LECTURE APRIL 15: SOME MORE ALGEBRAIC NUMBER THEORY

1. Algebraic number theory: the basics

Definition 1.1. A complex number $\alpha \in \mathbf{C}$ is integral if it is the root of a monic polynomial with integer coefficients. Then α is called an algebraic integer, as opposed to a rational integer, which refers to elements of \mathbf{Z}. We let $\overline{\mathbf{Z}}$ denote the set of algebraic integers.

Example of an algebraic integer: $\sqrt{2}$ is a root of $x^{2}-2$.
Not an algebraic integer: $\alpha=1 / 2$. If $1 / 2$ were the root of $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with $a_{i} \in \mathbf{Z}$, then the rational root theorem says that $2 \mid 1$, which is false. In fact $\overline{\mathbf{Z}} \cap \mathbf{Q}=\mathbf{Z}$.

Theorem 1.2. $\overline{\mathbf{Z}} \subset \mathbf{C}$ is a subring.
To prove this theorem, we need to review some facts about finitely generated abelian groups. A finitely generated abelian group is a group M which is abelian, such that there exist elements $\alpha_{1}, \ldots, \alpha_{n} \in M$ which generate M. Example: \mathbf{Z}^{4}, or $\mathbf{Z} \oplus \mathbf{Z} / 6$. An abelian group is torsion-free if for all nonzero $\alpha \in M$, the elements $2 \alpha, 3 \alpha, \ldots$ are also nonzero.

If a finitely generated abelian group is torsion-free, then it is free. Free means that there exist elements $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
M=\mathbf{Z} \alpha_{1} \oplus \cdots \oplus \mathbf{Z} \alpha_{n} \cong \mathbf{Z}^{n}
$$

(If $M=\mathbf{Q}$, then M is torsion-free, but not free. The problem is that this group is not finitely generated.)
We are often going to consider finitely generated subgroups $M \subset \mathbf{C}$ (under addition). These are automatically free, because they are torsion-free and finitely generated. For instance $M=\mathbf{Z} \oplus \mathbf{Z} i=\mathbf{Z}[i]$.

Theorem 1.3. The following are equivalent, for a complex number α.
(1) α is an algebraic integer.
(2) There exists a finitely generated subgroup $M \subset \mathbf{C}$ such that $\alpha M \subset M$.

Proof. Assume that α is the root of an irreducible polynomial with integer coefficients:

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0},
$$

with $a_{i} \in \mathbf{Z}$.
Let M be the subgroup of \mathbf{C} generated by $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$. Can check that $\alpha M \subset M$. This really just comes down to checking that $\alpha \cdot \alpha^{n-1}$ belongs to M, but

$$
\alpha^{n}=-a_{n-1} \alpha^{n-1}-\cdots-a_{0} \cdot 1 \in M
$$

Conversely, suppose that there exists a finitely generated subgroup $M \subset \mathbf{C}$ such that $\alpha M \subset M$. Choose a basis for M :

$$
M=\mathbf{Z} \alpha_{1} \oplus \mathbf{Z} \alpha_{2} \oplus \cdots \oplus \mathbf{Z} \alpha_{n}
$$

for $\alpha_{i} \in \mathbf{C}$. This means that $\alpha \alpha_{i} \in M$ for $i=1, \ldots, n$. Let's spell this out:

$$
\begin{aligned}
\alpha \alpha_{1} & =a_{11} \alpha_{1}+a_{12} \alpha_{2}+\cdots+a_{1 n} \alpha_{n} \\
\alpha \alpha_{2} & =a_{21} \alpha_{1}+a_{22} \alpha_{2}+\cdots+a_{2 n} \alpha_{n} \\
\vdots & \vdots \\
\alpha \alpha_{n} & =a_{n 1} \alpha_{1}+a_{n 2} \alpha_{2}+\cdots+a_{n n} \alpha_{n}
\end{aligned}
$$

with $a_{i j} \in \mathbf{Z}$. If I let $A=\left(a_{i j}\right)$, and $v=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{t}$ (a column vector), then $A v=\alpha v$. In other words, A has an eigenvector v with value α. This means that α is the root of the characteristic polynoimal $f(t)=\operatorname{det}(t I-A)$. Then $f(t)$ is a monic polynomial with integer coefficients!! Therefore $\alpha \in \overline{\mathbf{Z}}$.

