
LECTURE APRIL 10: INNER PRODUCT SPACES

1. Review of the dot product in Euclidean space

Recall that for two vectors v “ pa, bq and w “ pc, dq in R2, the dot product is

v ¨ w “ ac` bd

The result is a scalar!!!!! Sometimes this is called the scalar product, for this reason. In 3D there’s a similar
formula. There’s another formula for dot product:

v ¨ w “ |v| |w| cos θ

Here, |v| means the length of the vector v, namely |v| “
?
a2 ` b2, and θ means the angle between the two

vectors. This formula is valid in any dimension whatsoever, even R4!
The length of a vector is already given by the dot product,

|v| “
?
v ¨ v

Thus both length and angle can be read off from the dot product. There is another related concept,
orthogonality: two vectors v and w are orthogonal if

v ¨ w “ 0.

This means that there is an angle of π{2 between v and w.

2. Inner product spaces

Given an (abstract) vector space V , with scalar field the real numbers, there is no automatic concept of
length, angle, or orthogonality.

An inner product space is a vector space V together with a function

xv, wy : V ˆ V Ñ R.

It has to satisfy:

(1) xv1 ` v2, wy “ xv1, wy ` xv2, wy
(2) xcv, wy “ cxv, wy.
(3) xw, vy “ xv, wy.
(4) xv, vy ě 0, with equality if and only if v “ 0.

These axioms are supposed to capture what the dot product does in Euclidean space. But they apply to
many other vector spaces, even ones of infinite dimensions.

You can prove theorems starting from these axioms. For instance, why is x0, vy “ 0? Here’s a one line
proof:

x0, vy “ x00, vy “ 0x0, vy “ 0.

Given an inner product space, we can define a notion of length or magnitude of its vectors, like this:

‖v‖ “
a

xv, vy.

In the asbtract setting of vector spaces, ‖v‖ is called the norm of v. We have ‖v‖ ą 0 for all nonzero vectors
v.

We can also say that v and w are orthogonal if

xv, wy “ 0
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We can also try to define the angle between two nonzero vectors v, w in an inner product space, using the
formula

xv, wy “ ‖v‖ ‖w‖ cos θ

θ “ cos´1

ˆ

xv, wy

‖v‖ ‖w‖

˙

In order for this to make sense, we need the expression in parentheses to be between ´1 and 1.

Theorem 2.1 (The Cauchy-Schwarz inequality). In an inner product space, for all v, w we have

|xv, wy| ď ‖v‖ ‖w‖ .

3. An example: continuous functions on an interval

An example: Let V be the vector space of all continuous functions f : r0, 2πs Ñ R. Define an inner
product on it by

xf, gy “

ż 2π

0

fpxqgpxq dx

The last axiom would be verified by saying that
ż 2π

0

fpxq2 dx ě 0,

with equality if and only if f is the zero function.
If fpxq “ cospxq and gpxq “ sinpxq, then f, g P V . We can compute:

xf, gy “

ż 2π

0

cospxq sinpxqdx “
1

2
sinpxq2|2π0 “ 0

In fact any two functions of the form cospmxq and sinpnxq are going to be orthogonal to each other, as long
as they are different. This result is very important in Fourier analysis.

The norm of f is

‖f‖ “
a

xf, fy “

d

ż 2π

0

cos2pxqdx “
?
π

4. Pythagorean theorem and Cauchy-Schwartz inequality

The Pythagorean theorem says: if a, b, c are the sides of a right triangle, with c the hypoteneuse, then
a2 ` b2 “ c2.

In terms of the Euclidean plane R2, it says: if v and w are vectors which are orthogonal to each other,
then

|v|
2
` |w|

2
“ |v ` w|

2
.

This formula works in R3 as well.

Theorem 4.1. Let V be an inner product space, and let v, w P V be orthogonal vectors. Then

‖v‖2 ` ‖w‖2 “ ‖v ` w‖2 .

Proof. Let v, w P V be orthogonal vectors. Then xv, wy “ 0. We have

‖v ` w‖2 “ xv ` w, v ` wy “ xv, v ` wy ` xw, v ` wy “ xv, vy ` xv, wy ` xw, vy ` xw,wy

The inner two terms are 0, and so
‖v ` w‖2 “ ‖v‖2 ` ‖w‖2 .

�
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Theorem 4.2 (Cauchy-Schwartz inequality). Let v, w P V be vectors in an inner product space. Then

|xv, wy| ď ‖v‖ ‖w‖ ,

with equality if and only if the two vectors are parallel.

