MA 225 PRACTICE FINAL

- 1. (12 points) Answer the following questions about 3D vector geometry.
 - (a) (3 pts) Find a vector which is normal to the plane 2x 3z = 1.

(b) (3 pts) Find the angle between the vectors $\langle 1, 0, 1 \rangle$ and $\langle -1, 1, 0 \rangle$.

(c) (3 pts) If ${\bf v}$ and ${\bf w}$ are any vectors in space, then ${\bf v} \cdot ({\bf v} \times {\bf w})$ equals:

(d) (3 pts) Write down the interpretation of $|\mathbf{v} \times \mathbf{w}|$ as an area.

- (1) The divergence of \mathbf{F} is 0 everywhere on R.
- (2) $\partial g/\partial x \partial f/\partial y = 0$ everywhere on R.
- (3) $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed curve *C* in *R*. (4) $\mathbf{F} = \nabla \phi$ for a function ϕ defined on *R*.

3. (6 points) Suppose that x, y and z are positive numbers satisfying x + 2y + z = 12. Find the largest possible value of xyz.

4. (8 points) Let $\mathbf{F} = \langle xy, x + y \rangle$. Let C be the triangle in the plane with vertices (0,0), (1,0) and (1,1), oriented counterclockwise. Find $\oint_C \mathbf{F} \cdot d\mathbf{r}$.

5. (6 points) Find the Jacobian of the transformation $x = ve^u$, $y = ve^{-u}$.

6. (10 points) Let z = f(x, y) be a differentiable function. Let r and θ be the usual variables from polar coordinates, so that $x = r \cos \theta$ and $y = r \sin \theta$. At the point $(r, \theta) = (1, \pi/4)$, find $\partial z/\partial r$ and $\partial z/\partial \theta$ in terms of $\partial z/\partial x$ and $\partial z/\partial y$.

7. (6 points) Sketch the graph of $z = \sqrt{x^2 + y^2}$.

9. (10 points) Find $\iiint_D z^2 dV$, where D is the region in space defined by the inequalities $x^2 + y^2 \le 4, 0 \le z \le 1$.

10. (10 points) Let $\phi(x, y, z) = x^3y + z$. Find $\int_C \nabla \phi \cdot d\mathbf{r}$, where C is any curve starting at (1, 0, 0) and ending at (1, 1, 1).