
LECTURE APRIL 15: SOME MORE ALGEBRAIC NUMBER THEORY

1. Algebraic number theory: the basics

Definition 1.1. A complex number α P C is integral if it is the root of a monic polynomial with integer
coefficients. Then α is called an algebraic integer, as opposed to a rational integer, which refers to elements
of Z. We let Z denote the set of algebraic integers.

Example of an algebraic integer:
?
2 is a root of x2 ´ 2.

Not an algebraic integer: α “ 1{2. If 1{2 were the root of xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a0 with ai P Z, then the

rational root theorem says that 2|1, which is false. In fact ZXQ “ Z.

Theorem 1.2. Z Ă C is a subring.

To prove this theorem, we need to review some facts about finitely generated abelian groups. A finitely
generated abelian group is a group M which is abelian, such that there exist elements α1, . . . , αn PM which
generateM . Example: Z4, or Z‘Z{6. An abelian group is torsion-free if for all nonzero α PM , the elements
2α, 3α, . . . are also nonzero.

If a finitely generated abelian group is torsion-free, then it is free. Free means that there exist elements
α1, . . . , αn such that

M “ Zα1 ‘ ¨ ¨ ¨ ‘ Zαn – Zn.

(If M “ Q, then M is torsion-free, but not free. The problem is that this group is not finitely generated.)
We are often going to consider finitely generated subgroups M Ă C (under addition). These are auto-

matically free, because they are torsion-free and finitely generated. For instance M “ Z‘ Zi “ Zris.

Theorem 1.3. The following are equivalent, for a complex number α.

(1) α is an algebraic integer.
(2) There exists a finitely generated subgroup M Ă C such that αM ĂM .

Proof. Assume that α is the root of an irreducible polynomial with integer coefficients:

xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a0,

with ai P Z.
Let M be the subgroup of C generated by 1, α, α2, . . . , αn´1. Can check that αM ĂM . This really just

comes down to checking that α ¨ αn´1 belongs to M , but

αn “ ´an´1α
n´1 ´ ¨ ¨ ¨ ´ a0 ¨ 1 PM.

Conversely, suppose that there exists a finitely generated subgroup M Ă C such that αM Ă M . Choose
a basis for M :

M “ Zα1 ‘ Zα2 ‘ ¨ ¨ ¨ ‘ Zαn,

for αi P C. This means that ααi PM for i “ 1, . . . , n. Let’s spell this out:

αα1 “ a11α1 ` a12α2 ` ¨ ¨ ¨ ` a1nαn

αα2 “ a21α1 ` a22α2 ` ¨ ¨ ¨ ` a2nαn

...
...

ααn “ an1α1 ` an2α2 ` ¨ ¨ ¨ ` annαn
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with aij P Z. If I let A “ paijq, and v “ pα1, . . . , αnq
t (a column vector), then Av “ αv. In other

words, A has an eigenvector v with value α. This means that α is the root of the characteristic polynoimal
fptq “ detptI ´Aq. Then fptq is a monic polynomial with integer coefficients!! Therefore α P Z. �

We can now prove that Z Ă C is a subring. We just need to check that Z is closed under addition and
multiplication.

Let α, β P Z. Then there exist finitely generated abelian subgroups M,N Ă C such that αM Ă M and
βN Ă N . Let MN be the abelian group generated by all products of elements of M and N . Then MN is
still finitely generated (check this!). We have

pα` βqMN “ αMN ` βMN ĂMN `MβN ĂMN `MN “MN.

Similarly,
αβMN “ pαMqpβNq ĂMN,

so that α` β and αβ are both in Z.
Next time: we’ll compute ZXK “ OK for various values of K, where K{Q is finite.

