×)L×x,0.

Let us write Xi = x0Zi, and observe the effect of Kx,0 on the coordinates

Zi. Suppose g = (g1, g2) ∈ L
×
x,0 = GL2(OK)×O×

D, with g1 =

(
a b
c d

)
. Then

(g(X1), g(X2)) = (g−1
2 X1, g

−1
2 X2)

(
a b
c d

)
.

In terms of the coordinates Z1, Z2, this means

g(Z1) ≡ g−1
2 (aZ1 + cZ2)

g(Z2) ≡ g−1
2 (bZ1 + dZ2).

By Prop. 5.3.1 we have

δ(X1, X2) ≡ t(Z1Z
q
2 − Z

q
1Z2)

up to smaller terms, thus establishing Thm. 5.1.2 in this case.
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6 Semistable coverings for the Lubin-Tate tower

of curves

6.1 Generalities on semistable coverings of wide open curves

The following notions are taken from [Col03]. We will assume in the follow-
ing that the field of scalars is C.

Definition 6.1.1. A wide open (curve) is an adic space isomorphic to C\D,
where C is the adic space attached to a smooth complete curve and D ⊂ C
is a finite disjoint union of closed discs. Each connected component of C is
required to contain at least one disc from D.

If W is a wide open, an underlying affinoid Z ⊂ W is an open affinoid
subset for which W\Z is a finite disjoint union of annuli Ui. It is required
that no annulus Ui be contained in any open affinoid subset of W .

An end of W is an element of the inverse limit of the set of connected
components of W\Z, where Z ranges over open affinoid subsets of W .

Finally, W is basic if it has an underlying affinoid Z whose reduction
Z is a semistable curve over Fq. (Recall that if Z = Spa(R,R+), then
Z = SpecR+ ⊗OC

Fq.)

For an affinoid X, there is a reduction map red: X → X . The following
is a special case of Thm. 2.29 of [CM10].

Theorem 6.1.2. If X is a smooth one-dimensional affinoid, and x is a
closed point of X, then the residue region red−1(x) is a wide open.

In particular, M◦,ad
m,η is a wide open, because it is the residue region

red−1(x) of a supersingular point x of the special fiber of an appropriate
Shimura curve or Dinfeld modular curve.

We adapt the definition of semistable covering in [Col03], §2, which
only applies to coverings of proper curves. Our intention is to construct
semistable coverings of the spacesM◦,ad

m,η . Therefore we define:

Definition 6.1.3. Let W be a wide open curve. A semistable covering of
W is a covering D of W by connected wide opens satisfying the following
axioms:

1. If U, V are distinct wide opens in D, then U ∩ V is a disjoint union of
finitely many open annuli.

2. No three wide opens in D intersect simultaneously.
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3. For each U ∈ D, if

ZU = U\


 ⋃

U 6=V ∈D

V


 ,

then ZU is a non-empty affinoid whose reduction is nonsingular.

In particular U is a basic wide open and ZU is an underlying affinoid of U .

Suppose D is a semistable covering of a wide open W . For each U ∈
D, let O+

W (U) be the ring of analytic functions on U of norm ≤ 1, and
let XU = SpfO+

W (U). Similarly if U, V ∈ D are overlapping wide opens,
similarly define XU∩V = SpfO+

W (U ∩ V ). Let W denote the formal scheme
over OC obtained by gluing the XU together along the maps

XU,V → XU

∐
XV .

Then W has generic fiber W . The special fiber Ws of W is a scheme whose
geometrically connected components are exactly the nonsingular projective

curves Z
cl
U with affine model ZU ; the curves Z

cl
U and Z

cl
V intersect exactly

when U and V do.

