
LECTURE APRIL 3, 6, 8: EIGENVECTORS AND EIGENVALUES

1. Review of the definitions

Let A be an nˆn matrix, or a linear operator on a vector space. In this lecture we consider the equation

Av “ λv,

where v is a nonzero vector and λ is a scalar. In this situation we say that v is an eigenvector of A, with
eigenvalue λ.

The easiest example of this occurs when A is a diagonal matrix, such as

A “

ˆ

3 0

0 2

˙

.

If e1, e2 represent the standard basis for R2, then

Ae1 “ 3e1, Ae2 “ 2e2.

Thus e1 is an eigenvector for A with eigenvalue 2, and e2 is an eigenvector for A with eigenvalue 3.

2. An example of diagonalization

Consider the matrix

A “

ˆ

1 3

4 2

˙

.

We might be interested in calculating its powers A2, A3, . . . . This is easy to do for small powers, but if
the power (or the matrix) gets large, it becomes cumbersome. (We also might be interested in the limiting
properties of An as nÑ8: this is important for graph theory.)

Let

v1 “

ˆ

1

´1

˙

, v2 “

ˆ

3

4

˙

Then
Av1 “ ´2v1, Av2 “ 5v2.

Then B “ tv1, v2u is a basis for R2. Let’s write this in a different way:

Av1 “ ´2v1 ` 0v2

Av2 “ 0v1 ` 5v2

What this means is that the matrix of A with respect to B is

rAsB “

ˆ

´2 0

0 5

˙

,

a diagonal matrix.
If we let

Q “

ˆ

1 3

´1 4

˙

be the change of basis matrix from B to the standard basis, then

rAsB “ Q´1AQ.
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Thus

Q´1AQ “

ˆ

´2 0

0 5

˙

.

We took our original matrix A, and found an invertible matrix Q, such that Q´1AQ is a diagonal matrix.
This is called diagonalization.

We can solve for A in this equation:

A “ Q

ˆ

´2 0

0 5

˙

Q´1.

Then

A2 “ Q

ˆ

´2 0

0 5

˙

Q´1Q

ˆ

´2 0

0 5

˙

Q´1

“ Q

ˆ

´2 0

0 5

˙2

Q´1

“ Q

ˆ

4 0

0 25

˙

Q´1.

The pattern holds up for any power:

An “ Q

ˆ

p´2qn 0

0 5n

˙

Q´1.

3. How do we find eigenvectors and eigenvalues?

Remember that the equation is
Av “ λv.

If I is the identity matrix as usual, then λI is the scalar matrix. Observe that

λIv “ λv.

So we’re looking at
Av “ λIv.

We can rewrite this as
Av ´ λIv “ 0,

or
pA´ λIqv “ 0.

Thus, v lies in the null space of A ´ λI. If v ‰ 0, it means that this null space is nontrivial. This means
that A´ λI is not invertible, and therefore

detpA´ λIq “ 0.

This equation is called the characteristic equation of A, and detpA´ λIq is the characteristic polynomial of
the matrix A. The roots of detpA´ λIq are the eigenvalues of A.

Once again, let

A “

ˆ

1 3

4 2

˙

.

How could we find its eigenvectors and eigenvalues? Let’s compute A´ λI:

A´ λI “

ˆ

1 3

4 2

˙

´

ˆ

λ 0

0 λ

˙

“

ˆ

1´ λ 3

4 2´ λ

˙

.
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The determinant of this matrix is

detpA´ λIq “ p1´ λqp2´ λq ´ 3p4q “ λ2 ´ 3λ´ 10

To find the eigenvalues, we now have to solve

λ2 ´ 3λ´ 10 “ 0

The polynomial factors as pλ` 2qpλ´ 5q, so the roots are λ “ ´2, 5.
How do we find the eigenvectors? We proceed one eigenvalue at a time. So first, we’ll look for the

eigenvectors of λ “ ´2. This would be a vector v in the null space of A´ λI. Now,

A´ λI “

ˆ

3 3

4 4

˙

.

We find that v1 “
ˆ

1

´1

˙

is in the null space of this matrix. Therefore v1 is an eigenvector of A with value

λ “ ´2.
Similarly, for λ “ 5, we have

A´ λI “

ˆ

´4 3

4 ´3

˙

.

A vector in the null space is v2 “
ˆ

3

4

˙

. Therefore v2 is an eigenvector for A with eigenvalue 5.

Example 3.1. Let A “
ˆ

2 0

0 2

˙

. What are the eigenvectors and eigenvalues of A?

