MA 225 PRACTICE FINAL

1. (12 points) Answer the following questions about 3 D vector geometry.
(a) (3 pts) Find a vector which is normal to the plane $2 x-3 z=1$.
(b) (3 pts) Find the angle between the vectors $\langle 1,0,1\rangle$ and $\langle-1,1,0\rangle$.
(c) (3 pts) If \mathbf{v} and \mathbf{w} are any vectors in space, then $\mathbf{v} \cdot(\mathbf{v} \times \mathbf{w})$ equals:
(d) (3 pts) Write down the interpretation of $|\mathbf{v} \times \mathbf{w}|$ as an area.
2. (6 points) Let $\mathbf{F}=\langle f, g\rangle$ be a vector field with continuous partial derivatives on a simply-connected region R in the plane. Which of the following statements does not mean the same as the others?
(1) The divergence of \mathbf{F} is 0 everywhere on R.
(2) $\partial g / \partial x-\partial f / \partial y=0$ everywhere on R.
(3) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed curve C in R.
(4) $\mathbf{F}=\nabla \phi$ for a function ϕ defined on R.
3. (6 points) Suppose that x, y and z are positive numbers satisfying $x+2 y+z=12$. Find the largest possible value of $x y z$.
4. (8 points) Let $\mathbf{F}=\langle x y, x+y\rangle$. Let C be the triangle in the plane with vertices $(0,0),(1,0)$ and $(1,1)$, oriented counterclockwise. Find $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.
5. (6 points) Find the Jacobian of the transformation $x=v e^{u}, y=v e^{-u}$.
6. (10 points) Let $z=f(x, y)$ be a differentiable function. Let r and θ be the usual variables from polar coordinates, so that $x=r \cos \theta$ and $y=r \sin \theta$. At the point $(r, \theta)=(1, \pi / 4)$, find $\partial z / \partial r$ and $\partial z / \partial \theta$ in terms of $\partial z / \partial x$ and $\partial z / \partial y$.
7. (6 points) Sketch the graph of $z=\sqrt{x^{2}+y^{2}}$.
8. (10 points) Let S be the filled-in square in the $x z$-plane with vertices $(0,0,0),(1,0,0),(1,0,1)$ and $(0,0,1)$. Orient S in the positive y-direction. Let \mathbf{F} be the vector field $\langle-y, z, x\rangle$. Find the flux of \mathbf{F} through S.
9. (10 points) Find $\iiint_{D} z^{2} d V$, where D is the region in space defined by the inequalities $x^{2}+y^{2} \leq 4,0 \leq z \leq 1$.
10. (10 points) Let $\phi(x, y, z)=x^{3} y+z$. Find $\int_{C} \nabla \phi \cdot d \mathbf{r}$, where C is any curve starting at $(1,0,0)$ and ending at $(1,1,1)$.