2. Examples: Quadratic fields

Given a finite extension K{Q, we can define

OK “ K X Z,

the ring of integers of K.
If rK : Qs “ 2, then K “ Qp

?
mq. We can assume that m is an integer, and even a squarefree integer,

other than 1. What is OK?
If a`b

?
m P K (with a, b P Q), when does it belong to OK? The characteristic polynomial of α “ a`b

?
m

is
x2 ´ trpαqx`Npαq,

in order for α to belong to OK , we need trpαq, Npαq P Z, that is:

2a P Z

a2 ´mb2 P Z

Certainly these conditions are satisfied if a, b P Z; thus Zr
?
ms Ă OK . But it may be possible that a “ 1

2a0,
where a0 is odd. This forces b “ 1

2b0, where b0 is odd (exercise). Then

a20 ´mb
2
0 ” 0 pmod 4q

This means that 1´m ” 0 pmod 4q, so that m ” 1 pmod 4q.

Theorem 2.1. The ring of integers OK is

OK “

#

Zr
?
ms m ” 2, 3 pmod 4q

Zr´1`
?
m

2 s m ” 1 pmod 4q

In the second case, let η “ ´1`
?
m

2 . Then η has minimal polynomial x2 ` x ´ pm ´ 1q{4, and then
OK “ Zrηs. One observation here is that OK is always a free abelian group of rank 2. In the first case,
OK “ Z‘ Z

?
m, and in the second case, OK “ Z‘ Zη.

Thus the ring of integers in Qp
?
5q is Zrφs, φ “ p´1 `

?
5q{2, whereas Qp

?
´5q has ring of integers

Zr
?
´5s.

3. The structure of OK as an abelian group

Theorem 3.1. Let rK : Qs “ n. Then OK is a free abelian group of rank n.
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We have that K “ Qpαq, where α is the root of an irreducible polynomial of degree n. There are exactly n
conjugates of α in C. We can therefore define n homomorphisms σ1, . . . , σn : K Ñ C. These are embeddings.

Let α1, . . . , αn be a basis for K{Q. Define a matrix

Mpα1, . . . , αnq “ pσipαjqq.

This is an nˆ n matrix. In fact it is invertible!

Theorem 3.2. The determinant pdetMpα1, . . . , αnqq
2 is a nonzero rational number.

Proof. The elements σipαjq all belong to the splitting field ofK inC, call it E. Let G “ GalpE{Qq. Elements
of G have the effect of permuting the embeddings σi, and therefore they permute the columns of the matrix
Mpα1, . . . , αnq. This has the effect of changing the determinant by a sign, and therefore doesn’t change the
squared determinant at all. �

Theorem 3.3. Let α P K. Then there exists a rational integer M , such that Mα P OK .

(Exercise)
We can therefore find a basis α1, . . . , αn for K{Q consisting of elements of OK . Then we have

detMpα1, . . . , αnq
2 P ZXQ “ Z

is a nonzero rational integer.
By the well-ordered property of the natural numbers, there exists a basis α1, . . . , αn P OK for K{Q, which

makes
ˇ

ˇdetMpα1, . . . , αnq
2
ˇ

ˇ

as small as possible.
I now claim that

OK “ Zα1 ‘ ¨ ¨ ¨ ‘ Zαn.

Let α P OK not belong to Zα1 ‘ ¨ ¨ ¨ ‘ Zαn. This means we can write α as a linear combination

α “ c1α1 ` ¨ ¨ ¨ ` cnαn

where ci P Q are not all integers. WLOG, c1 R Z. By replacing α with α ´ mα1 we can also assume
0 ă c1 ă 1. Then we have a new basis for K{Q given by α, α2, α3, . . . , αn. We have

detMpα, α2, . . . , αnq “ detMpc1α1, α2, . . . , αnq “ c1 detpα1, α2, . . . , αnq

Since c21 ă 1, this contradicts the minimality of detMpα1, . . . , αnq
2.

Definition 3.4. Let rK : Qs “ n, and let α1, . . . , αn be any Z-basis for the free abelian group OK . The
integer

D “ detMpα1, . . . , αnq
2 P Z

is called the discriminant of K{Q.

Example 3.5. What is the discriminant of Qpiq? A Z-basis would be 1, i. The discriminant is

D “ det

ˆ

1 i

1 ´i

˙2

“ ´4

Example 3.6. The fields Qp
?
´3q,Qp

?
´1q,Qp

?
5q,Qp

?
´7q,Qp

?
2q,Qp

?
´2q have discriminants ´3,´4, 5,´7, 8,´8,

respectively.