We can now prove that $\overline{\mathbf{Z}} \subset \mathbf{C}$ is a subring. We just need to check that $\overline{\mathbf{Z}}$ is closed under addition and multiplication.

Let $\alpha, \beta \in \overline{\mathbf{Z}}$. Then there exist finitely generated abelian subgroups $M, N \subset \mathbf{C}$ such that $\alpha M \subset M$ and $\beta N \subset N$. Let $M N$ be the abelian group generated by all products of elements of M and N. Then $M N$ is still finitely generated (check this!). We have

$$
(\alpha+\beta) M N=\alpha M N+\beta M N \subset M N+M \beta N \subset M N+M N=M N
$$

Similarly,

$$
\alpha \beta M N=(\alpha M)(\beta N) \subset M N
$$

so that $\alpha+\beta$ and $\alpha \beta$ are both in $\overline{\mathbf{Z}}$.
Next time: we'll compute $\overline{\mathbf{Z}} \cap K=\mathcal{O}_{K}$ for various values of K, where K / \mathbf{Q} is finite.

2. Examples: Quadratic fields

Given a finite extension K / \mathbf{Q}, we can define

$$
\mathcal{O}_{K}=K \cap \overline{\mathbf{Z}}
$$

the ring of integers of K.
If $[K: \mathbf{Q}]=2$, then $K=\mathbf{Q}(\sqrt{m})$. We can assume that m is an integer, and even a squarefree integer, other than 1 . What is \mathcal{O}_{K} ?

If $a+b \sqrt{m} \in K$ (with $a, b \in \mathbf{Q}$), when does it belong to \mathcal{O}_{K} ? The characteristic polynomial of $\alpha=a+b \sqrt{m}$ is

$$
x^{2}-\operatorname{tr}(\alpha) x+N(\alpha),
$$

in order for α to belong to \mathcal{O}_{K}, we need $\operatorname{tr}(\alpha), N(\alpha) \in \mathbf{Z}$, that is:

$$
\begin{aligned}
2 a & \in \mathbf{Z} \\
a^{2}-m b^{2} & \in \mathbf{Z}
\end{aligned}
$$

Certainly these conditions are satisfied if $a, b \in \mathbf{Z}$; thus $\mathbf{Z}[\sqrt{m}] \subset \mathcal{O}_{K}$. But it may be possible that $a=\frac{1}{2} a_{0}$, where a_{0} is odd. This forces $b=\frac{1}{2} b_{0}$, where b_{0} is odd (exercise). Then

$$
a_{0}^{2}-m b_{0}^{2} \equiv 0 \quad(\bmod 4)
$$

This means that $1-m \equiv 0(\bmod 4)$, so that $m \equiv 1(\bmod 4)$.
Theorem 2.1. The ring of integers \mathcal{O}_{K} is

$$
\mathcal{O}_{K}= \begin{cases}\mathbf{Z}[\sqrt{m}] & m \equiv 2,3 \quad(\bmod 4) \\ \mathbf{Z}\left[\frac{-1+\sqrt{m}}{2}\right] & m \equiv 1 \quad(\bmod 4)\end{cases}
$$

In the second case, let $\eta=\frac{-1+\sqrt{m}}{2}$. Then η has minimal polynomial $x^{2}+x-(m-1) / 4$, and then $\mathcal{O}_{K}=\mathbf{Z}[\eta]$. One observation here is that \mathcal{O}_{K} is always a free abelian group of rank 2 . In the first case, $\mathcal{O}_{K}=\mathbf{Z} \oplus \mathbf{Z} \sqrt{m}$, and in the second case, $\mathcal{O}_{K}=\mathbf{Z} \oplus \mathbf{Z} \eta$.

Thus the ring of integers in $\mathbf{Q}(\sqrt{5})$ is $\mathbf{Z}[\phi]$, $\phi=(-1+\sqrt{5}) / 2$, whereas $\mathbf{Q}(\sqrt{-5})$ has ring of integers $\mathbf{Z}[\sqrt{-5}]$.

