
LECTURES MARCH 20 AND MARCH 23: ROW OPERATIONS
AND ELEMENTARY MATRICES

1. Our three row operations, and their relation to matrices

We have already seen how crucial it is to be able to perform row operations
on matrices, as an aid to solving systems of linear equations. Row operations are
combinations of elementary row operations, which the book numbers these relations
this way:

(1) Switch row i with row j.
(2) Multiply row i by a nonzero scalar.
(3) Add a scalar multiple of row i to row j.

There isn’t anything special about rows versus columns. We can also talk about
elementary column operations of type (1),(2),(3). Together, the six types of proce-
dures are called elementary operations.

Today we’ll learn a new interpretation of what is happening in terms of matrix
multiplication. First, a definition:

Definition 1.1. An elementary matrix is what you get when you perform an ele-
mentary row operation to the identity matrix.

So we could start with the 3ˆ 3 identity matrix

I3 “

¨

˝

1 0 0

0 1 0

0 0 1

˛

‚

and perform an operation of type (1):
¨

˝

0 1 0

1 0 0

0 0 1

˛

‚

or an operation of type (2):
¨

˝

1 0 0

0 3 0

0 0 1

˛

‚

or an operation of type (3):
¨

˝

1 0 0

0 1 0

2 0 1

˛

‚

The connection between elementary matrices and elementary operations is given
by the following theorem.
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Theorem 1.2. Let A be an mˆ n matrix. Doing an elementary row operation to
A returns EA, where E is an m ˆm elementary matrix. In fact E is the matrix
obtained by doing the same row operation to Im. Similarly, doing an elementary
column operation to A returns AE, where E is an nˆn elementary matrix, obtained
similarly from In.

Let’s see this theorem in action with row operations. Here we have a typical
3ˆ 4 matrix:

A “

¨

˝

1 2 3 4

2 0 2 0

3 1 4 1

˛

‚

In the course of row-reducing this matrix, we may want to subtract ´2 times the
first row and add it to the second. This row operation corresponds to the 3 ˆ 3

matrix

E “

¨

˝

1 0 0

´2 1 0

0 0 1

˛

‚.

Then

EA “

¨

˝

1 0 0

´2 1 0

0 0 1

˛

‚

¨

˝

1 2 3 4

2 0 2 0

3 1 4 1

˛

‚“

¨

˝

1 2 3 4

0 ´4 ´4 ´8

3 1 4 1

˛

‚

Thus, when we row reduce a matrix A by applying successive elementary row
operations, the result is a new matrix of the form

Ek ¨ ¨ ¨E3E2E1A

where all the Ei are elementary matrices. If I were to keep row reducing the matrix
in the example, I would get a matrix of the form

¨

˝

1 0 0 x

0 1 0 y

0 0 1 z

˛

‚

This tell us already that the rank of the matrix is 3 and the dimension of the null
space is 1. We can continue to change the matrix with column operations now, to
get rid of the x,y and z. For instance, multiplying the first column by ´x and
adding it to the third gets rid of the x. The result it is that after taking A and
multiplying it on the left and the right by elementary matrices, the result is

¨

˝

1 0 0 0

0 1 0 0

0 0 1 0

˛

‚

Theorem 1.3. All elementary matrices are invertible.

For instance, the inverse of the elementary matrix

E “

¨

˝

1 0 0

0 1 0

3 0 1

˛

‚
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is

E´1 “

¨

˝

1 0 0

0 1 0

´3 0 1

˛

‚

2. The rank of a matrix

I might remind you of a few definitions here.

Definition 2.1. Let V be a vector space, and let v1, . . . , vn be vectors. The span
of v1, . . . , vn is the set of all linear combinations of these vectors.

I’ll remind you here that the span of v1, . . . , vn is always a subspace of V .

Definition 2.2. Let V and W be finite-dimensional vector spaces, and let T : V Ñ

W be a linear transformation. The rank of T is the dimension of the range RpT q.

In other words, let’s suppose that v1, . . . , vn is a basis for V . Apply T to all of
these vectors to get T pv1q, . . . , T pvnq. Then the rank of T is the dimension of the
span of T pv1q, . . . , T pvnq.

Example: the rank of the zero transformation T0 : V ÑW is always 0. Another
example: the rank of the identity transformation IV : V Ñ V is always the same as
the dimension of V itself.

Definition 2.3. The rank of an mˆ n matrix A is the rank of the corresponding
linear transformation Rn Ñ Rm.