4. Units

The group of units in OK is an interesting group.

Example 4.1. Zrisˆ “ t1,´1, i,´iu
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Example 4.2. Zrφsˆ is an infinite group, generated by ´1 and φ. Thus Zrφsˆ – Zˆ Z2.

Let K be an algebraic number field (i.e., K{Q is a finite extension).

Definition 4.3. Let σ1, . . . , σn : K Ñ C be the embeddings of K into C. The norm of an element α P K is

Npαq “
n
ź

i“1

σipαq.

Then Npαq P Q. Note that Npαβq “ NpαqNpβq. Thus N : Kˆ Ñ Qˆ is a group homomorphism.

Example 4.4. Let m ‰ 1 be a squarefree integer, and let K “ Qp
?
mq. A typical element of K is α “

a` b
?
m, where a, b P Q. Then

Npa` b
?
mq “ pa` b

?
mqpa´ b

?
mq “ a2 ´mb2.

Thus in Qpiq, we have
Npa` biq “ a2 ` b2.

Lemma 4.5. Let α P OK . Then Npαq P Z.

Proof. If α is an algebraic integer, then so are its conjugates, and then Npαq, being the product of these,
must also lie in Z. But also Npαq P Q, and therefore Npαq P Z. �

Theorem 4.6. Let α P OK . Then α P OˆK if and only if Npαq “ ˘1.

Proof. Suppose α is a unit, so that αβ “ 1 for some β P OK . Then Npαβq “ NpαqNpβq “ 1. Since
Npαq, Npβq P Z, we must have Npαq “ ˘1.

Conversely, suppose Npαq “ ˘1. Then

α
n
ź

i“2

σipαq “ ˘1.

Let β “
śn

i“2 σipαq, so that αβ “ ˘1. Then β P K, but also β P Z, and so β P OK . Then ˘β is the inverse
of α. �

Let’s try to find OˆK when K “ Qp
?
mq.

Example 4.7. If m “ ´1, then Npa ` biq “ a2 ` b2. This is always positive, so a ` bi P Zris is a unit if
and only if a2 ` b2 “ 1. This clearly has only four solutions α “ ˘1,˘i.

Example 4.8. Let K “ Qp
?
2q, so that OK “ Zr

?
2s. An element a` b

?
2 P OK is a unit if and only if

a2 ´ 2b2 “ ˘1.

This is a Diophantine equation. A few solutions are p1, 0q, p1, 1q, p3, 2q, p7, 5q..... Consider first the solution
p1, 1q, which corresponds to ε “ 1`

?
2. Its powers are

ε2 “ 3` 2
?
2

ε3 “ 7` 5
?
2

In fact, all solutions appear this way, and Zr
?
2sˆ is generated by ´1 and ε. Thus Zr

?
2sˆ – Z2 ˆ Z.

The Diophantine equation
a2 ´mb2 “ 1

is called Pell’s equation, and it has a very long history. First of all, m should be positive to have any chance
of their being an integer solution.

Theorem 4.9. Let m ą 1 be square free. Then Pell’s equation a2 ´mb2 “ 1 has infinitely many solutions.
The group of units OˆK (K “ Qp

?
mq) is generated by ´1 and one fundamental unit ε.
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Proof. At least, we’ll try to come up with one nontrivial solution to a2 ´mb2 “ 1. Nontrivial means b ‰ 0.
If pa, bq is a solution with a, b ą 0, then

pa´ b
?
mqpa` b

?
mq “ 1.

This means that a´ b
?
m is kind of small. I’m getting at the fact that a{b is close to

?
m. �

Let’s talk about rational approximations to irrational numbers. Given an irrational number α, when is a
fraction p{q a good rational approximation?

Theorem 4.10. Let α be irrational, and let N ě 1. There exists a fraction p{q with q ď N , such that
ˇ

ˇ

ˇ

ˇ

p

q
´ α

ˇ

ˇ

ˇ

ˇ

ď
1

qN

Proof. Recall the floor function: rπs “ 3. The fractional part is everything else:

tπu “ .14159... “ π ´ rπs.