Example 6.1.4. Note that D will in general not be finite. SupposeW is the
adic open unit disc over C. We construct a semistable covering D = {Un}
of W indexed by integers n ≥ 0. First let U0 =

{
|z| <

∣∣π1/2
∣∣}, and for n ≥ 1

let Un =
{
|π|1/n < |z| < |π|1/(n+2)

}
. Then ZU0 is the closed disc {|z| ≤ |π|}

and for n ≥ 1, ZUn is the “circle” {|z| = 1/(n + 1)}. The resulting formal
scheme W has special fiber which is an infinite union of rational components;
the dual graph Γ is a ray.

Let C be the adic space attached to a smooth complete curve, let D ⊂ C
be a disjoint union of closed discs, and let W = C\D. A semistable covering
of W yields a semistable covering of C (in the sense of [Col03]) by the
following procedure. Let D be a semistable covering of W corresponding to
the formal model W . Let Γ be the dual graph attached to the special fiber
of W . There are bijections among the following three finite sets:

1. ends of W ,

2. ends of Γ, and

3. connected components of D.
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Suppose v1, v2, . . . is a ray in Γ corresponding to the wide opens U1, U2, · · · ⊂
W . Then there exists N > 0 such that for all i ≥ N , Ui is an open annulus.
If D0 ⊂ D is the connected component corresponding to the ray v1, v2, . . . ,
then (possibly after enlarging N) D0 ∪

⋃
i≥N Ui is an open disc, which in-

tersects UN−1 in an open annulus. Repeating this process for all ends of Γ
yields a semistable covering D0 of C by finitely many wide opens. Let Γ0

be the dual graph corresponding to D0.
In [CM10], §2.3, the genus g(W ) of a wide open curve W is defined.

It is shown (Prop. 2.32) that in the above context that the genus of W
equals the genus (in the usual sense) of the smooth complete curve whose
rigidification is C. It is also shown (in the remark preceding Prop. 2.32)
that if U is a basic wide open whose underlying affinoid ZU has nonsingular

reduction, then g(U) = g(Z
cl
U ), where ZU is the reduction of ZU and Z

cl
U is

the unique nonsingular projective curve containing ZU . In Prop. 2.34 we
find the formula

g(C) =
∑

U∈D0

g(U) + dimH1(Γ0,Q). (6.1.1)

Proposition 6.1.5. Let W be a wide open curve, and let D be a semistable
covering of W . Let Γ be the dual graph of the special fiber of the correspond-

ing semistable model W of W , so that the irreducible components Z
cl
v of the

special fiber of W are indexed by the vertices of Γ. Then

dimH1
c (W,Q`) =

∑

v∈Γ

dimH1
c (Zv,Q`) + dimH1

c (Γ,Q`)

Proof. Part of the long exact sequence in compactly supported cohomology
for the pair (C,D) reads

0→ H0(C,Q`)→ H0(D,Q`)→ H1
c (W,Q`)→ H1(C,Q`)→ 0. (6.1.2)

Note that H0
c (D,Q`) ∼= Q`[Ends(Γ)] is the space of Q`-valued functions on

the set of ends of Γ. On the other hand, Γ0 is up to homotopy the graph
obtained by deleting the ends from Γ, so that

dimH1
c (Γ,Q`) = dimH1(Γ0,Q`) + #Ends(Γ)− dimH0(Γ,Q`). (6.1.3)

The result now follows from Eqs. (6.1.1), (6.1.2), and (6.1.3).
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6.2 The fundamental domain

Let F ⊂M◦,ad
∞,η be the open affinoid subset defined by the conditions

|X1| ≥ |X2| ≥ |X1|
q

Proposition 6.2.1. The translates of F under (GLn(K)×D×)det=N cover

M◦,ad
∞,η.

Proof. Let | | be a valuation on A◦
OC

with |π| 6= 0. In A◦
OC

we have the
equation δ(X1, X2) = t. Since δ(X1, X2) has no constant term, and is al-
ternating in its variables, we have |Xi| 6= 0 for i = 1, 2. On the other hand
each Xi is topologically nilpotent, so |Xi| < 1.