In fact, the rank of a matrix A is the dimension of the span of its columns.
For example, the matrix

A “

¨

˝

1 0 0 0

0 1 0 0

0 0 0 0

˛

‚

has rank 2, because there are two linearly independent columns. We can think
about A as a linear transformation R4 Ñ R3. A basis for R4 consists of the
standard basis vectors e1, e2, e3, e4. Calculation: Ae1 is the first column, Ae2 is the
second column, etc. (!!!).

Ae1 “

¨

˝

1 0 0 0

0 1 0 0

0 0 0 0

˛

‚

¨

˚

˚

˝

1

0

0

0

˛

‹

‹

‚

“

¨

˝

1

0

0

˛

‚

So once again, the rank of a matrix is the dimension of the span of its columns.
Another example:

¨

˚

˚

˝

100 70 170

50 30 80

25 10 35

2 1 3

˛

‹

‹

‚

The rank of this matrix is 2, because the first two columns are linearly independent,
but the third column is the sum of the first two.
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Theorem 2.4. Let A be an m ˆ n matrix. Performing elementary operations to
A does not change its rank.

Sketch of proof: Performing an elementary operation to A is like replacing A with
EA or AE, where E is an elementary matrix. Since E is invertible, multiplying by
E doesn’t change the rank.

Theorem 2.5. Let A be any matrix. After performing elementary operations to A

(row or column), we can obtain a matrix with some number of 1s going down the
diagonal, and 0s in every other entry. The number of 1s is the rank of A.

For instance, if we had started out with a 3 ˆ 4 matrix, we would end up with
exactly one of the following possibilities:

¨

˝

0 0 0 0

0 0 0 0

0 0 0 0

˛

‚,

¨

˝

1 0 0 0

0 0 0 0

0 0 0 0

˛

‚,

¨

˝

1 0 0 0

0 1 0 0

0 0 0 0

˛

‚,

¨

˝

1 0 0 0

0 1 0 0

0 0 1 0

˛

‚

Or, if we had started with a 4ˆ 3 matrix, we would end up with exactly one of the
following possibilities:

¨

˚

˚

˝

0 0 0

0 0 0

0 0 0

0 0 0

˛

‹

‹

‚

,

¨

˚

˚

˝

1 0 0

0 0 0

0 0 0

0 0 0

˛

‹

‹

‚

,

¨

˚

˚

˝

1 0 0

0 1 0

0 0 0

0 0 0

˛

‹

‹

‚

,

¨

˚

˚

˝

1 0 0

0 1 0

0 0 1

0 0 0

˛

‹

‹

‚

The number of 1s you see is the same as the rank.
Given an m ˆ n matrix, what is the largest possible rank? The answer is the

smaller of the two numbers m and n.

3. Some more facts about the rank of a matrix

Remember from last time: the rank of an m ˆ n matrix A is the rank of the
span of its columns. Another way of saying this is, the rank of A is the maximum
number of linearly independent columns.

We also learned some facts about row and column operations:

(1) Doing a row operation to A changes A to EA, where E is an elementary
matrix. Doing a column operation changes A to AE, where E is an elemen-
tary matrix. All elementary matrices E are invertible: there exists another
matrix E´1 such that EE´1 “ E´1E “ the identity matrix.

(2) Doing successive row and column operations can bring A into a really nice
form: 1s going down the diagonal, and 0s everywhere else. The number of
1s in this new matrix is the rank of A.

Putting these facts together, we see that for any matrix A, there exist elementary
matrices E1, . . . , Ep and G1, . . . , Gq such that

D “ Ep ¨ ¨ ¨E1AG1 ¨ ¨ ¨Gq

has 1s down the diagonal and 0s everywhere else. This fact has some really nice
corollaries. To explore them, we’ll review some basic facts.
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Theorem 3.1. Let A and B be invertible nˆn matrices. Then AB is also invert-
ible, and its inverse is pABq´1 “ B´1A´1.

Proof. Let A and B be invertible matrices. Then there exist matrices A´1 and B´1

such that AA´1 “ BB´1 “ I. Then

pB´1A´1qpABq “ B´1pA´1AqB “ B´1IB “ B´1B “ I.

Similarly, pABqpB´1A´1q “ I. �

By induction, we see that if A1, . . . , Ar are all invertible, then so is A1 ¨ ¨ ¨Ar,
and

pA1 ¨ ¨ ¨Arq
´1 “ A´1

r ¨ ¨ ¨A´1
1 .