The only eigenvalue is 2. For any v “
ˆ

a

b

˙

, we have

Av “

ˆ

2 0

0 2

˙ˆ

a

b

˙

“

ˆ

2a

2b

˙

“ 2v

This matrix is A “ 2I . All nonzero vectors in R2 are eigenvectors for A with eigenvalue 2.

4. How could a matrix not be diagonalizable?

Here’s another example. Let

A “

ˆ

0 ´1

1 0

˙

.

This matrix represents a rotation of π{2 in the plane. What are its eigenvalues and eigenvectors? The
characteristic polynomial is

detpA´ λIq “ det

ˆ

´λ ´1

1 ´λ

˙

“ λ2 ` 1.

The roots of this polynomial are ti,´iu, which are not real numbers. So we might say that the matrix
A PM2ˆ2pRq has no eigenvalues or eigenvectors, and it is not diagonalizable.

One more example of a different flavor. Let

A “

ˆ

2 1

0 2

˙

.

The characteristic polynomial is

detpA´ λIq “ det

ˆ

2´ λ 1

0 2´ λ

˙

“ p2´ λq2.
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The only eigenvalue is λ “ 2. Let’s look for eigenvectors. We have

A´ 2I “

ˆ

0 1

0 0

˙

.

The eigenvectors of A will be the nonzero vectors in the null space of this matrix. The null space of this

matrix is one-dimensional, and it is spanned by v “
ˆ

1

0

˙

. This matrix is not diagonalizable, as you cannot

find a basis for R2 consisting of eigenvectors for A.

5. Diagonalizability and Eigenspaces

To review: Let T : V Ñ V be a linear operator. If v ‰ 0 is a vector in V , and

Tv “ λv,

then we say that v is an eigenvector of T with eigenvalue λ.
If there is a basis for V consisting of eigenvectors, then we call T diagonalizable.
If V is a finite-dimensional vector space, and B is a basis for V consisting of eigenvectors, then

rT sB “

¨

˚

˚

˚

˝

λ1 0 ¨ ¨ ¨ 0

0 λ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ λn

˛

‹

‹

‹

‚

is a diagonal matrix.
If T happens to be the linear transformation associated to an nˆn matrix A, then T being diagonalizable

is the same as saying that there exists an invertible matrix Q such that

Q´1AQ

is a diagonal matrix. Thus, a matrix being diagonalizable means that it is similar to a diagonal matrix.
Again in the context of an n ˆ n matrix A, a scalar λ is an eigenvalue of A if and only if pA ´ λIq is

not invertible. Then, eigenvectors of A with this value are exactly the nonzero vectors in the null space
NpA ´ λIq. We have that A ´ λI is not invertible if and only if detpA ´ λIq “ 0, so that suggests looking
at the characteristic polynomial

fptq “ detpA´ tIq.

This is always a polynomial of degree n. Its roots are the eigenvalues of A.

Theorem 5.1. Let T : V Ñ V be a linear operator. Suppose that v1, . . . , vk are eigenvectors for T , with
distinct eigenvalues. Then tv1, . . . , vku is linearly independent.

Note that t1, 3, 5, 7u is a list of distinct numbers, but t1, 1, 2, 3u is not.

Proof. Proof here is by induction on k. For k “ 1, we only have one eigenvector v1. By definition of
eigenvector, v1 ‰ 0, and thus tv1u is linearly independent.

Suppose we have proved the theorem for all sets of vectors of size ă k. Let v1, . . . , vk be a eigenvectors
for T , with eigenvalues λ1, . . . , λk which are distinct. Thus Tvi “ λivi for i “ 1, . . . , k.

Assume that
a1v1 ` ¨ ¨ ¨ ` akvk “ 0.

Apply T to both sides:
T pa1v1 ` ¨ ¨ ¨ ` akvkq “ T p0q.

We get
a1T pv1q ` ¨ ¨ ¨ ` akT pvkq “ 0,
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or
a1λ1v1 ` ¨ ¨ ¨ ` akλkvk “ 0.

In order to remove the final variable vk, I take λk times the first equation, and subtract it from the last. We
get

a1pλ1 ´ λkqv1 ` a2pλ1 ´ λkqv2 ` ¨ ¨ ¨ ` ak´1pλk´1 ´ λkqvk´1 “ 0.

We now have a linear combintation of the eigenvectors v1, . . . , vk´1 which equals 0. By the inductive hy-
pothesis, those vectors are linearly independent, and so

a1pλ1 ´ λkq “ 0

a2pλ2 ´ λkq “ 0

...

ak´1pλk´1 ´ λkq “ 0

Since the λs were assumed distinct, all of the λi ´ λk are nonzero. Therefore, a1 “ ¨ ¨ ¨ “ ak´1 “ 0. We get
akvk “ 0, and that implies ak “ 0 as well. �

Theorem 5.2. Suppose V is an n-dimensional vector space, and that T : V Ñ V is a linear operator with
n distinct eigenvalues. Then T is diagonalizable.