Thus 0 ă tαu ă 1. Let N ě 1, and consider the numbers tqαu for q “ 1, . . . , N . Chop up the interval p0, 1q
into N parts:

p0, 1{Nq, p1{N, 2{Nq, . . . , ppN ´ 1q{N, 1q.

If one of the tqNu lies in the first or last interval, we’re done. Assume not: then our n numbers land in n´1

intervals, and therefore two of them must end up in the same interval: there exist q1 ă q2 ď N , such that

|tq2αu ´ tq1αu| “ |pq2 ´ q1qα´ rq2αs ´ rq1αs| ă 1{N.

Let q “ q2 ´ q1, and let p “ rq2αs ` rq1αs; then

|qα´ p| ă 1{N,

and so
ˇ

ˇ

ˇ

ˇ

p

q
´ α

ˇ

ˇ

ˇ

ˇ

ă
1

qN
.

�

The theorem shows that there exist infinitely many “good” approximations to α, where good means that
ˇ

ˇ

ˇ

ˇ

p

q
´ α

ˇ

ˇ

ˇ

ˇ

ă
1

q2
.

Let’s apply this to α “
?
m. If p{q is a good approximation to

?
m, then

ˇ

ˇp´ q
?
m
ˇ

ˇ ă
1

q
.

On the other hand
ˇ

ˇp` q
?
m
ˇ

ˇ “
ˇ

ˇpp´ q
?
mq ` 2q

?
m
ˇ

ˇ ă 3q
?
m

Multiplying, we get
ˇ

ˇp2 ´mq2
ˇ

ˇ ď
1

q
3q
?
m “ 3

?
m.

In other words, we have found an infinite collection of elements p ` q
?
m P Zr

?
ms with norm bounded by

some constant.
Consider the infinite sequence of ideals I “ pp`q

?
mq generated by these elements. The norm of p`q

?
m

has absolute value bounded by M “ 3
?
m. Now, I contains this norm n “ p2 ´mq2.

The set of ideals of Zr
?
ms containing a particular integer n is in bijection with the set of ideals of

Zr
?
ms{n. The latter ring is a finite ring (of order n2), and so there are only finitely many ideals in it.

We find that the infinite sequence of ideals I ranges through a finite set. Thus two of these ideals must
be the same: pαq “ pβq. Then α{β must be a unit in Zr

?
ms.
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5. The unit group and the class number

Last time we showed that if m ą 1 is a square-free integer, then Pell’s eqution a2 ´ mb2 “ 1 has a
nontrivial solution (nontrivial means not p˘1, 0q). In terms of algebraic number theory, this means that if
K “ Qp

?
mq, and OK is the ring of integers, then the unit group OˆK contains at least one element other

than ˘1. This element has to be of infinite order.
Let’s now finish the job:

Theorem 5.1. Let K “ Qp
?
mq, where m ą 1 is a square-free integer. Then OˆK – Z2 ˆ Z. That is, it is

generated by ´1 and one unit ε of infinite order.

The unit ε is called the fundamental unit of K.

Proof. First I claim that there is at least one unit ε which is ą 1. We already know that there’s a unit
ε ‰ ˘1.

Given an element α “ a` b
?
m P Qp

?
mq, I let α “ a´ b

?
m. We have Npαq “ αα. Given a unit ε, we

have εε “ Npεq “ ˘1. Replacing ε with one of ´ε, 1{ε,´1{ε, we can assume that ε ą 1.
I want to choose ε to be the least unit which is greater than 1. I have to justify why I can do this. I claim

that there are only finitely many units in any interval p1, Nq. It’s enough to show this for units which have
norm 1. If ε has norm 1, then ε “ 1{ε. If ε P p1, Nq, then ε P p1{N, 1q.

We find that
trpεq “ ε` ε P p1` 1{N,N ` 1q.

But t “ trpεq is a rational integer, and we know there are only finitely many integers in a given bounded
interval. We assumed that Npεq “ 1, so ε has minimal polynomial x2 ´ tx ` 1. This assumes only finitely
many values, and therefore there are only finitely many possible values of ε.