There’s another operation on matrices that works this way, which we haven’t yet
discussed.

Definition 3.2. Let A be an mˆn matrix. The transpose of A is the nˆm matrix
At whose rows are the columns of A and vice versa.

Thus if

A “

¨

˝

2 0 2 0

3 1 4 1

2 7 1 8

˛

‚

then

At “

¨

˚

˚

˝

2 3 2

0 1 7

2 4 1

0 1 8

˛

‹

‹

‚

Theorem 3.3. Let A be an m ˆ n matrix, and let B be an n ˆ p matrix, so that
AB is defined. We have

pABqt “ BtAt.

I won’t prove this, but we can at least observe that Bt is pˆn, and At is nˆm,
so that BtAt is defined.

Theorem 3.4. Let A be any matrix. The rank of A is the same as the rank of At.
Thus, the rank of A is also equal to the maximum number of linearly independent
rows.

Proof. We just observed that we can find invertible matrices E and G such that

D “ EAG,

where D has 1s going down the diagonal, and 0s everywhere else. Apply transpose
to both sides of the equation:

Dt “ pEAGqt “ GtAtEt.

It’s easy to observe that the rank of D is the same as the rank of Dt, since in both
cases it’s the number of 1s that appear. Now we use the fact that multiplying on
either side by an invertible matrix doesn’t change the rank. Thus

rankpAtq “ rankpDtq “ rankpDq “ rankpAq.
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4. Finding the inverse of a matrix

There’s another application of elementary operations, having to do with invert-
ible matrices. Remember from the chapter on invertible matrices, that all of the
following mean the same thing for an nˆ n matrix:

‚ A is invertible.
‚ The columns of A are linearly independent.
‚ The columns of A span Rn.
‚ The rank of A is n.
‚ The rows of A are linearly independent.
‚ The rows of A span Rn.
‚ The determinant of A is nonzero (that’s for later).

So far we don’t really have a method for finding the inverse of a matrix, unless
it’s a 2ˆ 2 matrix. Let’s review that case first: if

A “

ˆ

a b

c d

˙

,

then A is invertible if and only if ad´ bc ‰ 0. If that’s the case, then

A´1 “
1

ad´ bc

ˆ

d ´b

´c a

˙

.

To figure out what to do in general, let’s think about what happens when you
row-reduce an invertible nˆ n matrix A by only row operations. Since the rank of
A is n, each column must be a pivot column, and what’s more, the “staircase” of
the form is just the diagonal:

¨

˝

a1 ˚ ˚

0 a2 ˚

0 0 a3

˛

‚

Here the ai are all nonzero, and the ˚s are arbitrary. We can multiply row i by 1{ai
to get the diagonal entries to be 1, and then we can use those 1s to turn all the ˚s
into 0.

As a result, an invertible matrix can be turned into the identity matrix by row
operations.

This is the same as saying that there are elementary matrices E1, . . . , Ep such
that

Ep ¨ ¨ ¨E1A “ In.

Multiply on the right by A´1 to obtain:

Ep ¨ ¨ ¨E1 “ A´1.

Said another way:
A´1 “ Ep ¨ ¨ ¨E1In.

This formula is the theoretical basis for the following method to find the inverse
of a matrix.
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Example 4.1. Find the inverse of the matrix

A “

¨

˝

0 1 1

1 0 3

0 0 1

˛

‚

Take the matrix, and place it to the left of the identity matrix in a big augmented
matrix:

¨

˝

0 1 1 1 0 0

1 0 3 0 1 0

0 0 1 0 0 1

˛

‚

Then apply row reduction to reduce the left-side matrix into the identity:
¨

˝

0 1 1 1 0 0

1 0 3 0 1 0

0 0 1 0 0 1

˛

‚

Switch the first two rows:
¨

˝

1 0 3 0 1 0

0 1 1 1 0 0

0 0 1 0 0 1

˛

‚

Use the last row to kill of the entries above the 1:
¨

˝

1 0 0 0 1 ´3

0 1 0 1 0 ´1

0 0 1 0 0 1

˛

‚

Thus, the inverse of the matrix is
¨

˝

0 1 ´3

1 0 ´1

0 0 1

˛

‚

This technique also tells you when the nˆ n matrix is not invertible. If it were
not invertible, row reducing would produce a full row of 0s at the bottom of the
matrix.
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