MA 341 HW #12, due Friday, Apr. 28

- 1. Factor 9 + 7i into Gaussian primes.
- 2. Find an inverse to 1 + i modulo 7.
- 3. Let p_1, p_2, p_3 be distinct primes which are each congruent to 1 modulo 4. How many solutions are there to $x^2 + y^2 = p_1 p_2 p_3$ for positive integers x, y?
- 4. Let $a, b \in \mathbb{Z}$ be relatively prime, and let $\alpha = a + bi$. Show that the gcd between α and $\overline{\alpha}$ is either 1 or 1 + i.
- 5. Let $p \equiv 3 \pmod{4}$ be prime. For $a, b \in \mathbb{Z}$, show that $(a+bi)^p \equiv a-bi \pmod{p}$. (Remember that p divides the binomial coefficients $\binom{p}{a}$ for $1 \leq a \leq p-1$.)
- 6. Continuing with the previous problem, suppose $p \equiv 3 \pmod{4}$, and suppose $\alpha \in \mathbf{Z}[i]$ is not divisible by p. Show that $\alpha^{p^2-1} \equiv 1 \pmod{p}$.