3. The structure of \mathcal{O}_{K} as an abelian group

Theorem 3.1. Let $[K: \mathbf{Q}]=n$. Then \mathcal{O}_{K} is a free abelian group of rank n.

We have that $K=\mathbf{Q}(\alpha)$, where α is the root of an irreducible polynomial of degree n. There are exactly n conjugates of α in \mathbf{C}. We can therefore define n homomorphisms $\sigma_{1}, \ldots, \sigma_{n}: K \rightarrow \mathbf{C}$. These are embeddings.

Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for K / \mathbf{Q}. Define a matrix

$$
M\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(\sigma_{i}\left(\alpha_{j}\right)\right)
$$

This is an $n \times n$ matrix. In fact it is invertible!
Theorem 3.2. The determinant $\left(\operatorname{det} M\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)^{2}$ is a nonzero rational number.
Proof. The elements $\sigma_{i}\left(\alpha_{j}\right)$ all belong to the splitting field of K in \mathbf{C}, call it E. Let $G=\operatorname{Gal}(E / \mathbf{Q})$. Elements of G have the effect of permuting the embeddings σ_{i}, and therefore they permute the columns of the matrix $M\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. This has the effect of changing the determinant by a sign, and therefore doesn't change the squared determinant at all.

Theorem 3.3. Let $\alpha \in K$. Then there exists a rational integer M, such that $M \alpha \in \mathcal{O}_{K}$.
(Exercise)
We can therefore find a basis $\alpha_{1}, \ldots, \alpha_{n}$ for K / \mathbf{Q} consisting of elements of \mathcal{O}_{K}. Then we have

$$
\operatorname{det} M\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{2} \in \overline{\mathbf{Z}} \cap \mathbf{Q}=\mathbf{Z}
$$

is a nonzero rational integer.
By the well-ordered property of the natural numbers, there exists a basis $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{O}_{K}$ for K / \mathbf{Q}, which makes

$$
\left|\operatorname{det} M\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{2}\right|
$$

as small as possible.
I now claim that

$$
\mathcal{O}_{K}=\mathbf{Z} \alpha_{1} \oplus \cdots \oplus \mathbf{Z} \alpha_{n}
$$

Let $\alpha \in \mathcal{O}_{K}$ not belong to $\mathbf{Z} \alpha_{1} \oplus \cdots \oplus \mathbf{Z} \alpha_{n}$. This means we can write α as a linear combination

$$
\alpha=c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}
$$

where $c_{i} \in \mathbf{Q}$ are not all integers. WLOG, $c_{1} \notin \mathbf{Z}$. By replacing α with $\alpha-m \alpha_{1}$ we can also assume $0<c_{1}<1$. Then we have a new basis for K / \mathbf{Q} given by $\alpha, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$. We have

$$
\operatorname{det} M\left(\alpha, \alpha_{2}, \ldots, \alpha_{n}\right)=\operatorname{det} M\left(c_{1} \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=c_{1} \operatorname{det}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

Since $c_{1}^{2}<1$, this contradicts the minimality of $\operatorname{det} M\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{2}$.
Definition 3.4. Let $[K: \mathbf{Q}]=n$, and let $\alpha_{1}, \ldots, \alpha_{n}$ be any \mathbf{Z}-basis for the free abelian group \mathcal{O}_{K}. The integer

$$
D=\operatorname{det} M\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{2} \in \mathbf{Z}
$$

is called the discriminant of K / \mathbf{Q}.
Example 3.5. What is the discriminant of $\mathbf{Q}(i)$? A \mathbf{Z}-basis would be $1, i$. The discriminant is

$$
D=\operatorname{det}\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right)^{2}=-4
$$

Example 3.6. The fields $\mathbf{Q}(\sqrt{-3}), \mathbf{Q}(\sqrt{-1}), \mathbf{Q}(\sqrt{5}), \mathbf{Q}(\sqrt{-7}), \mathbf{Q}(\sqrt{2}), \mathbf{Q}(\sqrt{-2})$ have discriminants $-3,-4,5,-7,8,-8$, respectively.

