MA442 Midterm Solutions

- Decide if (0, -4, -14, -40) is in the span of the vectors (1, 1, 1, 1), (1, 2, 4, 8) and (1, 3, 9, 27) in ℝ⁴.
 Solution. It is.
- 2. Let $P_3(\mathbb{R})$ be the vector space of polynomials with real coefficients of degree at most 3. Let $W \subset P_3(\mathbb{R})$ denote the subspace consisting of polynomials f which satisfy the equations

$$f(0) = f'(0)$$

 $f(1) = f'(1).$

Find a basis for W.

Solution. Any polynomial in $P_3(\mathbb{R})$ is of the form $f(x) = a+bx+cx^2+dx^3$. The given equations imply that

$$a = b$$

$$a+b+c+d = b+2c+3d$$

a system of two linear equations is four unknowns. Eliminating b from the second equation gives a = c + 2d. Thus we may take c and d to be our independent variables (parameters), and a and b depend on these. A basis for W is given by setting (c, d) as (1, 0) and (0, 1), respectively, giving the basis $\{1 + x + x^2, 2 + 2x + x^3\}$.

3. Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} . Let $T: V \to V$ be the function defined by $(Tf)(x) = f(x^2)$. Thus for instance T takes the function $\sin(x)$ to $\sin(x^2)$. Is T a linear transformation? Briefly justify your answer.

Solution. It is. The appearance of the x^2 term is just a red herring. To check that T is linear, we must show that for $f, g \in V$ and $c \in \mathbb{R}$, we have T(f+g) = T(f) + T(g) and T(cf) = cT(f). To check that T(f+g) = T(f) + T(g), we can show that T(f+g)(x) = (T(f) + T(g))(x) for all $x \in \mathbb{R}$. We have

$$T(f+g)(x) = (f+g)(x^{2})$$

= $f(x^{2}) + g(x^{2})$
= $T(f)(x) + T(g)(x)$
= $(T(f) + T(g))(x).$

A similar argument works for T(cf) = cT(f). On the other hand, if $U: V \to V$ is the function defined by $(Uf)(x) = f(x)^2$, then U is not a linear transformation.

4. Let $T \colon \mathbb{R}^3 \to \mathbb{R}$ be a linear transformation. Show that there exist scalars a, b and c such that T(x, y, z) = ax + by + cz for all $(x, y, z) \in \mathbb{R}^3$.

Solution. Let

$$a = T(1, 0, 0)$$

 $b = T(0, 1, 0)$
 $c = T(0, 0, 1)$

Then for all $(x, y, z) \in \mathbb{R}^3$, we have

$$T(x, y, z) = T(x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1))$$

= $xT(1, 0, 0) + yT(0, 1, 0) + z(0, 0, 1)$
= $ax + by + cz$

5. Let $T: V \to W$ be a linear transformation between two vector spaces. Show that if $v_1, \ldots, v_n \in V$ are vectors and $\{T(v_1), \ldots, T(v_n)\}$ is linearly independent, then so is $\{v_1, \ldots, v_n\}$.

Solution. Suppose that there are scalars a_1, \ldots, a_n with

$$a_1v_1 + \dots + a_nv_n = 0.$$

Applying T (and using the fact that T is linear) gives

$$a_1T(v_1) + \dots + a_nT(v_n) = 0.$$

Since $\{T(v_1), \ldots, T(v_n)\}$ is linearly independent, all of the a_i are zero. This shows that $\{v_1, \ldots, v_n\}$ is linearly independent.

6. Let $T: V \to W$ be a linear transformation between two vector spaces, and let $U: W \to X$ be another. Recall that $UT: V \to X$ is the linear transformation defined by UT(v) = U(T(v)) for all $v \in V$. Show that if T and U are both one-to-one, then so is UT.

Solution. A linear transformation is one-to-one if and only if its nullspace is 0. Let v be a vector in the nullspace of UT. Then UT(v) = 0, so that U(T(v)) = 0. This means that T(v) lies in the nullspace of U, but since U is one-to-one, T(v) = 0. Thus v is in the nullspace of T, but since T is one-to-one, v = 0. We have shown that the only vector in the nullspace of UT is the zero vector, so that UT is one-to-one.