We can now say that there exists a unit ε ą 1 which is least for this property.
I claim that if α is another unit, then α “ ˘εn for some n P Z. WLOG assume that α ą 1. The powers

ε, ε2, ε3, . . . are unbounded. If α is not a power of ε, there exists n such that

εn ă α ă εn`1.

Divide by εn to obtain
1 ă αε´n ă ε.

This contradicts the minimality of ε as a unit greater than 1. �

What can we say about the structure of the unit group in general?

Example 5.2. Let K “ Qpθq, where θ3 “ 2. The ring of integers is OK “ Zrθs. What are the units Zrθsˆ?
We have

1` θ ` θ2 “
θ3 ´ 1

θ ´ 1
“

1

θ ´ 1

Thus θ ´ 1 is a unit. In fact OˆK – Z2 ˆ Z, generated by ´1 and θ ´ 1.

Example 5.3. Let K “ Qpθq, where θ4 “ 2. We have

1` θ ` θ2 ` θ3 “
1

θ ´ 1
,

and so θ ´ 1 is a unit. But also K contains Qp
?
2q, since θ2 “

?
2. So the unit group of OK must also

contain θ2 ´ 1 “
?
2´ 1. In fact, OˆK is generated by ´1, θ ´ 1, θ2 ´ 1. We have

OˆK – Z2 ˆ Zˆ Z.

Let K{Q be an algebraic number field. We must have K “ Qpαq, where α is a root of an irreducible
polynomial fpxq P Qrxs. This polynomial has some number of real roots, say r1. The number of complex
roots is even, say 2r2. We have r1 ` 2r2 “ rK : Qs.

6



Theorem 5.4 (Dirichlet’s unit theorem). The group of units OˆK is a finitely generated abelian group. It is
isomorphism to

OˆK –W ˆ Zr1`r2´1,

where W is a finite cyclic group.

So for a real quadratic field, r1 “ 2, r2 “ 0, and r1 ` r2 ´ 1 “ 1.
But for Qp 4

?
2q, we had r1 “ 2, r2 “ 1, so that r1 ` r2 ´ 1 “ 2.

Finding the group of units is a subtle matter.
Next we turn to the class number of an algebraic number field. Given an algebraic number field K, we

might be interested in the structure of ideals of OK .
The best possible scenario is that OK is a principal ideal domain, which means that every ideal is principal.

It follows from this that element of OK can be uniquely factored into irreducible elements, up to units.
The class number h of K is a positive integer measuring how far OK is from being a principal ideal

domain. If h “ 1, then OK is a PID.

Definition 5.5. Let I and J be two nonzero ideals of OK . We say that I and J are equivalent if there exist
α, β P OK nonzero such that

pαqI “ pβqJ.

An ideal being equivalent to the unit ideal p1q just means that the ideal is principal.

Theorem 5.6. The set of equivalence classes of nonzero ideals of OK forms a group HK under multiplication
of ideals.

For existence of inverses: Given a nonzero ideal I, you can find an integer n P I which is nonzero (think
about norms). And then pnq “ IJ for some ideal J (there’s a nontrivial result). Then the class of J is
inverse to the class of I in HK .

Theorem 5.7. HK is a finite abelian group.

Let h “ #HK be its order, this is called the class number of K.
Open problem: Prove that there exist infinitely many algebraic number fields K with h “ 1.
There are amazing analytic formulas for the class number, but often they involve the group of units as

well.
For example, let K “ Qp

?
pq, where p ” 1 pmod 4q is a positive prime. There is a fundamental unit ε

and a class number h.

Theorem 5.8 (Dirichlet’s class number formula).

εh “

pp´1q{2
ź

a“1

sin

ˆ

2πa

p

˙´p a
p q

where
´

a
p

¯

is the Legendre symbol.

Exercise in Galois theory: prove that the right-hand side actually belongs to Qp
?
pq.

For instance if p “ 5, the RHS is p1`
?
5q{2, the fundamental unit of Qp

?
5q.
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