4. Units

The group of units in \mathcal{O}_{K} is an interesting group.
Example 4.1. $\mathbf{Z}[i]^{\times}=\{1,-1, i,-i\}$

Example 4.2. $\mathbf{Z}[\phi]^{\times}$is an infinite group, generated by -1 and ϕ. Thus $\mathbf{Z}[\phi]^{\times} \cong \mathbf{Z} \times \mathbf{Z}_{2}$.
Let K be an algebraic number field (i.e., K / \mathbf{Q} is a finite extension).
Definition 4.3. Let $\sigma_{1}, \ldots, \sigma_{n}: K \rightarrow \mathbf{C}$ be the embeddings of K into \mathbf{C}. The norm of an element $\alpha \in K$ is

$$
N(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha) .
$$

Then $N(\alpha) \in \mathbf{Q}$. Note that $N(\alpha \beta)=N(\alpha) N(\beta)$. Thus $N: K^{\times} \rightarrow \mathbf{Q}^{\times}$is a group homomorphism.
Example 4.4. Let $m \neq 1$ be a squarefree integer, and let $K=\mathbf{Q}(\sqrt{m})$. A typical element of K is $\alpha=$ $a+b \sqrt{m}$, where $a, b \in \mathbf{Q}$. Then

$$
N(a+b \sqrt{m})=(a+b \sqrt{m})(a-b \sqrt{m})=a^{2}-m b^{2} .
$$

Thus in $\mathbf{Q}(i)$, we have

$$
N(a+b i)=a^{2}+b^{2} .
$$

Lemma 4.5. Let $\alpha \in \mathcal{O}_{K}$. Then $N(\alpha) \in \mathbf{Z}$.
Proof. If α is an algebraic integer, then so are its conjugates, and then $N(\alpha)$, being the product of these, must also lie in $\overline{\mathbf{Z}}$. But also $N(\alpha) \in \mathbf{Q}$, and therefore $N(\alpha) \in \mathbf{Z}$.

Theorem 4.6. Let $\alpha \in \mathcal{O}_{K}$. Then $\alpha \in \mathcal{O}_{K}^{\times}$if and only if $N(\alpha)= \pm 1$.
Proof. Suppose α is a unit, so that $\alpha \beta=1$ for some $\beta \in \mathcal{O}_{K}$. Then $N(\alpha \beta)=N(\alpha) N(\beta)=1$. Since $N(\alpha), N(\beta) \in \mathbf{Z}$, we must have $N(\alpha)= \pm 1$.

Conversely, suppose $N(\alpha)= \pm 1$. Then

$$
\alpha \prod_{i=2}^{n} \sigma_{i}(\alpha)= \pm 1
$$

Let $\beta=\prod_{i=2}^{n} \sigma_{i}(\alpha)$, so that $\alpha \beta= \pm 1$. Then $\beta \in K$, but also $\beta \in \overline{\mathbf{Z}}$, and so $\beta \in \mathcal{O}_{K}$. Then $\pm \beta$ is the inverse of α.

Let's try to find \mathcal{O}_{K}^{\times}when $K=\mathbf{Q}(\sqrt{m})$.
Example 4.7. If $m=-1$, then $N(a+b i)=a^{2}+b^{2}$. This is always positive, so $a+b i \in \mathbf{Z}[i]$ is a unit if and only if $a^{2}+b^{2}=1$. This clearly has only four solutions $\alpha= \pm 1, \pm i$.

Example 4.8. Let $K=\mathbf{Q}(\sqrt{2})$, so that $\mathcal{O}_{K}=\mathbf{Z}[\sqrt{2}]$. An element $a+b \sqrt{2} \in \mathcal{O}_{K}$ is a unit if and only if

$$
a^{2}-2 b^{2}= \pm 1 .
$$

This is a Diophantine equation. A few solutions are (1, 0), (1, 1), (3, 2), (7,5)..... Consider first the solution $(1,1)$, which corresponds to $\epsilon=1+\sqrt{2}$. Its powers are

$$
\begin{aligned}
\epsilon^{2} & =3+2 \sqrt{2} \\
\epsilon^{3} & =7+5 \sqrt{2}
\end{aligned}
$$

In fact, all solutions appear this way, and $\mathbf{Z}[\sqrt{2}]^{\times}$is generated by -1 and ϵ. Thus $\mathbf{Z}[\sqrt{2}]^{\times} \cong \mathbf{Z}_{2} \times \mathbf{Z}$.
The Diophantine equation

$$
a^{2}-m b^{2}=1
$$

is called Pell's equation, and it has a very long history. First of all, m should be positive to have any chance of their being an integer solution.

