
LECTURE APRIL 10: SOLVING POLYNOMIAL EQUATIONS BY RADICALS

1. Quadratic, cubic, quartic formulas

We start with the familiar quadratic formula. For rational numbers b, c P Q, the roots of

x2 ` bx` c

are
´b˘

?
b2 ´ 4c

2
.

There is also a cubic formula (Cardano, 1545). We start with

x3 ` ax2 ` bx` c

with a, b, c P Q. We can get rid of the coefficients of x2 by a subsitution x ÞÑ x ´ a{3, to get a cubic in
“depressed” form

x3 ` px` q.

The discriminant of this polynomial is D “ ´4p3 ´ 27q2. If D ą 0, there are three real roots, and if D ă 0,
there is one real root and one complex-conjugate pair. The Renaissance Italians didn’t really appreciate
complex numbers, but it turns out that solving the cubic required them to deal with them. If D ă 0, the
one real root is
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This was satisfactory, since you never have to take a square root of a negative number. But what if D ą 0?
Then there are three real roots. The above expression is one of them, but to obtain it, it’s required to not
only take a square root of a negative number, but then to take the cube root of a complex number – this
involves trisecting an angle! The other two roots are
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where ω is a primitive 3rd root of 1.
Just to reiterate, all this was necessary to find the real roots of a cubic polynomial, which has three real

roots. One example is the polynomial

x3 ´
3

4
x`

1

8
,

whose roots are cosp2π{9q, cosp4π{9q, cosp8π{9q. In this case D “ 81{64. The cubic formula is just going to
tell you that

cosp2π{9q “
1

2
p 3
?
ω `

3
?
ω2q.

This is a little unhelpful: we already knew the connection between trig functions and complex numbers.
Ferraro (1540) found a quartic formula, which allows one to find the roots of a polynomial of degree 4,

but it has similar subtleties.
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2. Radical extensions

Definition 2.1. Let E{F be an algebraic extension of fields. We say E{F is radical if E “ F pzq, where
zn P F for some n ě 1.

In other words, a radical extension is of the form F p n
?
αq{F for some α P F .

As an example Qp
?
2q{Q is a radical extension. As is Qpζmq for any m ě 1.

Theorem 2.2. Let F be a field of characteristic not 2. Let E{F be an extension of degree 2. Then E{F is
radical.

Proof. Use the quadratic formula! �

Example 2.3. Let F “ Z2, and let E{F be the splitting field of x2 ` x` 1. Is this a radical extension?
We have E “ F pαq, where α2 ` α` 1 “ 0. In fact α3 “ 1. Thus E{F is radical.

Example 2.4. Let F “ Z2ptq. Let E be the splitting field of x2 ´ x´ t. Then E “ F pαq, where α2 “ α` t.
Then E{F is not radical.

Definition 2.5. Let E{F be an algebraic extension. We say that E{F is solvable if E is contained in a field
K{F , where K is the top of a tower of fields,

K Ą K1 Ą K2 Ą ¨ ¨ ¨ Ą Kn Ą F,

where each field in the tower is radical over the one below it.

Thus elements of K (and thus E) are expressible using the field operations, elements of F , and nested
radicals.

For instance, in characteristic not equal to 2, every degree 2 extension is solvable (in fact radical).
Cardano’s formula says: Let F be a field of characteristic 0, and let fpxq be a cubic polynomial in F rxs.

Let E{F be the splitting field of fpxq. Then E{F is solvable.
The same is true for polynomials of degree 4.

Definition 2.6. A polynomial fpxq P F rxs is solvable if its splitting field is a solvable extension of F .

The big theorem here is that polynomials of degree 5 are not generally solvable. Some polynomials of
degree 5 are solvable, such as x5 ´ 2. The main point here is that some are not, for example x5 ` x` 1.

This theorem will involve some Galois theory. Let’s start with a field F of characteristic 0, and an integer
n ě 2. Consider the extension E “ F p n

?
αq, so that E{F is a radical extension. (Assume α ‰ 0.) Assume

that F contains all roots of the polynomial xn ´ 1 (all nth roots of 1). This polynomial has distinct factors
(why??), let’s call them 1, z, z2, . . . , zn´1 P F .

