MA 542 Midterm, due Friday, Mar. 24

- 1. (a) Let $I \subset \mathbf{R}[x]$ be the set of polynomials f(x) for which f(2) = f'(2) = f''(2) = 0. Prove that this set forms an ideal, and find a polynomial g(x) for which I = g(x)R[x].
 - (b) Let $J \subset \mathbf{R}[x]$ be the set of polynomials f(x) for which f(2) = f'(3) = 0. Show that J is not an ideal.
- 2. Find a maximal ideal of $\mathbf{Z}[x, y]$.
- 3. Let R be a commutative ring, and let $a \in R$ be nilpotent. Show that a is contained in every prime ideal of R.
- 4. Factor $x^4 + x^3 + 2x^2 + x + 1$ into irreducibles in $\mathbf{Z}_5[x]$.
- 5. Consider the field $\mathbf{Z}_3(\alpha)$ and $\mathbf{Z}_3(\beta)$, where α is a root of $x^2 + 1$, and β is a root of $x^2 + x + 2$. Describe an isomorphism between $\mathbf{Z}_3(\alpha)$ and $\mathbf{Z}_3(\beta)$.
- 6. Let $\alpha \in \mathbf{C}$ be algebraic over \mathbf{Q} , and let $f(x) \in \mathbf{Q}[x]$ be its minimal polynomial. Show that if $g(x) \in \mathbf{Q}[x]$ has α as a root, then f(x) divides g(x) in $\mathbf{Q}[x]$.
- 7. Let $z = e^{2\pi i/5}$, so that $z^5 = e^{2\pi i} = 1$.
 - (a) Find the minimal polynomial for z over \mathbf{Q} .
 - (b) Show that $2^{1/3}$ does not lie in $\mathbf{Q}(z)$.