Certainly there exists m ∈ Z with |X1| ≥ |X2|
qm > |X1|

q. Let πD ∈
OD = EndG0 be the Frobenius element, so that πD acts on the variables
X1, X2 by the rule Xi 7→ Xq

i plus smaller terms. For the purposes of the
lemma we may assume that N(πD) = π. If m = 2k is even, then the pair((

1
π−k

)
, π−k

D

)
translates | | into F . If m = 2k+1 is odd, then the pair

((
0 1
−π−k 0

)
, π−k

D

)
translates | | into F .

6.3 A covering of the Lubin-Tate perfectoid space

We now define a graph which is in a sense the dual graph for our semistable
model of the Lubin-Tate tower. We consider pairs (x,m), where x is a CM
point inMad

∞,η and m ≥ 0.

Definition 6.3.1. Pairs (x,m) and (y, n) are equivalent if m = n and there
exists g ∈ K1

x,m for which y = xg. Call such a pair ramified or unramified as
the CM field of x is ramified or unramified. Also, we call (x,m) imprimitive
if it is ramified and m is even. Otherwise, (x,m) is primitive.

Define a graph T as follows: the vertices are equivalence classes of pairs
(x,m), and vertices (x, n) and (y,m) will be adjacent if (up to exchanging
the pairs) one of the following conditions holds:

1. m = n = 0, x is unramified, y is ramified, and Ay ⊆ Ax.

2. (y,m) is equivalent to (x, n+ 1).

Then T admits a action of GL2(K)×D×. To each vertex v = (x,m) of T we
have an associated affinoid Zx,m which is open in the connected component
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of Mad
∞,η containing x, but not in Mad

∞,η itself. For the moment we work
with one connected component: Let T ◦ be the subgraph of T on the vertices
(x,m) with x ∈M◦,ad

∞,η , so that T ◦ admits an action of (GL2(K)×D×)det=N .
For each vertex (x,m) of T ◦, let

redx,m : Zx,m → Zx,m

be the reduction map, and let Sx,m ⊂ Zx,m be the set of images of CM
points.

We now define an open cover {Wv} ofM
◦,ad,non-CM
η indexed by vertices

of T ◦. If v = (x, 0) for x unramified, assume that Ax =M2(OK) and put

Wv = {|X1| ≥ |X2| > |X1|
q} \

⋃

y∈Sx,0

red−1
x,0(y),

If v = (x, 0) for x ramified, assume that Ax is the standard Iwahori algebra,
and put

Wv = {|X1| > |X2| ≥ |X1|
q} \

⋃

y∈Sx,0

red−1
x,0(y).

If v = (x,m) for m > 0 we set

Wv = red−1
x,m−1(x)\

⋃

y∈Sx,m

red−1
x,m(y)

The assignment v 7→ W v can be extended to all vertices v ∈ T ◦ in such a
way that W

g
v = W vg for all g ∈ (GL2(K)×D×)det=N .

Proposition 6.3.2. The Wv coverM◦,ad,non-CM
η (this being the complement

in M◦,ad,non-CM
∞,η of the set of CM points).

Proof. By Prop. 6.2.1 it suffices to show that the Wv cover the set of non-
CM points in F = {|X1| ≥ |X2| ≥ |X1|

q}. It is clear from the definitions of
the Wv that any point in F not lying in one of the Wv must lie in ∩m≥1Zx,m

for some CM point x. But ∩m≥1Zx,m = {x}.

Let
Zv =Wv\

⋃

w

Ww

where w runs over vertices adjacent to v. Then if v = (x,m):

Zv = Zx,m\
⋃

y∈S(x,m)

red−1
x,m(y)

is the complement in Zx,m of finitely many residue regions.
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6.4 A semistable covering of Mad
m,η.

In this paragraph we translate our results about Mad
∞,η into results about

the Lubin-Tate spaces of finite level. Recall the tower of complete local rings
Am, with A defined as the completion of lim

−→
Am. Passing to adic spaces, we

have a morphism fromM
(0),ad
∞,η to the projective system lim

←−
M

(0),ad
m,η .

