
LECTURE APRIL 27: A CRASH COURSE IN ALGEBRAIC GEOMETRY

1. Pythagorean triplets

How do you solve the Diophantine equation:

a2 ` b2 “ c2?

For instance, p3, 4, 5q. Divide both sides by c2, and let x “ a{c, y “ b{c to get

x2 ` y2 “ 1.

The first observation is, that it is enough to find all solutions px, yq of this last equation, where x, y P Q. So
we are trying to find the set of points on the unit circle centered at p0, 0q with rational coordinates.

Stereographic projection gives a way from going from points on the line to points on the circle, and vice
versa. So if I have a point P 1 “ pt, 0q on the x-axis, I should find the line joining P 1 to N “ p0, 1q, and find
the point P “ px, yq on the intersection of the circle and the line.

The line joining P 1 to N is y ´ 1 “ ´x{t, or x “ ´ty ` t. We want to intersect this with x2 ` y2 “ 1.
Substituting the first equation into the second gives

p1` t2qy2 ´ 2ty ` pt2 ´ 1q “ 0.

We already know that y “ 1 is a solution. The sum of the two roots has to be 2t{p1` t2q, and so the other
root is

y “ ´p1´ tq2{p1` t2q.

So we get that the point P is

px, yq “

ˆ

2t

1` t2
,´
p1´ tq2

1` t2

˙

This process puts into bijection the points on the circle, and the points of real projective line R Y t8u. In
fact it also gives a bijection between rational points of the circle, and the points of the rational projective
line QY t8u. ‘ How far can this procedure go? Like, how could we solve

x3 ` y3 “ 1

in rational numbers px, yq? Is there again a rational parametrization of this curve? In other words, are there
rational functions pptq, qptq P Qptq such that pptq3 ` qptq3 “ 1, without p and q being constants?

2. Affine algebraic sets

Algebraic geometry is the study of solution sets to polynomial equations.
Let K be an algebraically closed field (for instance, it is common to assume that K “ C).

Definition 2.1. Affine space of dimension n is

An “

"

pa1, . . . , anq

ˇ

ˇ

ˇ

ˇ

ai P K

*

Definition 2.2. Let S Ă Krx1, . . . , xns be a set of polynomials. I define

ZpSq “

"

pa1, . . . , anq P A
n

ˇ

ˇ

ˇ

ˇ

fpa1, . . . , anq “ 0, all f P S
*

Such a subset of An is called an affine algebraic set.
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For instance, in A2, we have Zp
 

x2 ` y2 ´ 1
(

q is the circle. Well, sort of: it’s the set of complex solutions
to x2 ` y2 “ 1.

Example 2.3. ZpHq “ An, and Zpt0uq “ An. Also, Zpt1uq “ H. Finally,

Zptxpx´ 3quq “ t0, 3u .

Example 2.4. When n “ 1, what are the affine algebraic subsets of A1 “ C? A polynomial in one variable
can only have finitely many roots, unless that polynomial is the zero polynomial, in which case it has all of
C as its roots.

Thus a subset S Ă A1 is algebraic if and only if it is either finite or everything.

Example 2.5. What are the algebraic subsets of C2? Is tp3, 4qu algebraic? Yes, because

Zptx´ 3, y ´ 4uq “ tp3, 4qu .

Also
Zptx, yuq “ tp0, 0qu .

What about tp3, 4q, p0, 0qu? This too is algebraic, because

Zptxpx´ 3q, xpy ´ 4q, ypx´ 3q, ypy ´ 4quq “ tp0, 0q, p3, 4qu .

In fact, any finite subset of An is algebraic. There are infinite algebraic subsets of A2, given by Zpfq, where
f a nonconstant polynomial.

Observe that if S Ă Krx1, . . . , xns, then

ZpSq “ ZpIq,

where I is the ideal generated by S. If fpxq “ 0 and gpxq “ 0, and if h “ af ` bg, then hpxq “ 0. So it’s
sufficient to only consider ZpIq, where I is an ideal.

Remember that if I is an ideal in a ring, then the radical of I is
?
I “

"

f P Krx1, . . . , xns

ˇ

ˇ

ˇ

ˇ

fn P I for some n

*

Then
?
I is also an ideal, and in fact

ZpIq “ Zp
?
Iq.

A radical ideal is an ideal I for which
?
I “ I. Note that

a?
I “

?
I. So we might as well just consider

ZpIq where I is a radical ideal.
So what we have is a function Z from radical ideals of Krx1, . . . , xns to affine algebraic subsets of An.

There is a function going the other way:

Definition 2.6. Let V Ă An be any subset of affine space. Then

IpV q “

"

f P Krx1, . . . , xns

ˇ

ˇ

ˇ

ˇ

fpa1, . . . , anq “ 0 for all pa1, . . . , anq P V
*

is a radical ideal (check this!).

Theorem 2.7 (Hilbert’s Nullstellensatz). The functions I ÞÑ ZpIq and S ÞÑ IpSq are bijections between the
set of radical ideals of Krx1, . . . , xns and the set of algebraic subsets of An. It is inclusion-reversing.

