LECTURE MARCH 27: DETERMINANTS

In this chapter we learn what the determinant of a square matrix is. The notion is related to area and volume.

1. Determinants of 1×1 matrix

A 1×1 matrix is just a scalar: (a). The determinant of (a) is a. Nothing too exciting here.

2. Determinants of 2×2 matrices: DEfinition and first properties

The determinant of a 2×2 matrix has a simple formula:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

We already saw that the expression $a d-b c$ appeared in the formula for the inverse of an invertible 2×2 matrix. Let's investigate some of the properties of the 2×2 determinant.

To get your head in the right place, let's start with a question: how do you know when two fractions a / b and c / d are equal? You cross multiply: the two fractions are equal when $a d=b c$.

Theorem 2.1. Let A be a 2×2 matrix. Then A is invertible if and only if $\operatorname{det} A \neq 0$.
Proof. Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
If $\operatorname{det} A=0$ it means $a d-b c=0$. Then there's a linear combination of the columns of A which equals 0 :

$$
d\binom{a}{c}-c\binom{b}{d}=\binom{a d-b c}{c d-c d}=\binom{0}{0}
$$

If c and d are not both zero, this is a nontrivial linear combination of the column vectors which equals 0 ; it means the columns of A are linearly DEpendent, and thus A is not invertible.

On the other hand, if c and d are both zero, then $A=\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$, which can't have linearly independent rows, so that in any case A is not invertible.

Conversely, suppose A is not invertible. This means the columns of A are linearly dependent. This means that one column is a multiple of the other, say $\binom{a}{b}=x\binom{c}{d}$. Then $a d-b c=(c x) d-(d x) c=x(c d-c d)=$ 0 .

We might even offer a different proof. Start row-reducing A. Remember that for a square matrix A, row reducing produces a row of 0 s at the bottom if and only if A is not invertible.

If $a \neq 0$, we would get from $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to $\left(\begin{array}{cc}a & b \\ 0 & d-b c / a\end{array}\right)$. This has a row of 0 s at the bottom if and only if $d=b c / a$, which is the same as $a d-b c=0$. (Try to fill in the rest of this proof in the case $a=0$.)

3. Determinants of 2×2 matrices: AREA

Once again let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 matrix. The next important fact about determinants has to do with the parallelogram whose vertices are at $(0,0,(a, b),(c, d)$ and at $(a+c, b+d)$. Call this parallelogram P.

Theorem 3.1. The area of P is $|\operatorname{det} A|$. The sign of $\operatorname{det} A$ is determined by the right-hand rule.

The "right hand rule" means that if the first vector (a, b) is found counterclockwise from (c, d), then $\operatorname{det} A<0$. If (a, b) is clockwise from (c, d), then $\operatorname{det} A>0$.

4. Determinants of 2×2 matrices: additivity properties

The determinant is a function

$$
\operatorname{det}: M_{2 \times 2}(\mathbf{R}) \rightarrow \mathbf{R} \text {. }
$$

Is it a linear transformation? If so, it would satisfy $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$. Let's try $A=I_{2}, B=I_{2}$. $\operatorname{det}\left(I_{2}+I_{2}\right)=\operatorname{det}\left(2 I_{2}\right)=4$. But $\operatorname{det} I_{2}+\operatorname{det} I_{2}=1+1=2$. Therefore the determinant map is not a linear transformation.

It does however satisfy "linearity in each column" and "linearity in each row." Observe:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
a+a^{\prime} & b \\
c+c^{\prime} & d
\end{array}\right) & =\left(a+a^{\prime}\right) d-b\left(c+c^{\prime}\right) \\
& =(a d-b c)+\left(a^{\prime} d-b c^{\prime}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
a^{\prime} & b \\
c^{\prime} & d
\end{array}\right)
\end{aligned}
$$

Let's also observe:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
x a & b \\
x c & d
\end{array}\right) & =x a d-x b c \\
& =x \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

This is like saying: if you take a parallelogram, and scale one of its sides by a factor x, that multiplies the area by x.

If A is again 2×2, what is $\operatorname{det}(x A)$? Answer is $x^{2} \operatorname{det} A$.
How many square inches are there in a square foot? Answer: $12^{2}=144$.
There's one other important property, which is the $\operatorname{det} A$ is alternating in its rows and columns.
Observe:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
c & d \\
a & b
\end{array}\right) & =b c-a d \\
& =-(a d-b c) \\
& =-\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

5. What is an $n \times n$ Determinant?

We hope to define a function

$$
\operatorname{det}: M_{n \times n}(\mathbf{R}) \rightarrow \mathbf{R}
$$

which has a few nice properties:
(1) $\operatorname{det} A \neq 0$ if and only if A is invertible.
(2) Given an $n \times n$ matrix A, the rows (or columns) of A make a parallelepiped in \mathbf{R}^{n}, whose volume is $|\operatorname{det} A|$.
(3) $\operatorname{det} A$ is linear in its rows and columns.
(4) $\operatorname{det} c A=c^{n} \operatorname{det} A$ for a scalar c.
(5) $\operatorname{det} A^{t}=\operatorname{det} A$.
(6) If you switch two rows (or columns) of A, that switches the sign of $\operatorname{det} A$.
(7) $\operatorname{det} I_{n}=1$.

In fact, there is a unique function that has all of these properties!