The theorem means that if
c “

xv, wy

‖v‖ ‖w‖
,

then |c| ď 1. In other words, ´1 ď c ď 1. Then it makes sense to define an angle θ by cos θ “ c, and then,

xv, wy “ ‖v‖ ‖w‖ cos θ.

We consider θ to be the angle between v and w. If v and w are parallel, then θ “ 0. If v and w are orthogonal,
then θ “ π{2.

Proof. Let v, w P V be vectors. If w “ 0, then the inequality is obvious. So assume that w ‰ 0, which
implies by axiom 4 that xw,wy ‰ 0. Let

z “ v ´
xv, wy

xw,wy
w

The inner product between z and w is

xz, wy “ xv ´
xv, wy

xw,wy
w,wy “ xv, wy ´ x

xv, wy

xw,wy
w,wy “ xv, wy ´

xv, wy

xw,wy
xw,wy “ 0.

So z and w are orthogonal. Then

‖v‖2 “
∥∥∥∥z ` xv, wy

xw,wy
w

∥∥∥∥2 .
By the Pythagorean theorem, this is

‖v‖2 “ ‖z‖2 `
∥∥∥∥ xv, wyxw,wy

w

∥∥∥∥2 ě ∥∥∥∥ xv, wyxw,wy
w

∥∥∥∥2 “ ˆ

xv, wy

xw,wy

˙2

‖w‖2 “ xv, wy2

‖w‖2

We get
xv, wy2 ď ‖v‖2 ‖w‖2 .

Take the square root of both sides to get

|xv, wy| ď ‖v‖ ‖w‖ .

�

5. Complex inner product spaces

We can certainly talk about a vector space over the complex numbers C. We can also talk about an inner
product on such a vector space.

An complex inner product space is a vector space V together with a function

xv, wy : V ˆ V Ñ C.

It has to satisfy:

(1) xv1 ` v2, wy “ xv1, wy ` xv2, wy
(2) xcv, wy “ cxv, wy.
(3) xw, vy “ xv, wy.
(4) xv, vy ě 0, with equality if and only if v “ 0.

The complex conjugate of α “ a ` bi is α “ a ´ bi (here a, b P R). If α “ α, then α P R. Axiom 3 says
that for any v P V , we have xv, vy “ xv, vy, and therefore xv, vy P R.
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In the complex Euclidean plane C2, let’s say we have two vectors

v “ pα1, α2q

w “ pβ1, β2q

with αi, βi P C. The inner product is
xv, wy “ α1β1 ` α2β2

Then
xv, vy “ α1α1 ` α2α2 “ |α1|

2
` |α2|

2
ě 0

This verifies axiom 4.

6. Orthonormal bases

Theorem 6.1. Let V be an inner product space, and let v1, . . . , vn P V be all nonzero vectors which are
orthogonal to each other. Then v1, . . . , vn are linearly independent.

Proof. Let v1, . . . , vn P V be nonzero orthogonal vectors. Assume we have a linear combination of them
which equals 0:

a1v1 ` a2v2 ` ¨ ¨ ¨ ` anvn “ 0

For each j “ 1, . . . , n, we look at

xa1v1 ` a2v2 ` ¨ ¨ ¨ ` anvn, vjy “ 0

This becomes
a1xv1, vjy ` a2xv2, vjy ` ¨ ¨ ¨ ` anxvn, vjy “ 0.

We have xvi, vjy “ 0 whenever i ‰ j, so that the only surviving term is

ajxvj , vjy “ 0.

Since vj ‰ 0, Axiom 4 says that xvj , vjy ‰ 0. Therefore aj “ 0. We get that a1 “ a2 “ ¨ ¨ ¨ “ an “ 0. �

Definition 6.2. A vector v in an inner product space is normal if ‖v‖ “ 1. If v is any nonzero vector, its
normalization if v{ ‖v‖; this is a normal vector. An orthonormal basis for an inner product space is a basis
consisting of normal vectors which are mutually orthogonal.

As an example, what would an orthonormal basis for R2 look like? One of the vectors can be v1 “ pa, bq,
the other v2 “ pc, dq. We have ‖v1‖2 “ a2 ` b2 “ 1 and ‖v2‖2 “ c2 ` d2 “ 1. In polar coordinates:
v1 “ pcos θ, sin θq for some angle θ. There are two possibilities for v2: either it is pcospθ`π{2q, sinpθ`π{2qq,
or pcospθ ´ π{2q, sinpθ ´ π{2q. Thus either v2 “ p´ sin θ, cos θq or else v2 “ psin θ,´ cos θq. The change of
basis matrix for this basis tv1, v2u is of the form

ˆ

cos θ ´ sin θ

sin θ cos θ

˙

or
ˆ

cos θ sin θ

sin θ ´ cos θ

˙

The first matrix represents a rotation by the angle θ, and the second matrix represents a reflection through
a line, which makes an angle of θ{2 with the x-axis. Considered as linear transformations, both of these
matrices preserve lengths and angles, both only the first one preserves orientation.