Theorem 4.9. Let $m>1$ be square free. Then Pell's equation $a^{2}-m b^{2}=1$ has infinitely many solutions. The group of units $\mathcal{O}_{K}^{\times}(K=\mathbf{Q}(\sqrt{m}))$ is generated by -1 and one fundamental unit ϵ.

Proof. At least, we'll try to come up with one nontrivial solution to $a^{2}-m b^{2}=1$. Nontrivial means $b \neq 0$. If (a, b) is a solution with $a, b>0$, then

$$
(a-b \sqrt{m})(a+b \sqrt{m})=1
$$

This means that $a-b \sqrt{m}$ is kind of small. I'm getting at the fact that a / b is close to \sqrt{m}.
Let's talk about rational approximations to irrational numbers. Given an irrational number α, when is a fraction p / q a good rational approximation?

Theorem 4.10. Let α be irrational, and let $N \geqslant 1$. There exists a fraction p / q with $q \leqslant N$, such that

$$
\left|\frac{p}{q}-\alpha\right| \leqslant \frac{1}{q N}
$$

Proof. Recall the floor function: $[\pi]=3$. The fractional part is everything else:

$$
\{\pi\}=.14159 \ldots=\pi-[\pi] .
$$

Thus $0<\{\alpha\}<1$. Let $N \geqslant 1$, and consider the numbers $\{q \alpha\}$ for $q=1, \ldots, N$. Chop up the interval $(0,1)$ into N parts:

$$
(0,1 / N),(1 / N, 2 / N), \ldots,((N-1) / N, 1)
$$

If one of the $\{q N\}$ lies in the first or last interval, we're done. Assume not: then our numbers land in $n-1$ intervals, and therefore two of them must end up in the same interval: there exist $q_{1}<q_{2} \leqslant N$, such that

$$
\left|\left\{q_{2} \alpha\right\}-\left\{q_{1} \alpha\right\}\right|=\left|\left(q_{2}-q_{1}\right) \alpha-\left[q_{2} \alpha\right]-\left[q_{1} \alpha\right]\right|<1 / N
$$

Let $q=q_{2}-q_{1}$, and let $p=\left[q_{2} \alpha\right]+\left[q_{1} \alpha\right]$; then

$$
|q \alpha-p|<1 / N
$$

and so

$$
\left|\frac{p}{q}-\alpha\right|<\frac{1}{q N}
$$

The theorem shows that there exist infinitely many "good" approximations to α, where good means that

$$
\left|\frac{p}{q}-\alpha\right|<\frac{1}{q^{2}}
$$

Let's apply this to $\alpha=\sqrt{m}$. If p / q is a good approximation to \sqrt{m}, then

$$
|p-q \sqrt{m}|<\frac{1}{q}
$$

On the other hand

$$
|p+q \sqrt{m}|=|(p-q \sqrt{m})+2 q \sqrt{m}|<3 q \sqrt{m}
$$

Multiplying, we get

$$
\left|p^{2}-m q^{2}\right| \leqslant \frac{1}{q} 3 q \sqrt{m}=3 \sqrt{m}
$$

In other words, we have found an infinite collection of elements $p+q \sqrt{m} \in \mathbf{Z}[\sqrt{m}]$ with norm bounded by some constant.

Consider the infinite sequence of ideals $I=(p+q \sqrt{m})$ generated by these elements. The norm of $p+q \sqrt{m}$ has absolute value bounded by $M=3 \sqrt{m}$. Now, I contains this norm $n=p^{2}-m q^{2}$.