Lemma 6.4.1. For each m, the morphismM
(0),ad
η →M

(0),ad
m,η is surjective,

and carries open affinoids onto open affinoids.

Proof. The maps between the local rings Ar are finite. This implies that
each continuous valuation on Am can be extended to Am+r for all r ≥ 0,
hence to A. This shows thatMad

η →M
ad
η,m is surjective.

Now suppose Z = Spa(R,R+) be an open affinoid in Mad
∞,η. Then

R+ = A 〈f1/$, . . . , fn/$〉 for elements f1, . . . , fn ∈ A generating an ideal of
definition of A and an element $ ∈ OK of positive valuation. Since lim

−→
Ar

is dense in A, we may assume that the elements fi live in AN for some
sufficiently large N ≥ m. Then the image of Z inMad

N,η is an affinoid ZN =

Spa(RN , R
+
N ), with RN = AN 〈f1/$, . . . , fn/$〉. Since Mad

N,η → M
ad
m,η is

an étale map of adic curves, the image of ZN inMad
m,η is again affinoid.

Of course, Lemma 6.4.1 holds for the tower of geometrically connected
componentsM◦,ad

m,η as well.

Fix m ≥ 0. For each vertex v of T , let W
(m)
v be the image of Wv in

Mm,η. Similarly define Z
(m)
v as the image of Zv. By repeatedly applying

Lemmas 6.1.2 and 6.4.1, we deduce that Wv is a wide open.

Let Γ1(πm) = Γ(πm)∩SL2(K). We have a map Zv → Z
(m)
v . Since Zv is

the spectrum of a perfect ring, this map extends to a map Z v → Z
(m),perf
v .

Lemma 6.4.2. Assume m ≥ 1. The map Zv → Z
(m),perf
v is a quotient

by K1
v ∩ Γ1(πm). That is, the coordinate ring of Z

(m),perf
v is the ring of

K1
v ∩ Γ1(πm)-invariants in the coordinate ring of Zv.

Proof. Let H = K1
v ∩Γ

1(πm). Let S(m) (resp. S) be the integral coordinate

ring of Z
(m)
v (resp. of Zv), and let S

(m)
(resp. S) be its reduction. It suffices

to show that the map S
(m),perf

→ S
H

is surjective. Let f ∈ S be invariant
by H, and let f ∈ S be any lift. We may assume that f is invariant by
Γ1(πM ) for some sufficiently large M , for the set of such elements (as M
varies) is dense in S. Let H ′ = K1

v ∩ Γ1(πM ). Let g be the product of
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translates of f by a set of coset representatives for H/H ′, so that g is H-
invariant and therefore belongs to S(m). Since m ≥ 1, H is a p-group, so

that [H : H ′] = pn for some n. Since f is H-invariant, we have g = f
pn
.

Thus f is the image of an element of S
(m),perf

, namely g1/p
n
.

We now use the wide opens Wv to construct an open covering ofMad
m,η.

For a CM point x ∈Mad
∞,η, let x

(m) be the image of x inMad
m,η. Let Ux be

a sufficiently small affinoid neighborhood of x(m), so that Ux is a disc. Then
Ux contains Z(x,m) for m sufficiently large, say m ≥ Nx + 1. Now let T (m)

be the graph described by the following procedure: Start with T /Γ(πm),
but remove (x,m) whenever m > Nx. Then we have a covering ofMad

m,η by

wide opens Vv indexed by the vertices of T (m), where we have put

V(x,m) =

{
W(x,m), m < Nx

W(x,m) ∪ Ux, m = Nx.

Recall thatMad
m,η/π

Z is the quotient ofMad
m,η by the subgroup of GL2(K)

generated by the scalar π. We get a get a covering of Mad
m,η/π

Z by wide

opens Vv indexed by vertices of the quotient graph T (m)/πZ. We will show
this is a semistable covering. For this we will have to show that the affinoids

Z
(m)
v ⊂ V

(m)
v have good reduction. A priori, we only know that the reduction

Z
(m)
v is an integral scheme over Speck of dimension 1. Write Z

(m),cl
v for the

smooth projective curve associated to the function field of Z
(m)
v .