Theorem 6.3 (Graham-Schmidt). Let V be a finite-dimensional inner product space. Then there exists an
orthonormal basis for V .

Let’s say V has such a basis, call it tv1, . . . , vnu. Then any two vectors in v, call them x and y, would be
linear combinations of the vs:

x “ a1v1 ` ¨ ¨ ¨ ` anvn

y “ b1v1 ` ¨ ¨ ¨ ` bnvn
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What is xx, yy? It is:

xx, yy “ xa1v1 ` ¨ ¨ ¨ ` anvn, b1v1 ` ¨ ¨ ¨ ` bnvny “ a1b1 ` ¨ ¨ ¨ ` anbn

This is the ordinary dot product for Euclidean space! In other words,

xx, yy “ rxsB ¨ rysB

where B is the orthonormal basis. This means that every inner product space resembles Euclidean space
with its dot product.

Proof. The proof is an algorithm, the Graham-Schmidt orthogonalization procedure. It turns an arbitrary
basis w1, . . . , wn, into an orthonormal basis v1, . . . , vn. We’re going to insert an intermediate step, where we
construct first a basis x1, . . . , xn which is merely orthogonal (not necessarily orthonormal).

The pattern goes:

x1 “ w1

x2 “ w2 ´
xw2, x1y

xx1, x1y
x1

x3 “ w3 ´
xw3, x1y

xx1, x1y
x1 ´

xw3, x2y

xx2, x2y
x2

...

xn “ wn ´
n´1
ÿ

i“1

xwn, xiy

xxi, xiy
xi

Let’s compute some inner products:

xx2, x1y “ xw2, x1y ´
xw2, x1y

xx1, x1y
xx1, x1y “ 0

xx3, x1y “ xw3, x1y ´
xw3, x1y

xx1, x1y
xx1, x1y ´

xw3, x2y

xx2, x2y
xx2, x1y “ 0

xx3, x2y “ xw3, x2y ´
xw3, x1y

xx1, x1y
xx1, x2y ´

xw3, x2y

xx2, x2y
xx2, x2y “ 0

...

We find that the x1, . . . , xn are all orthogonal to each other. In fact their span is the same as the span of
the w1, . . . , wn (why?), so that they are a basis. Finally, the orthonormal basis is obtained by normalizing:

vi “ xi{ ‖xi‖ .

�

Let’s do an example. Let V “ P2pRq, the vector space of polynomials with degree ď 2. Let’s define an
inner product on this by

xf, gy “

ż 1

´1

fpxqgpxq dx.

Find an orthonormal basis for V .
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Let’s start with the basis
 

1, x, x2
(

for V . We’ll apply Graham-Schmidt to this. It’ll be useful to pre-
compute the inner products among these vectors:

x1, 1y “

ż 1

´1

1 dx “ 2

x1, xy “

ż 1

´1

x dx “ 0

x1, x2y “

ż 1

´1

x2 dx “
2

3

xx, x2y “

ż 1

´1

x3 dx “ 0

Applying Graham-Schmidt to
 

1, x, x2
(

produces these orthogonal vectors:

x1 “ 1

x2 “ x´
xx, 1y

x1, 1y
1 “ x

x3 “ x2 ´
xx2, 1y

x1, 1y
1´

xx2, xy

xx, xy
x “ x2 ´

1

3

Normalizing these vectors produces the orthonormal basis
#

1
?
2
,

c

3

2
x,

c

5

8
p3x2 ´ 1q

+

.

7. Fourier coefficients

Let V be a finite-dimensional inner product space. Let B “ tv1, v2, . . . , vnu be an orthonormal basis.
This means

xvi, vjy “ δij “

#

1 i “ j

0 i ‰ j

Theorem 7.1. Let y P V be any vector, then

y “
n
ÿ

i“1

xy, viyvi

Proof. We know already that y must be a linear combination of basis vectors:

y “
n
ÿ

i“1

aivi

Now consider xy, vjy for each j “ 1, . . . , n:

xy, vjy “ x
n
ÿ

i“1

aivi, vjy “
n
ÿ

i“1

aixvi, vjy “
n
ÿ

i“1

aiδij “ aj

Plug this in to our expression for y, and we’re done. �

The coefficients xy, viy are called the Fourier coefficients of y with respect to the orthonormal basis B.