The last sentence says that if I Ă J , then ZpJq Ă ZpIq.
As a corollary, we find that the only maximal ideals of Krx1, . . . , xns are of the form

px1 ´ a1, . . . , xn ´ anq

for some pa1, . . . , anq P An.
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3. Properties of ZpIq

Given an ideal I Ă Krx1, . . . , xns, we have an affine algebraic set ZpIq.
(1) Zp0q “ An.
(2) Zp1q “ H

(3) If I Ă J , then ZpJq Ă ZpIq.
(4) ZpI ` Jq “ ZpIq X ZpJq.
(5) ZpIJq “ ZpIq Y ZpJq.
Let’s discuss the last two properties. If I, J are ideals, and x P ZpI ` Jq, it means that pf ` gqpxq “ 0

for all f P I and g P J . In particular this is true if g “ 0, so that fpxq “ 0 for all f P I, and so x P ZpIq.
Similarly, x P ZpJq, so x P ZpIq X ZpJq. I’ll leave the converse to you.

Similarly, if x belongs to ZpIJq, it means that pfgqpxq “ 0 for all f P I and g P J . Assume that x R ZpIq.
This means there exists f P I such that fpxq ‰ 0. Thus whenever g P J , we have fpxqgpxq “ 0, which
implies gpxq “ 0. Thus x P ZpJq.

It’s possible to take the sum of arbitrarily many ideals. The sum of a collection of ideals is simply the
smallest ideal containing all of them. Property 4 continues to hold:

Z

˜

ÿ

i

Ii

¸

“
č

i

ZpIiq

An affine algebraic set is a subset of An of the form ZpIq for some ideal I. We have seen that the collection
of affine algebraic sets is closed under finite unions and arbitrary intersections, and contains both H and
An.

This property led some mathematicians in the mid-20th century (Grothendieck) to define a topology on
An, called the Zariski topology, in which closed subsets are the affine algebraic sets.

4. Primes and irreducibles

Recall that a prime ideal P is a non-unit ideal having the property: If fg P P , then f P P or g P P (or
both).

Lemma 4.1. If P is a prime ideal, and I, J are ideals such that IJ Ă P , then either I Ă P or J Ă P .

Proof. Assume IJ Ă P . Also assume that I is not contained in P : I Ć P . This means there exists f P I

such that f R P . Let g P J . We have fg P IJ Ă P , so that fg P P . Since P is prime, we have g P P .
Therefore J Ă P . �

What are the prime ideals in Krx, ys? (Assume K is an algebraically closed field.)
‚ P “ px´ a, y´ bq (where a, b P K) is prime, and in fact it is maximal. We have that ZpP q “ tpa, bqu
is a single point.

‚ P “ py ´ x2q is prime but not maximal (it is contained in px, yq for instance). In fact any non-
maximal prime ideal P is of the form pfpx, yqq, where fpx, yq is an irreducible polynomial. Then
ZpP q is the solution set tpx, yq|fpx, yq “ 0u. This solution set is a curve.

‚ P “ p0q is prime. Zp0q “ A2.
These are in fact the only prime ideals.

Definition 4.2. An affine algebraic set V is reducible if it can be represented as a union V “ V1YV2, where
V1, V2 are other affine algebraic sets, but neither is equal to V . Otherwise, V is irreducible.

Example 4.3. The affine algebraic set V “ Zpxyq Ă A2 is reducible: it is Zpxq Y Zpyq. But Zpy ´ x2q is
irreducible.

Theorem 4.4. The only irreducible affine algebraic sets are ZpP q, where P is a prime ideal.
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Proof. (One direction) Let P be a prime ideal in Krx1, . . . , xns. Assume that ZpP q “ ZpIqYZpJq for ideals
I and J . Then ZpP q “ ZpIJq. We get IpZpP qq “ IpZpIJqq, so that P “

?
IJ Ą IJ . This means that

I Ă P or J Ă P , which means that either ZpIq or ZpJq was equal to ZpP q. Thus ZpP q is irreducible. �

5. Dimension

Let R be any commutative ring with unit. It might happen that we have chain of ideals

P0 Ă P1 Ă ¨ ¨ ¨ Ă Pn

all of which are prime. For instance if R “ Krx1, . . . , xns we can look at

p0q Ă px1q Ă px1, x2q Ă ¨ ¨ ¨ Ă px1, . . . , xnq.

Definition 5.1. The Krull dimension of the ring R is the maximum n for which there exists a chain of
prime ideals of length n.

For instance, the polynomial ring in n variables has Krull dimension n.
If V Ă An is an irreducible affine algebraic set, then V “ ZpIq for some ideal I, and then we can define

the dimension of V to be the Krull dimension of Krx1, . . . , xns{I.
For instance, Zpy ´ x2q Ă A2 has dimension 1: it is a curve.

6. Projective space

I define projective space Pn to be the set of all nonzero points px0, x1, . . . , xnq, modulo multiplication by
a nonzero scalar.

The projective version of the circle is the projective curve

x2 ` y2 “ z2.

The formula we found last time is an isomorphism between the projective circle and P1. In fact any projective
curve inside of P2 with degree 2 is isomorphic to P1.

But if I let X be the projective plane curve

x3 ` y3 “ z3,

then this not isomorphic to P1. The set of complex solutions to this equation is a real manifold of dimension
2 (a surface). It is also closed (compact). In fact this is a torus, whereas P1 is a sphere. Therefore they are
not isomorphic.

In fact there is a way of defining the genus (= number of holes) of a projective curve without reference to
topology at all; the notion is well-defined for curves over finite fields, for instance. It turns out there are no
non-constant algebraic maps from a curve of genus g to a curve of genus g1, if g ă g1.
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