Proposition 6.4.3. We have

∑

v∈T (m)/πZ

dimH1(Z
(m),cl
v ,Q`) ≥ 2

∑

Π

dimΠΓ(πm) dimJL(Π̌),

where the sum ranges over supercuspidal representations of GL2(K) whose
central character is trivial on π.

Proof. For each vertex v = (x,m) ∈ T , the perfection Z
(m),perf
v is the quo-

tient of Zv by K1
v ∩ Γ1(πm), by Lemma 6.4.2. On the other hand, by Thm.

5.1.2 there exists a nonconstant K1
v-equivariant morphism Zv → Cv, where

Cv is the curve of Defn. 4.3.1. From this we can conclude there exists a

nonconstant morphism Z
(m)
v → Cv/(K

1
v ∩ Γ1(πm)). This morphism extends

to a morphism of smooth projective curves Z
(m),cl
v → Ccl

v /(K
1
v ∩Γ

1(πm)), so
that

dimH1(Z
(m),cl
v ,Q`) ≥ dimH1

c (C
cl
v ,Q`)

K1
v∩Γ

1(πm).
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We now sum this inequality over all v ∈ T (m)/πZ. Suppose R ⊂ T ◦ is
a set of representatives for the quotient T ◦/(GL2(K) × D×). Then every
vertex in T (m)/πZ is the translate of some uniquely determined v ∈ R by an
element g ∈ GL2(K)×D× which is well-defined up to left multiplication by
K1

v (the stabilizer of v) and up to right multiplication by Γ1(πm)πZ (which
fixes T (m) pointwise). We get

∑

v∈T (m)/πZ

dimH1(Z
(m),cl
v ,Q`) ≥

∑

v∈R

∑

g∈K1
v\(GL2(K)×D×)/Γ1(πm)πZ

dimH1
c (Cvg ,Q`)

=
∑

v∈R

dim
(
Ind

GL2(K)/πZ×D×

K1
v

H1
c (Cv ,Q`)

)Γ1(πm)

by Mackey’s theorem. The result now follows from Prop. 4.3.3.

Theorem 6.4.4. {Vv}v∈T (m) constitutes a semistable covering of Mad
m,η.

Proof. It suffices to show that {Vv}v∈T (m)/πZ constitutes a semistable cover-

ing ofMad
m,η/π

Z. Let us abbreviate T = T (m)/πZ and Zv = Z
(m)
v for v ∈ T .

The wide open curveMad
m,η/π

Z admits some semistable covering, so suppose
there is a graph T ′ and a collection of wide opens V ′

v satisfying the criteria
in Defn. 6.1.3, with underlying affinoids Zv. After refining the covering, we
may assume that T ′ contains T as a subgraph, that Z ′

v ⊂ Zv for all vertices

v ∈ T , and that (for all v ∈ T ) Zv ⊂ Z
′
v is open, so that Z

cl
v = (Z

′
v)

cl.
By Prop. 6.1.5 we have

dimH1
c (M

ad
m,η/π

Z,Q`) =
∑

v∈T ′

dimH1
c (Z

′
v,Q`) + dimH1

c (T
′,Q`).

On the other hand Cor. 3.1.2 gives

dimH1
c (M

ad
η /π

Z,Q`) = 2
∑

Π

dimΠΓ(πm) dimJL(Π̌)+2qm−1(q−1) dim StΓ(π
m)

We have dimStΓ(Π
m) = #P1(OK/π

m) − 1. The dimension of H1
c (T

′,Q`)
is at least 2qm−1(q − 1)(#P1(OK/π

m)− 1), because T has 2qm−1(q − 1) =
#K×/π2Z(1+πmOK) connected components, and each component has ends
in correspondence with P1(OK/π

m). This has the following consequences:

1. The inequality in Prop. 6.4.3 is an equality,

2. For all primitive v ∈ T , the morphism Z
(m)
v → Cv/(K

1
v ∩ Γ1(πm))

induces an isomorphism on the level of H1
c ,
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3. For all imprimitive v ∈ T , and all v ∈ T ′\T , H1
c (Z

′
v,Q`) = 0, so that(

Z
′
v

)cl
= P1, and

4. H1
c (T

′,Q`) = H1
c (T,Q`), so that T ′ is cycle-free and has no ends other

than those of T .