8. Orthogonal complements

Definition 8.1. Let V be an inner product space, and let S Ă V be a subset. I define

SK “

"

v P V

ˇ

ˇ

ˇ

ˇ

xv, sy “ 0, all s P S
*

This is called the orthogonal complement of S in V .
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Then SK is a subspace of V .

Example 8.2. t0uK “ V . Also, V K “ t0u.

Example 8.3. Let V “ R2 with its dot product, and let v “ e1 “ p1, 0q. Then tvu
K is the span of e2 “ p0, 1q.

In general, if pa, bq ‰ p0, 0q then tpa, bquK is the span of pb,´aq, because

pa, bq ¨ pb,´aq “ ab´ ba “ 0.

Example 8.4. The orthogonal complement of a line in R3 is a plane.

In general, if W Ă V is a subspace of a finite-dimensional inner product space, then dimW ` dimWK “

dimV .

9. The closest vector problem

Given a finite-dimensional inner product space V , and two vectors x, y P V , the norm ‖x´ y‖ can be
interpreted as the distance between x and y. If V “ Rn with its dot product, then ‖x´ y‖ is simply the
Euclidean distance that you would calculate with the distance formula.

Given a subspace W Ă V and a vector y P V (probably not in W ), find the vector u P V which is closest
to y.

Theorem 9.1. Given a subspace W Ă V and a vector y P V , there exist unique vectors u PW and z PWK,
such that y “ u` z. Furthermore, u is the closest vector in W to y.

Proof. Let v1, . . . , vn be an orthonormal basis for W . Let

u “
n
ÿ

i“1

xy, viyvi.

Then u P W , because it is a linear combination of the vectors vi P W . Let z “ y ´ u. I claim that z P WK.
It is enough to check that xz, vjy “ 0 for all j. We have

xz, vjy “ xy ´ u, vjy

“ xy, vjy ´ x
n
ÿ

i“1

xy, viyvi, vjy

“ xy, vjy ´
n
ÿ

i“1

xy, viyxvi, vjy

“ xy, vjy ´
n
ÿ

i“1

xy, viyδij

“ xy, vjy ´ xy, vjy “ 0

Thus y “ u` z for some u PW and z PWK. (Uniqueness left as exercise.)
Why is u the closest to y? Suppose u1 PW is any other vector. I claim that u is closer to y than u1. The

distance between y and u1 is ∥∥y ´ u1∥∥ “ ∥∥py ´ uq ´ pu1 ´ uq∥∥ “ ∥∥z ´ pu1 ´ uq∥∥
We have that u1, u PW , so u1 ´ u PW . Therefore z is perpendicular to u1 ´ u, so by Pythagoras:∥∥y ´ u1∥∥2 “ ∥∥z ´ pu1 ´ uq∥∥2 “ ‖z‖2 `

∥∥u1 ´ u∥∥2 “ ‖y ´ u‖2 `
∥∥u1 ´ u∥∥2 ě ‖y ´ u‖2 ,

with equality holding if and only if u “ u1.
�
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10. Transposes and adjoints

Remember that for an mˆn matrix A, the transpose At is defined by swapping the rows and columns of
A. Thus, At is an nˆm matrix.

It’s related to the dot product in the following way. If v “
ˆ

a

b

˙

and w “
ˆ

c

d

˙

, then

v ¨ w “ ac` bd “
`

a b
˘

ˆ

c

d

˙

“ vtw

Recall this property of transposes:
pABqt “ BtAt

So now say we have a matrix A, a vector v, a vector w, so that Av is defined and in the same vector space
as w.

Then
Av ¨ w “ pAvqtw “ vtAtw “ v ¨Atw.

Therefore:
Av ¨ w “ v ¨Atw

If V is a real inner product space, and T is a linear operator on V , an adjoint of T is a linear operator T˚

satisfying the property:
xTv,wy “ xv, T˚wy, for all v, w PW

In real Euclidean space, the adjoint is the transpose.
It’s a little more general than this: For two inner product spaces V and W , and a linear transformation

T : V ÑW , the adjoint of T is a linear transformation T˚ : W Ñ V , satisfying:

xTv,wyW “ xv, T˚wyV , for all v P V,w PW.

In the situation of complex Euclidean spaces, T is a matrix A with complex entries, and then

A˚ “ A
t
.

Thus
ˆ

i 2i

3 4` i

˙˚

“

ˆ

´i 3

´2i 4´ i

˙

Importantly, we always have
A˚˚ “ A.