Proof. Let λ1, . . . , λn be the n distinct eigenvalues of T . Let v1, . . . , vn be the corresponding eigenvectors.
By the previous theorem, v1, . . . , vn are linearly independent. Since dimV “ n, these vectors form a basis
for V . Therefore T is diagonalizable. �

So suppose A is an nˆ n matrix. Let fptq “ detpA´ tIq be its characteristic polynomial. For A to have
n distinct eigenvalues means the same as saying that

fptq “ ˘pt´ λ1qpt´ λ2q ¨ ¨ ¨ pt´ λnq

factors completely into linear factors, with distinct roots. If that is the case, then A is diagonalizable.
Let

A “

ˆ

1 7

4 2

˙

Is the matrix A diagonalizable? (I mean over the real numbers.) The characteristic polynomial is:

fptq “ detpA´ tIq “ det

ˆ

1´ t 7

4 2´ t

˙

“ p1´ tqp2´ tq ´ 28 “ t2 ´ 3t´ 26

For 2ˆ 2 matrices, there’s a shortcut. The characteristc polynomial of a 2ˆ 2 is always

fptq “ t2 ´ ptrAqt` detA.

The trace is the sum along the diagonal entries: 1 ` 2 “ 3. How do we find the roots of fptq? Use the
quadratic formula: the roots are:

λ1, λ2 “
3˘

?
113

2
.

Since λ1 and λ2 are distinct real numbers, the matrix A is diagonalizable.
The converse to this theorem is false. Consider the matrix

A “

ˆ

2 0

0 2

˙

.

What are the eigenvalue(s)? Only 2. What are the eigenvector(s)? All nonzero vectors in R2 are eigenvectors
for A. Is A diagonalizable? Yes, because there is a basis consisting of eigenvectors, namely p1, 0q, p0, 1q.

Let’s say you found your characteristic polynomial for a 5ˆ 5 matrix, and it was:

fptq “ ´pt´ 2q3pt´ 4qpt` 7q,
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The roots of fptq are 2, 4,´7. The eigenvalue 2 appears with algebraic multiplicity 3, whereas 4 and ´7
appear with algebraic multiplicity 1.

6. What can happen with 2ˆ 2 matrices

Let

A “

ˆ

a b

c d

˙

be a 2 ˆ 2 matrix with real entries. Is A diagonalizable? This means, can I find an invertible matrix Q so
that

Q´1AQ “ D

is a diagonal matrix? Another way of asking: can I find a basis for R2 consisting of eigenvectors for A?
Let

T “ a` d

D “ ad´ bc

be the trace and determinant of A, respectively. Then the characteristic polynomial of A is

fptq “ t2 ´ Tt`D.

How do I know whether this polynomial factors? You look at the discriminant

Disc “ T 2 ´ 4D.

If Disc ą 0, then the polynomial has two distinct roots α, β:

fptq “ pt´ αqpt´ βq.

Then α and β are the eigenvalues. In this case A is automatically diagonalizable, and in fact it will be similar
to the diagonal matrix

D “

ˆ

α 0

0 β

˙

.

If Disc ă 0, it means the eigenvalues are complex. Then A is not diagonalizable, over the real numbers
anyway. But if you allow yourself the use of complex numbers, then A is diagonalizable: it is similar to a
diagonal matrix with complex entries.

If Disc “ 0, then our characteristic polynomial factors like this:

fptq “ pt´ αq2

So there is only one eigenvalue α. For A to be diagonalizable in this case, would mean that there exists a
basis for R2, say v1 and v2, consisting of eigenvectors with value α: Av1 “ αv1 and Av2 “ αv2. If x P R2 is
any vector whatsoever, then we can write x as a linear combination of v1 and v2:

x “ c1v1 ` c2v2,

and then
Ax “ Apc1v1 ` c2v2q “ c1Apv1q ` c2Apv2q “ c1αv1 ` c2αv2 “ αx

Therefore the matrix must be

A “

ˆ

α 0

0 α

˙

“ αI

Thus: If our 2 ˆ 2 matrix only has one eigenvalue (meaning its Disc “ 0) but it is not a scalar matrix,
then it is not diagonalizable.
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7. Eigenspaces

Let T : V Ñ V be a linear operator. If λ is a scalar, I let

Eλ “

"

v P V

ˇ

ˇ

ˇ

ˇ

Tv “ λv

*

Thus Eλ is the set of all eigenvectors with value λ, but I am also including the zero vector in this.