Let β “ n
?
α, so that βn “ α. If β1 is an F -conjugate of β, then pβ1qn “ α as well. Then

pβ1{βqn “ αn{αn “ 1,

so that β1{β “ zi for some i. Since z P F by hypothesis, we have β1 “ ziβ P F pβq “ E. Thus E{F is a
splitting field, hence Galois (remember we’re in characteristic 0 so separability is automatic).

I don’t know what GalpE{F q is exactly, but I can say that there is a map

GalpE{F q Ñ Zn,

which goes like this. Given σ P GalpE{F q, we must have σpβq “ ziβ for some unique i P Zn. In this map
we send σ to i. Easy to see that this map is injective. If σ maps to i, let’s call it σi. I claim this map is a
homomorphism. We have

σiσjpβq “ σipz
jβq “ zjσipβq “ zjziβ “ zi`jβ “ σi`jpβq

Thus σiσj “ σi`j , and thus this is an injective homomorphism. Thus we can think of GalpE{F q as a
subgroup of Zn. Therefore it is cyclic.

2



Let’s now lift the assumption that F contains all roots of xn ´ 1. Let E{F be the splitting field of
xn´α. The roots of this are once again ziβ, for i “ 0, . . . , n´ 1. We have a tower E{F pzq{F . The previous
argument shows that GalpE{F pzqq is a cyclic group. We also have the cyclotomic extension F pzq{F , which
is also abelian: GalpF pzq{F q is a subgroup of Zˆn .

Both extensions are radical. We also see that if G “ GalpE{F q. Then G contains a subgroup H “

GalpE{F pzqq, such that H is cyclic. We know that F pzq{F is Galois, and therefore by the main theorem of
Galois theory, H is a normal subgroup of G, and

G{H – GalpF pzq{F q

is an abelian group.
To review: the splitting field of xn´α over F is Galois with group G. We have a normal subgroup H Ă G,

such that both H and G{H are abelian. This is a very strong restriction on what G can be!

3. Solvable groups

The following definition was inspired by the question of solving polynomial equations in radicals.

Definition 3.1. Let G be a group. We say that G is solvable if there exists a composition series

teu “ G0 Ă G1 Ă ¨ ¨ ¨ Ă Gn´1 Ă Gn “ G,

such that each Gi is normal in Gi`1, and such that Gi`1{Gi is abelian.

You might remember that a finite group G always has a composition series that’s maximal in the sense
that the Gi`i{Gi are all simple groups. In that case, the groups Gi`1{Gi are completely determined by G
(Jordan-Hölder Theorem).

So if G is a finite group, then G is solvable if and only if its Jordan-Hölder factors are all abelian simple
groups – thus each factor must be Zp for a prime p.

Example 3.2. Any abelian group is solvable.

Example 3.3. The dihedral groups D2n are all solvable. The composition series is

teu Ă Zn Ă D2n

The factor groups are Zn and Z2. Both are abelian.

Example 3.4. The symmetric groups S2, S3, S4 are all solvable, but S5 is not, nor is Sn for any n ě 5. We
have S2 – Z2. We also have S3 – D6. We have in S4:

teu Ă Z2 Ă Z2 ˆ Z2 Ă A4 Ă S4

The factor groups are Z2,Z2,Z3,Z2.
We have for S5:

teu Ă A5 Ă S5,

but this time A5 is a simple group, of order 60. Thus A5 is the smallest nonsolvable group.

Example 3.5. After A5, the next nonabelian simple group has order 168. It is the group of invertible 3ˆ 3

matrices with coefficients in Z2.

Lemma 3.6. Let G be a solvable group, and let H be a subgroup or a quotient of G. Then H is also solvable.

4. The main theorem

Theorem 4.1. Let F be a field of characteristic 0. Let E{F be a finite Galois extension, with group
G “ GalpE{F q. Then E{F is solvable if and only if G is a solvable group.
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Proof. We’re only going to prove one direction: If E{F is solvable, then G is solvable.
Assume that E{F is solvable. Then E is contained in a field K, where

K “ Kn Ą Kn´1 Ą ¨ ¨ ¨ Ą K0 “ F,

where Ki`1 “ Kipβ
1{mi

i q, with βi P Ki. Let m be the LCM of all the mi. Then let F 1 “ F pζmq be the
splitting field of xm ´ 1. Let

K 10 “ F 1

K 11 “ K 10pβ
1{m0

0 q

K 12 “ K 11pβ
1{m1

1 q

...