11. Least squares regression

Geometrically, you may want to fit a line that matches some data points in the plane. Say, you have
points pxi, yiq “ p1, 2q, p2, 3q, p3, 5q, p4, 7q. We want to find the line y “ mx` b that fits the data best.

What should this mean? For each i “ 1, 2, 3, 4, the observed data point is pxi, yiq, and the predicted data
point is pxi,mxi ` bq. The error is |yi ´ pmxi ` bq|.

We want to minimize the squared errors:
4
ÿ

i“1

pyi ´ pmxi ` bqq
2

We rewrite this in terms of vectors and their norms. Let

A “

¨

˚

˚

˝

1 1

2 1

3 1

4 1

˛

‹

‹

‚

, x “

ˆ

m

b

˙

, y “

¨

˚

˚

˝

2

3

5

7

˛

‹

‹

‚
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Then

Ax “

¨

˚

˚

˝

m` b

2m` b

3m` b

4m` b

˛

‹

‹

‚

‖Ax´ y‖2 “
4
ÿ

i“1

pyi ´ pmxi ` bqq
2

is the squared error. We are given A and y, and want to find x. This is a bit like trying to solve Ax “ y,
but there might not be an exact solution – that would be if the line fit the data perfectly.

Instead, we are looking for the x that makes ‖Ax´ y‖ smallest.
This is a closest vector problem! Let

W “ RpAq

be the range of the 4 ˆ 2 matrix A, so that W is a subspace of R4. Remember that the range RpAq is the
set of all vectors Ax. We want to find the vector in W which is closest to y.

By our theorem about the closest vector, there exist vectors u PW and z PWK such that

y “ u` z,

and then u is the closest vector in W to y. Since u PW “ RpAq, we must have u “ Ax for some x P R2.
Let’s spell out what it means for z P WK “ RpAqK. This means, for all v P R2, we have xAv, zy “ 0.

Therefore xv,A˚zy “ 0 for all v P R2. This means that A˚z P pR2qK “ t0u. We have then A˚z “ 0.
We want to solve for x in

y “ Ax` z.

Multiply both sides by A˚:
A˚y “ A˚Ax`A˚z “ A˚Ax.

As long as A˚A is invertible, we could solve for x:

x “ pA˚Aq´1A˚y.

We have

A˚A “

ˆ

30 10

10 4

˙

and

pA˚Aq´1 “
1

20

ˆ

4 ´10

´10 30

˙

“
1

10

ˆ

2 ´5

´5 15

˙

and finally

x “ pA˚Aq´1A˚y “
1

10

ˆ

2 ´5

´5 15

˙ˆ

1 2 3 4

1 1 1 1

˙

¨

˚

˚

˝

2

3

5

7

˛

‹

‹

‚

“

ˆ

1.7

0

˙

Therefore the line y “ 1.7x best fits the data.
To make this work, we needed A˚A to be an invertible matrix.

Theorem 11.1. Let A be an m ˆ n matrix, so that A˚A is an n ˆ n matrix. Then A˚A and A have the
same rank.

As a corollary to this, if A has rank n, then A˚A has rank n, and so it is invertible.

Proof. By the dimension theorem, it suffices to show that the nullities of A and A˚A are the same. In fact
we claim that NpAq “ NpA˚Aq.

For NpAq Ă NpA˚Aq: let v P NpAq, so that Av “ 0, then A˚Av “ 0, so v P NpA˚Aq.
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For NpA˚Aq Ă NpAq: let v P NpA˚Aq, so that A˚Av “ 0. Then xA˚Av, vy “ 0. Thus xAv,Avy “ 0. By
Axiom 4, Av “ 0, which means that v P NpAq. �

12. Normal and self-adjoint operators

Let F “ R or F “ C. Remember that for an m ˆ n matrix A with coefficients in F , its adjoint is its
conjugate transpose:

A˚ “ A
t
.

(So if F “ R, the adjoint is just the transpose.) The adjoint is characterized by the property that

Av ¨ w “ v ¨A˚w

for any v P Rn, w P Rm.
In general, if we have two inner product spaces V and W over F (F “ R or F “ C), and a linear trans-

formation T : V Ñ W , we say that a linear transformation T˚ : W Ñ V is the adjoint of T is characterized
by the equation

xTv,wyW “ xv, T˚wyV .

In today’s lecture we focus on the case that A is a square matrix. We’re going to see how inner product
spaces interact with the ideas from the previous chapter about eigenvectors and eigenvalues.

Definition 12.1. Let T be a linear operator on a vector space V . We say that T is diagonalizable if there
exists a basis for V consisting of eigenvectors for T .