Theorem 7.1. Eλ is a subspace of V .

In fact Eλ “ NpT ´ λIq is the nullspace of the operator T ´ λI. Indeed if Tv “ λv, then

pT ´ λIqv “ Tv ´ λIv “ Tv ´ λv “ 0.

Assume that V has finite dimension, say V “ Rn, and that T is the linear operator associated to an nˆn
matrix A. How do I test for diagonalizability of A?

First thing would be to find the characteristic polynomial:

fptq “ detpA´ tIq

Then fptq is a polynomial of degree t. We say that fptq splits if we can factor it completely into linear
factors:

fptq “ ˘pt´ λ1qpt´ λ2q ¨ ¨ ¨ pt´ λnq.

For A to be diagonalizable, it is necessary that fptq splits. If all of the roots λi are distinct, then A is
automatically diagonalizable. But generally there will multiplicity:

fptq “ ˘pt´ λ1q
m1pt´ λ2q

m2 ¨ ¨ ¨ pt´ λkq
mk .

The number mi is the algebraic multiplicity of λi. By the way, the sum of the mis must equal the degree of
fptq, which is n.

The geometric multiplicity of λi is the dimension of Eλi .

Theorem 7.2. Given an eigenvalue λ, the geometric multiplicity is always less than or equal to the algebraic
multiplicity. If the two multiplicities are equal for all λ, then the matrix is diagonalizable.

For instance, let

A “

ˆ

2 0

1 2

˙

.

The characteristic polynomial is:
fptq “ t2 ´ 4t` 4 “ pt´ 2q2.

Therefore the algebraic multiplicity of 2 is 2. The geometric multiplicity is the dimension of E2 “ NpA´2Iq.
We have

A´ 2I “

ˆ

0 0

1 0

˙

.

The nullity of A´ 2I is 1, and therefore 1 is the geometric multiplicity. We have 1 ă 2, and so this matrix
is not diagonalizable.

8. Transition matrices

In a certain population, 80% are healthy and 20% are sick. Each day, among the healthy people, 90%
stay healthy, and 10% get sick. Also each day, among the sick people, 2% recover, and 98% stay sick. What
is the behavior of the population’s health as time goes on?

Let A be the transition matrix for this situation:

A “

ˆ

.9 .02

.1 .98

˙
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The first column represents people who start the day healthy, and the second column represents people who
start the day sick. The first row represents people who finish the day healthy, and the second row represents
people who finish the day sick. Each entry of A represents the proportion of people who transition from one
state to another.

(Check: the columns of a transition matrix must add to 1.) Let v “
ˆ

.8

.2

˙

be the vector determining the

ratio of healthy to sick people on the first day. At the end of the first day, we look at :

Av “

ˆ

.9 .02

.1 .98

˙ˆ

.8

.2

˙

“

ˆ

p.9qp.8q ` p.02qp.2q

p.1qp.8q ` p.98qp.2q

˙

.

This new vector tells us the proportion of healthy to sick people at the end of the first day. The sequence of
vectors

v,Av,A2v,A3v, . . .

tells us how the system evolves with time.
With diagonalization, we can predict what will happen. The characteristic polynomial of A is

fptq “ t2 ´ 1.88t` .88 “ pt´ 1qpt´ .88q.

Thus the eigenvalues of A are 1 and .88. These are distinct, and so we know that A is diagonalizable. The

eigenvector for 1 is v1 “
ˆ

1{6

5{6

˙

, and the eigenvector fo .88 is v2 “
ˆ

´1{6

1{6

˙

. The significance of Av1 “ v1 is

that a population with a 1:5 ratio of healthy to six people will stay that way forever: it is a stable state.

If we let Q “
ˆ

1{6 ´1{6

5{6 1{6

˙

, then

Q´1AQ “

ˆ

1 0

0 .88

˙

.

Solving for A gives

A “ Q

ˆ

1 0

0 .88

˙

Q´1.

Then powers of A are

An “ Q

ˆ

1 0

0 .88n

˙

Q´1.

for large n, the number .88n is very close to 0. So the limiting behaviour of the system is modeled on the
matrix

Q

ˆ

1 0

0 0

˙

Q´1 “

ˆ

1{6 1{6

5{6 5{6

˙

This shows us that no matter what initial state v “
ˆ

a

b

˙

we start with (so long as a` b “ 1 so that it makes

sense as a ratio), the limiting state is

lim
nÑ8

Anv “

ˆ

1{6 1{6

5{6 5{6

˙ˆ

a

b

˙

“

ˆ

1{6

5{6

˙

.

Thus the model predicts that after a long time, 1{6 of the population will be healthy, and 5{6 will be sick.
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