MA 225 PRACTICE FINAL SOLUTIONS

1. (12 points) Answer the following questions about 3D vector geometry.
(a) (3 pts) Find a vector which is normal to the plane $2 x-3 z=1$.

Solution: Copying the coefficients of x, y and z and pasting them into a vector gives $\langle 2,0,-3\rangle$, which is a normal vector to this plane.
(b) (3 pts) Find the angle between the vectors $\langle 1,0,1\rangle$ and $\langle-1,1,0\rangle$.

Solution: The angle θ satisfies

$$
\cos \theta=\frac{\langle 1,0,1\rangle \cdot\langle-1,1,0\rangle}{|\langle 1,0,1\rangle||-1,1,0\rangle \mid}=\frac{-1}{\sqrt{2} \sqrt{2}}=-\frac{1}{2},
$$

so that $\theta=2 \pi / 3$.
(c) (3 pts) If \mathbf{v} and \mathbf{w} are any vectors in space, then $\mathbf{v} \cdot(\mathbf{v} \times \mathbf{w})$ equals:

Solution: The cross product $\mathbf{v} \times \mathbf{w}$ is orthogonal to \mathbf{v}, so their dot product must equal 0 .
(d) (3 pts) Write down the interpretation of $|\mathbf{v} \times \mathbf{w}|$ as an area.

Solution: $|\mathbf{v} \times \mathbf{w}|$ is the area of a parallelogram whose sides are v and w.
2. (6 points) Let $\mathbf{F}=\langle f, g\rangle$ be a vector field with continuous partial derivatives on a simply-connected region R in the plane. Which of the following statements does not mean the same as the others?
(1) The divergence of \mathbf{F} is 0 everywhere on R.
(2) $\partial g / \partial x-\partial f / \partial y=0$ everywhere on R.
(3) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every closed curve C in R.
(4) $\mathbf{F}=\nabla \phi$ for a function ϕ defined on R.

Solution: The answer is (1). (2) means that the curl of \mathbf{F} is 0 , which means that \mathbf{F} must be conservative (4). If \mathbf{F} is conservative, then it has zero circulation around any closed curve (3). The statement (1) means that \mathbf{F} is source-free, which means that \mathbf{F} has zero flux through any closed curve, but that is something different.
3. (6 points) Suppose that x, y and z are positive numbers satisfying $x+2 y+z=12$. Find the largest possible value of $x y z$.

Solution: Let's use Lagrange multipliers. We're trying to maximize $f(x, y, z)=x y z$ subject to the constraint $g(x, y, z)=x+2 y+z=12$. So there's going to be a scalar λ for which $\nabla f=\lambda \nabla g$. This means

$$
\langle y z, x z, x y\rangle=\lambda\langle 1,2,1\rangle
$$

from which we get equations

$$
\begin{aligned}
y z & =\lambda \\
x z & =2 \lambda \\
x y & =\lambda
\end{aligned}
$$

Plugging $\lambda=y z$ into the second equation gives $x z=2 y z$. We can cancel the z (because it is positive) to get $x=2 y$. Doing the same with the third equation gives $x=z$. So, $x=z=2 y$. Finally we have the original equation $x+2 y+z=12$, which means that $2 y+2 y+2 y=12$, or $y=2$. Thus $(x, y, z)=(4,2,4)$, and the largest value of $x y z$ is $4 \times 2 \times 4=32$.
4. (8 points) Let $\mathbf{F}=\langle x y, x+y\rangle$. Let C be the triangle in the plane with vertices $(0,0),(1,0)$ and $(1,1)$, oriented counterclockwise. Find $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$.

Solution: You can do three line integrals, but it's easier to use Green's theorem (the circulation form). This says that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \operatorname{curl} \mathbf{F} d A$, where R is the region enclosed by C. This is the region bounded by $y=0, x=1$ and $y=x$. The curl of \mathbf{F} is $1-x$. We get

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{R} \operatorname{curl} \mathbf{F} d A \\
& =\int_{x=0}^{1} \int_{y=0}^{x} 1-x d y d x \\
& =\left.\int_{x=0}^{1}(1-x) y\right|_{0} ^{x} \\
& =\int_{x=0}^{1} x-x^{2} d x=\frac{1}{2} x^{2}-\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

5. (6 points) Find the Jacobian of the transformation $x=v e^{u}, y=v e^{-u}$.

Solution: The Jacobian is the determinant of the partial derivatives:

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v e^{u} & e^{u} \\
-v e^{-u} & e^{-u}
\end{array}\right|=v-(-v)=2 v .
$$

6. (10 points) Let $z=f(x, y)$ be a differentiable function. Let r and θ be the usual variables from polar coordinates, so that $x=r \cos \theta$ and $y=r \sin \theta$. At the point $(r, \theta)=(1, \pi / 4)$, find $\partial z / \partial r$ and $\partial z / \partial \theta$ in terms of $\partial z / \partial x$ and $\partial z / \partial y$.

vspace 1 cm

Solution: The chain rule says that

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\text { partialz }}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \\
& =\cos \theta \frac{\partial z}{\partial x}+\sin \theta \frac{\partial z}{\partial y} \\
& =\frac{\sqrt{2}}{2} \frac{\partial z}{\partial x}+\frac{\sqrt{2}}{2} \frac{\partial z}{\partial y}
\end{aligned}
$$

It's similar with $\frac{\partial z}{\partial \theta}$.
7. (6 points) Sketch the graph of $z=\sqrt{x^{2}+y^{2}}$.

Solution: This is a cone facing upward, with its vertex at the origin.
8. (10 points) Let S be the filled-in square in the $x z$-plane with vertices $(0,0,0),(1,0,0),(1,0,1)$ and $(0,0,1)$. Orient S in the positive y-direction. Let \mathbf{F} be the vector field $\langle-y, z, x\rangle$. Find the flux of \mathbf{F} through S.

Solution: The flux is $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$. Since S is just a flat square in the $x z$-plane, the normal vector is just $\mathbf{n}=\mathbf{j}=$ $\langle 0,1,0\rangle$. On S, the vector field is $\mathbf{F}=\langle 0, z, x\rangle$, because y is always 0 . We get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\int_{0}^{1} \int_{0}^{1}\langle 0, z, x\rangle \cdot\langle 0,1,0\rangle d z d x=\int_{0}^{1} \int_{0}^{1} z d z d x=\frac{1}{2}
$$

9. (10 points) Find $\iiint_{D} z^{2} d V$, where D is the region in space defined by the inequalities $x^{2}+y^{2} \leq 4,0 \leq z \leq 1$.

Solution: D is part of a cylinder, so let's use cylindrical coordinates:

$$
\iint_{D} z^{2} d V=\int_{\theta=0}^{2 \pi} \int_{r=0}^{2} \int_{z=0}^{1} z^{2} d z r d r d \theta=(2 \pi)\left(2^{2} / 2\right)(1 / 3)=4 \pi / 3
$$

10. (10 points) Let $\phi(x, y, z)=x^{3} y+z$. Find $\int_{C} \nabla \phi \cdot d \mathbf{r}$, where C is any curve starting at $(1,0,0)$ and ending at $(1,1,1)$.

By the fundamental theorem of line integrals,

$$
\int_{C} \nabla \phi \cdot d \mathbf{r}=\phi(1,1,1)-\phi(1,0,0)=2-0=2
$$