If V is finite-dimensional, this is the same as asking that there exist a basis B for V such that rT sB is a
diagonal matrix.

In the case that T comes from a square matrix A, it means that there exists an invertible matrix Q such
that Q´1AQ is diagonal.

Now suppose that V is an inner product space, and T : V Ñ V is a linear operator. We have already seen
(Gram-Schmidt!) that (if V is finite-dimensional) V has a basis consisting of orthonormal vectors.

An orthonormal basis for V is a basis v1, . . . , vn such that

xvi, vjy “ δij

Definition 12.2. Let T be a linear operator on an inner product space space V . We say that T is orthogonally
diagonalizable if there exists an orthonormal basis for V consisting of eigenvectors for T .

This means that there exists an orthonormal basis B for V such that rT sB is diagonal.
If T comes from a square matrix A, then for T to be orthogonally diagonalizable, it would mean that

there exists an invertible matrix Q with Q´1AQ diagonal, but require that Q have orthonormal columns.
This means that QQ˚ “ I. We call such a Q an orthogonal matrix.

Definition 12.3. Let T : V Ñ V be a linear operator on a finite-dimensional inner product space V . We
say that T is normal if T and T˚ commute: TT˚ “ T˚T .

We also say that a square matrix A is normal if AA˚ “ A˚A.
How could we ever find such a matrix?

Definition 12.4. A matrix A is self-adjoint if A˚ “ A.

Obviously, a self-adjoint matrix is normal.
If the scalar field is R, then a self-adjoint matrix is one satisfying At “ A. This is called a symmetric

matrix.
An example would be the matrix

A “

ˆ

0 1

1 0

˙

.
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Geometrically, this is a reflection about y “ x. The characteristic polynomial is t2 ´ 1 “ pt ´ 1qpt ` 1q. So
the eigenvalues are 1,´1.

The vector v1 “
ˆ

1

1

˙

is an eigenvector with value 1, and v2 “

ˆ

1

´1

˙

is an eigenvector with value ´1.

Notice that v1 ¨ v2 “ 0, so these are orthogonal. An orthonormal basis consisting of eigenvectors is

1
?
2

ˆ

1

1

˙

,
1
?
2

ˆ

1

´1

˙

Another example is

A “

ˆ

0 ´1

1 0

˙

Geometrically, this is rotation by π{2. This matrix is anti-symmetric: At “ A˚ “ ´A. But this is enough
to conclude that A is normal, since A and ´A always commute. The characteristic polynomial is t`1 “
pt´ iqqpt` iq, which only has complex roots. So as a real matrix, this is normal but not diagonalizable. As
a complex matrix though, it is orthogonally diagonalizable.

We have
ˆ

0 ´1

1 0

˙ˆ

1

i

˙

“

ˆ

´i

1

˙

“ ´i

ˆ

1

i

˙

The two eigenvectors for A are v1 “
ˆ

1

i

˙

and v2 “
ˆ

1

´i

˙

, with eigenvalues ´i and i, respectively. Then v1

and v2 are orthogonal.

Theorem 12.5. Let T be a linear operator on an inner product space V which is normal. For any v P V ,
we have

‖T pvq‖ “ ‖T˚pvq‖

Proof. Let v P V . We have

‖T pvq‖2 “ xT pvq, T pvqy “ xv, T˚T pvqy “ xv, TT˚pvqy “ xT˚pvq, T˚pvqy “ ‖T˚pvq‖2

�

Theorem 12.6. Let T be a linear operator on an inner product space which is normal. Let v be an eigenvector
of T , with value λ. Then v is also an eigenvector of T˚, with value λ.

Proof. Let v be an eigenvector of T with value λ. Then Tv “ λv. We have Tv´λv “ 0, and so if U “ T´λI,
then Uv “ 0. I claim that U is also a normal matrix (exercise), and so

0 “ ‖Upvq‖ “ ‖U˚pvq‖ ,

so that U˚pvq “ 0. We have U˚ “ T˚ ´ λI. The fact that U˚pvq “ 0 means that T˚pvq “ λv, so that v is
an eigenvector for T˚ with value λ. �

We have two big theorems about normal operators. The first concerns complex scalars, and the second
concerns real scalars.

Theorem 12.7. Let T be a linear operator on a finite-dimensional complex inner product space V . Then T
is orthogonally diagonalizable if and only if it is normal.

Remember that normal means that T and T˚ commute, and orthogonally diagonalizable means that V
has a orthonormal basis consisting of eigenvectors for T .