K 1n “ K 1n´1pβ
1{mn´1

n´1 q

Then K 1 contains K, and so it also contains E.
The extension K 1{F is Galois: the conjugates of β1{mi

i are all of the form ζβ
1{mi

i , where ζ is an mth root
of 1.

The extension K 1i`1{K
1
i is abelian! We saw last time that GalpK 1i`1{K

1
iq is a subgroup of Zmi . Finally,

the extension F 1{F is abelian, because it is a subgroup of Zˆm.
We now have a tower of fields

K 1 “ K 1n Ą K 1n´1 Ą ¨ ¨ ¨ Ą K 10 “ F 1 Ą F,

where each field is abelian over the next. If G1 “ GalpK 1{F q, then G1 has a corresponding composition series:

teu Ă Hn´1 Ă ¨ ¨ ¨ Ă H0 Ă G1

with each successive factor group abelian. Therefore the group G1 is solvable.
Since E is a subfield of K 1, the group G “ GalpE{F q is a factor group of G1 “ GalpK 1{F q. Since G1 is

solvable, so is G. �

The converse is very interesting, but a little bit harder.
The first consequence is that there is no “universal” quintic formula. There is a universal quadratic

formula. If K is a field of characteristic 0, and F “ Kpb, cq, where b and c are indeterminates. Let E{F be
the splitting field of the polynomial

x2 ` bx` c.

Then E{F is solvable. In fact it’s radical: E “ F p
?
b2 ´ 4cq.

We can do the same with F “ Kpa, b, cq, and let E{F be the splitting field of

x3 ` ax2 ` bx` c.

Then E{F is Galois, with group S3. S3 is a solvable group, so that E{F must be a solvable extension. This
means that the roots of this polynomial are expressible in terms of the field operations and nested radicals.

The same is true for quartic polynomials. But not quintic polynomials, because S5 is not solvable. If

F “ Kps1, . . . , s5q,

and E is the splitting field of
x5 ´ s1x

4 ` s2x
3 ´ s3x

2 ` s4x´ s5,

We learned that E “ Kpr1, . . . , r5q, where the ri are the roots of this polynomial, and that GalpE{F q “ S5,
which permutes the ri. The si are then the elementary symmetric polynomials in the ri.

We have that E{F is not solvable. You cannot express the ri in terms of radical expressions in the si.
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So, there is no universal quintic formula. You might hold out hope that every particular quintic polynomial
can be solved in radicals, though. However, this won’t work either, as there are examples of polynomials
with unsolvable Galois group:

Theorem 4.2. Let E be the splitting field of the extension 2x5 ´ 5x4 ` 5 over Q. Then GalpE{Qq – S5.
Therefore E{Q is not a solvable extension.

In fact, “most” irreducible quintic polynmials with rational coefficients have Galois group S5, and are
therefore not solvable by radicals.

Theorem 4.3. Let fpxq P Qrxs be a degree 5 irreducible polynomial with rational coefficients. Assume that
fpxq has three real roots and two complex ones. Then the Galois group of the splitting field of fpxq is S5.

Proof. Let F “ Qpαq be the field obtained by adjoining just one root, and let E{F be the splitting field of
fpxq, so that E contains all 5 roots.

Let G “ GalpE{Qq, so that G is a subgroup of S5. I might call the roots α “ α1, α2, α3, α4, α5, with
α1, α2 being the complex roots. Let τ be complex conjugation, considered as an element of G. Then τ “ p12q
is a transposition. Since rF : Qs “ 5, we know that rE : Qs “ #G is divisible by 5. By the Sylow theorems
we know that G must contain an element σ of order 5. We have that σ is a 5-cycle.

We want to know that a subgroup G of S5 containing a transposition and a 5-cycle must be all of S5. We
can assume that σ “ p12345q (check this!). If we take τ “ p12q and conjugate it by powers of σ, we find that
p23q, p34q, p45q, p51q are also in G. It’s easy to see that G has to contain the other transpositions as well, for
instance:

p13q “ p23qp12qp23q.

Since S5 is generated by its transpositions, we’re done. �

The book suggests the example of fpxq “ 2x5 ´ 5x4 ` 5. This is irreducible by Eisenstein criterion (at
p “ 5), and it has three real roots (calculus).
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