These imply that {Vv}v∈T was a semistable covering to begin with, because
otherwise its semistable refinement would have introduced new curves of
positive genus in the special fiber, or else monodromy in the dual graph.

We can now complete the proof of Thm. 1.0.5. First, we observe that the
wide opens Wv constitute a semistable covering ofMad,non-CM

m,η , from which

we get a compatible family of semistable models M̂non-CM
m . Each irreducible

component of M̂non-CM
m is the completion of Z

(m)
v for some v ∈ T /Γ(πm).

The components corresponding to imprimitive vertices have genus 0. Let
v be any primitive vertex of T . Then there exists m large enough so that

Γ(πm)∩K1
x,v acts trivially on Cv. We have the morphism Z

(m)
v → Cv; since

it induces an isomorphism on H1
c (see point (2) in the above proof), and

since Cv has positive genus, this morphism must be purely inseparable. The

same is true for Z
(m′)
v → Cv for all m′ > m; since this map factors through

Z
(m′)
v → Z

(m)
v , the latter must be purely inseparable as well.

7 Stable reduction of modular curves: Figures

In Figures 1-3, we draw the graph T ◦ constructed in §6.3. Each vertex v is
labeled with its corresponding curve appearing on the list of four curves in
Thm. 1.0.1.

We sketch a procedure for calculating the dual graph corresponding to
the special fiber of a stable model of one geometrically connected com-
ponent of the classical modular curve Xm = X(Γ(pm) ∩ Γ1(N)), where
N ≥ 5. First one must calculate the quotient T ◦/Γ1(pm), where Γ1(pm) =
(1 + pmM2(Zp)) ∩ SL2(Qp). The image of a vertex v in the quotient is la-
beled with the nonsingular projective curve constructed by quotienting Cv

by Γ1(pm) ∩ K1
v . For almost every v, the quotient is rational. The quotient

graph T ◦/Γ1(pm) has finitely many ends, and each end is (once one goes
far enough) a ray consisting only of rational components. Erase all rational
components lying on an end which corresponds to a CM point. The remain-
ing ends correspond to the boundary of M◦,ad

m,η ; these are in bijection with

P1(Z/pmZ). For each b ∈ P1(Z/pmZ), erase all rational components lying
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Figure 1: The “depth zero” subgraph of T ◦, consisting of the vertices v =
(x, 0). The blue vertices are unramified. Each represents a copy of the
nonsingular projective curve with affine model xyq−xqy = 1. The stabilizer
of any particular blue vertex in SL2(K) is conjugate to SL2(OK). The
white vertices are imprimitive. Each represents a rational component. The
stabilizer of any white vertex in SL2(K) is an Iwahori subgroup.

on the end corresponding to b, and let vb be the unique non-rational vertex
which is adjacent to one of the vertices just erased. Call the resulting graph
Tm.

Let Ig(pm) denote the nonsingular projective model of the Igusa curve
parameterizing elliptic curves over Fp together with Igusa pm structures
and a point of order N . Draw P1(Z/pmZ) many vertices wb, and label each
with Ig(pm). For each b ∈ P1(Z/pmZ), and each supersingular point of
X1(N)(Fp), attach a copy of Tm to wb in such a way that the vertex wb

is adjacent to each vb. Finally, blow down any superfluous rational compo-
nents. The result is a finite graph representing the special fiber of a stable
model of one component of Xm.
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The white vertices are imprimitive; each represents a rational component.
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