Proof. For the “if” direction, assume that T is normal.” Let’s first observe what happens in the case that
dimV “ 2. Since we’re over C, there exists one eigenvector v1 for T , say with value λ1. Normalize this so
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that ‖v1‖ “ 1. Now consider tv1u
K: this has to be one-dimensional, with normal vector v2. By the previous

theorem we have T˚v1 “ λ1v1, and so

0 “ λ1xv1, v2y “ xT
˚v1, v2y “ xv1, T v2y,

so that Tv2 P tv1u
K lies in the span of v2: Tv2 “ λ2v2. We now have a basis for V consisting of eigenvectors,

namely tv1, v2u.
Let’s also do the case dimV “ 3 (the general case is by induction). Once again let v1 P V be a normalized

eigenvector, with value λ1. Now consider W “ tv1u
K, a 2-dimensional inner product space. Given w P W ,

we have
0 “ λ1xv1, wy “ xT

˚v1, wy “ xv1, Twy,

so that Tw PW again. Thus T stabilizes W . We can now apply the 2-dimensional case to W to get a basis
tv2, v3u of W consisting of orthonormal eigenvectors for T . Then tv1, v2, v3u is a basis of V consisting of
orthonormal eigenvectors for T .

For the converse of the theorem, suppose B is an orthonormal basis consisting of eigenvectors for T . Then
rT sB is a diagonal matrix. Then so is rT˚sB “ rT s˚B . We know that diagonal matrices commute with each
other, and therefore so do T and T˚.

�

The last theorem concerns real inner product spaces. Recall that an operator T is self-adjoint if T “ T˚.
(For a real matrix A to be self-adjoint, it just means that A “ At, so that A is symmetric about its diagonal.
Such matrices are often called “symmetric”.)

Theorem 12.8. Let T be a linear operator on a finite-dimensional real inner product space V . Then T is
orthogonally diagonalizable if and only if it is self-adjoint.

Remember that self-adjoint means that T “ T˚. For a real matrix A to be self-adjoint, it means that
A “ At, so that A is an nˆ n symmetric matrix.

Example 12.9. Let A “
ˆ

a b

c d

˙

be a symmetric 2ˆ 2 matrix. Then b “ c, so A “
ˆ

a b

b d

˙

. Assume that

A is real, so that a, b, d P R. The theorem says that A is diagonalizable, let’s verify this.
The characteristic polynomial of A is

t2 ´ pa` dqt` pad´ b2q

To investigate the nature of the roots, I look at the discriminant of this polynomial:

pa` dq2 ´ 4pad´ b2q “ a2 ` 2ad` d2 ´ 4ad` 4b2 “ a2 ´ 2ad` d2 ` 4b2 “ pa´ dq2 ` p2bq2 ě 0.

The discriminant is positive as long as a´d and 2b are not both zero. In that case, the roots of this polynomial

are distinct and real, and therefore A is diagonalizable. Otherwise, a “ d and b “ 0, but then A “
ˆ

a 0

0 a

˙

is already diagonal.

Proof. For the “if” direction, assume that T is self-adjoint. After choosing a basis for V , let’s represent T as
an nˆ n matrix A, with real entries. Thus A “ At is symmetric. It will be enough to show that there is an
orthonormal basis for Rn consisting of eigenvectors for A.

Even though A has real entries, it still makes sense to apply A to vectors in Cn, thereby getting a linear
operator on Cn. So we may talk about a complex eigenvector v P Cn with eigenvalue λ P C. We have

λxv, vy “ xAv, vy “ xv,A˚vy “ xv,Avy “ xAv, vy “ λxv, vy “ λxv, vy.

Since xv, vy ‰ 0, we must have λ “ λ, so that λ P R. We have shown that all eigenvalues of A are real; that
is, the characteristic polynomial of A has only real roots.
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Let λ1 be one of those roots, and let v1 P Rn be an eigenvector: Av1 “ λ1v1. Let W “ tv1u
K. Then

A preserves W (same proof as before, uses the fact that A is normal). Proceed inductively to find an
orthonormal basis of eigenvectors for A.

For the “only if” direction: Assume that V has an orthonormal basis B consisting of eigenvectors of T .
Then rT sB is a diagonal matrix. Such matrices are always self-adjoint: rT sB “ rT s˚B . This implies that
T “ T˚, so that T is self-adjoint. �

13. Othogonal and Unitary operators

Let’s review some of our vocab words from this chapter:

(1) T is normal if TT˚ “ T˚T .
(2) T is self-adjoint if T “ T˚.
(3) T is orthogonal (in the real case) or unitary (in the complex case) if TT˚ “ I.