The set of ideals of $\mathbf{Z}[\sqrt{m}]$ containing a particular integer n is in bijection with the set of ideals of $\mathbf{Z}[\sqrt{m}] / n$. The latter ring is a finite ring (of order n^{2}), and so there are only finitely many ideals in it.

We find that the infinite sequence of ideals I ranges through a finite set. Thus two of these ideals must be the same: $(\alpha)=(\beta)$. Then α / β must be a unit in $\mathbf{Z}[\sqrt{m}]$.

5. The unit group and the class number

Last time we showed that if $m>1$ is a square-free integer, then Pell's eqution $a^{2}-m b^{2}=1$ has a nontrivial solution (nontrivial means not $(\pm 1,0)$). In terms of algebraic number theory, this means that if $K=\mathbf{Q}(\sqrt{m})$, and \mathcal{O}_{K} is the ring of integers, then the unit group \mathcal{O}_{K}^{\times}contains at least one element other than ± 1. This element has to be of infinite order.

Let's now finish the job:
Theorem 5.1. Let $K=\mathbf{Q}(\sqrt{m})$, where $m>1$ is a square-free integer. Then $\mathcal{O}_{K}^{\times} \cong \mathbf{Z}_{2} \times \mathbf{Z}$. That is, it is generated by -1 and one unit ϵ of infinite order.

The unit ϵ is called the fundamental unit of K.
Proof. First I claim that there is at least one unit ϵ which is >1. We already know that there's a unit $\epsilon \neq \pm 1$.

Given an element $\alpha=a+b \sqrt{m} \in \mathbf{Q}(\sqrt{m})$, I let $\bar{\alpha}=a-b \sqrt{m}$. We have $N(\alpha)=\alpha \bar{\alpha}$. Given a unit ϵ, we have $\epsilon \bar{\epsilon}=N(\epsilon)= \pm 1$. Replacing ϵ with one of $-\epsilon, 1 / \epsilon,-1 / \epsilon$, we can assume that $\epsilon>1$.

I want to choose ϵ to be the least unit which is greater than 1. I have to justify why I can do this. I claim that there are only finitely many units in any interval $(1, N)$. It's enough to show this for units which have norm 1. If ϵ has norm 1 , then $\bar{\epsilon}=1 / \epsilon$. If $\epsilon \in(1, N)$, then $\bar{\epsilon} \in(1 / N, 1)$.

We find that

$$
\operatorname{tr}(\epsilon)=\epsilon+\bar{\epsilon} \in(1+1 / N, N+1)
$$

But $t=\operatorname{tr}(\epsilon)$ is a rational integer, and we know there are only finitely many integers in a given bounded interval. We assumed that $N(\epsilon)=1$, so ϵ has minimal polynomial $x^{2}-t x+1$. This assumes only finitely many values, and therefore there are only finitely many possible values of ϵ.

We can now say that there exists a unit $\epsilon>1$ which is least for this property.
I claim that if α is another unit, then $\alpha= \pm \epsilon^{n}$ for some $n \in \mathbf{Z}$. WLOG assume that $\alpha>1$. The powers $\epsilon, \epsilon^{2}, \epsilon^{3}, \ldots$ are unbounded. If α is not a power of ϵ, there exists n such that

$$
\epsilon^{n}<\alpha<\epsilon^{n+1}
$$

Divide by ϵ^{n} to obtain

$$
1<\alpha \epsilon^{-n}<\epsilon
$$

This contradicts the minimality of ϵ as a unit greater than 1 .
What can we say about the structure of the unit group in general?
Example 5.2. Let $K=\mathbf{Q}(\theta)$, where $\theta^{3}=2$. The ring of integers is $\mathcal{O}_{K}=\mathbf{Z}[\theta]$. What are the units $\mathbf{Z}[\theta]^{\times}$? We have

$$
1+\theta+\theta^{2}=\frac{\theta^{3}-1}{\theta-1}=\frac{1}{\theta-1}
$$

Thus $\theta-1$ is a unit. In fact $\mathcal{O}_{K}^{\times} \cong \mathbf{Z}_{2} \times \mathbf{Z}$, generated by -1 and $\theta-1$.
Example 5.3. Let $K=\mathbf{Q}(\theta)$, where $\theta^{4}=2$. We have

$$
1+\theta+\theta^{2}+\theta^{3}=\frac{1}{\theta-1}
$$

and so $\theta-1$ is a unit. But also K contains $\mathbf{Q}(\sqrt{2})$, since $\theta^{2}=\sqrt{2}$. So the unit group of \mathcal{O}_{K} must also contain $\theta^{2}-1=\sqrt{2}-1$. In fact, \mathcal{O}_{K}^{\times}is generated by $-1, \theta-1, \theta^{2}-1$. We have

$$
\mathcal{O}_{K}^{\times} \cong \mathbf{Z}_{2} \times \mathbf{Z} \times \mathbf{Z}
$$

Let K / \mathbf{Q} be an algebraic number field. We must have $K=\mathbf{Q}(\alpha)$, where α is a root of an irreducible polynomial $f(x) \in \mathbf{Q}[x]$. This polynomial has some number of real roots, say r_{1}. The number of complex roots is even, say $2 r_{2}$. We have $r_{1}+2 r_{2}=[K: \mathbf{Q}]$.

Theorem 5.4 (Dirichlet's unit theorem). The group of units \mathcal{O}_{K}^{\times}is a finitely generated abelian group. It is isomorphism to

$$
\mathcal{O}_{K}^{\times} \cong W \times \mathbf{Z}^{r_{1}+r_{2}-1},
$$

where W is a finite cyclic group.
So for a real quadratic field, $r_{1}=2, r_{2}=0$, and $r_{1}+r_{2}-1=1$.
But for $\mathbf{Q}(\sqrt[4]{2})$, we had $r_{1}=2, r_{2}=1$, so that $r_{1}+r_{2}-1=2$.
Finding the group of units is a subtle matter.
Next we turn to the class number of an algebraic number field. Given an algebraic number field K, we might be interested in the structure of ideals of \mathcal{O}_{K}.

The best possible scenario is that \mathcal{O}_{K} is a principal ideal domain, which means that every ideal is principal. It follows from this that element of \mathcal{O}_{K} can be uniquely factored into irreducible elements, up to units.

The class number h of K is a positive integer measuring how far \mathcal{O}_{K} is from being a principal ideal domain. If $h=1$, then \mathcal{O}_{K} is a PID.

Definition 5.5. Let I and J be two nonzero ideals of \mathcal{O}_{K}. We say that I and J are equivalent if there exist $\alpha, \beta \in \mathcal{O}_{K}$ nonzero such that

$$
(\alpha) I=(\beta) J .
$$

An ideal being equivalent to the unit ideal (1) just means that the ideal is principal.
Theorem 5.6. The set of equivalence classes of nonzero ideals of \mathcal{O}_{K} forms a group H_{K} under multiplication of ideals.

For existence of inverses: Given a nonzero ideal I, you can find an integer $n \in I$ which is nonzero (think about norms). And then $(n)=I J$ for some ideal J (there's a nontrivial result). Then the class of J is inverse to the class of I in H_{K}.

Theorem 5.7. H_{K} is a finite abelian group.
Let $h=\# H_{K}$ be its order, this is called the class number of K.
Open problem: Prove that there exist infinitely many algebraic number fields K with $h=1$.
There are amazing analytic formulas for the class number, but often they involve the group of units as well.

For example, let $K=\mathbf{Q}(\sqrt{p})$, where $p \equiv 1(\bmod 4)$ is a positive prime. There is a fundamental unit ϵ and a class number h.

Theorem 5.8 (Dirichlet's class number formula).

$$
\epsilon^{h}=\prod_{a=1}^{(p-1) / 2} \sin \left(\frac{2 \pi a}{p}\right)^{-\left(\frac{a}{p}\right)}
$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol.
Exercise in Galois theory: prove that the right-hand side actually belongs to $\mathbf{Q}(\sqrt{p})$.
For instance if $p=5$, the RHS is $(1+\sqrt{5}) / 2$, the fundamental unit of $\mathbf{Q}(\sqrt{5})$.