Think about an operator T : R2 Ñ R2 geometrically, as moving points in spaces. Let’s ask the question:
is length preserved? Is angle preserved? Is area preserved? Is orientation preserved?

As far as the last two questions go, the answer involves the determinant: The area gets stretched out by
a factor of |detT |, and orientation goes with the sign of detT .

Definition 13.1. Let T be a linear operator on an inner product space V (assume finite dimensional).
Suppose that for all v P V we have

‖T pvq‖ “ ‖v‖ .
Then we call T orthogonal if V is real, and unitary if V is complex.

Thus rotations and reflections are orthogonal, but dilations and shears are not.

Theorem 13.2. The following are equivalent.

(1) For all v, w P V , we have
xT pvq, T pwqy “ xv, wy

(angle-preserving).
(2) T is orthogonal or unitary (length-preserving): for all v P V we have

‖T pvq‖ “ ‖v‖ .

(3) TT˚ “ I.

Proof. Let’s start with (1) implies (2). Assume that T is angle-preserving. Then for any v P V , we have

‖T pvq‖ “
a

xT pvq, T pvqy “
a

xv, vy “ ‖v‖ .

Next we’ll do (2) implies (3). Assume that T is length-preserving. This means that

xv, vy “ xT pvq, T pvqy “ xv, T˚T pvqy

This means that
xv, T˚T pvqy ´ xv, vy “ xv, T˚T pvq ´ vy “ xv, pT˚T ´ Iqvy “ 0

Let U “ T˚T ´ I. Then xv, Upvqy “ 0 for all v. We also know that

U˚ “ pT˚T ´ Iq˚ “ pT˚T q˚ ´ I˚ “ T˚T˚˚ ´ I “ T˚T ´ I “ U.

Therefore U is self-adjoint. By our previous theorem, we know that there’s a basis for V consisting of
eigenvectors for U . Let v be one of those basis vectors, so that Uv “ λv. We have

0 “ xv, Upvqy “ xv, λvy “ λxv, vy

Since v ‰ 0, neither is xv, vy and therefore λ “ 0. So Upvq “ 0. Since this is true for all vectors in a basis
for v, we must have that U “ 0 identically. Thus T˚T “ I, and so T˚ “ T´1, which also implies TT˚ “ I.
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For (3) implies (1), assume that TT˚ “ I. Therefore T˚T “ I. We have

xT pvq, T pwqy “ xT˚T pvq, wy “ xv, wy.

Therefore T is angle-preserving. �

Example 13.3. Let A be a 2ˆ 2 orthogonal or unitary matrix, A “
ˆ

a b

c d

˙

. We would have

AA˚ “

ˆ

a b

c d

˙ˆ

a c

b d

˙

“

˜

|a|
2
` |b|

2
ac` bd

ac` bd |c|
2
` |d|

2

¸

“

ˆ

1 0

0 1

˙

,

so that

|a|
2
` |b|

2
“ 1

|c|
2
` |d|

2
“ 1

ac` bd “ 0

So if I let v “ pa, bq and w “ pc, dq, these equations say that

‖v‖ “ 1

‖w‖ “ 1

xv, wy “ 0

Thus the rows of A are an orthonormal basis for F 2. The same is true for the columns of A.

Example 13.4. Let A be a 2 ˆ 2 orthogonal (real) matrix, so that AAt “ I. Then A falls into one of two
categories:

A “

ˆ

cos θ ´ sin θ

sin θ cos θ

˙

(rotation by θ), or else:

A “

ˆ

cos θ sin θ

sin θ ´ cos θ

˙

(reflection through the line which makes an angle of θ{2 with the x-axis).

Notice that in the first case, detA “ 1, and in the second case, detA “ ´1. This matrix is not diagonal-
izable. The roots of the characteristic polynomial are complex, they are eiθ, e´iθ.

In the second case, consider v “
ˆ

cospθ{2q

sinpθ{2q

˙

. We have

Av “

ˆ

cospθq cospθ{2q ` sinpθq sinpθ{2q

sinpθq cospθ{2q ´ cospθq sinpθ{2q

˙

“

ˆ

cospθ{2q

sinpθ{2q

˙

“ v.

If w “
ˆ

sinpθ{2q

´ cospθ{2q

˙

, then Aw “ ´w. We have that v and w are an orthonormal basis for R2, consisting of

eigenvectors for A.
We conclude that A is a reflection through the line containing the vector v. We also conclude that A is

orthogonally similar to the matrix
ˆ

1 0

0 ´1

˙

.

Theorem 13.5. The eigenvalues of an orthogonal or unitary matrix all have absolute value 1.
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