LECTURE APRIL 27: A CRASH COURSE IN ALGEBRAIC GEOMETRY

1. Pythagorean triplets

How do you solve the Diophantine equation:

$$a^2 + b^2 = c^2$$
?

For instance, (3,4,5). Divide both sides by c^2 , and let x = a/c, y = b/c to get

$$x^2 + y^2 = 1.$$

The first observation is, that it is enough to find all solutions (x, y) of this last equation, where $x, y \in \mathbf{Q}$. So we are trying to find the set of points on the unit circle centered at (0,0) with rational coordinates.

Stereographic projection gives a way from going from points on the line to points on the circle, and vice versa. So if I have a point P' = (t, 0) on the x-axis, I should find the line joining P' to N = (0, 1), and find the point P = (x, y) on the intersection of the circle and the line.

The line joining P' to N is y - 1 = -x/t, or x = -ty + t. We want to intersect this with $x^2 + y^2 = 1$. Substituting the first equation into the second gives

$$(1+t^2)y^2 - 2ty + (t^2 - 1) = 0.$$

We already know that y = 1 is a solution. The sum of the two roots has to be $2t/(1+t^2)$, and so the other root is

$$y = -(1-t)^2/(1+t^2).$$

So we get that the point P is

$$(x,y) = \left(\frac{2t}{1+t^2}, -\frac{(1-t)^2}{1+t^2}\right)$$

This process puts into bijection the points on the circle, and the points of real projective line $\mathbf{R} \cup \{\infty\}$. In fact it also gives a bijection between rational points of the circle, and the points of the rational projective line $\mathbf{Q} \cup \{\infty\}$. 'How far can this procedure go? Like, how could we solve

$$x^3 + y^3 = 1$$

in rational numbers (x, y)? Is there again a rational parametrization of this curve? In other words, are there rational functions $p(t), q(t) \in \mathbf{Q}(t)$ such that $p(t)^3 + q(t)^3 = 1$, without p and q being constants?

2. Affine algebraic sets

Algebraic geometry is the study of solution sets to polynomial equations.

Let K be an algebraically closed field (for instance, it is common to assume that $K = \mathbf{C}$).

Definition 2.1. Affine space of dimension n is

$$\mathbf{A}^n = \left\{ (a_1, \dots, a_n) \mid a_i \in K \right\}$$

Definition 2.2. Let $S \subset K[x_1, \ldots, x_n]$ be a set of polynomials. I define

$$Z(S) = \left\{ (a_1, \dots, a_n) \in \mathbf{A}^n \mid f(a_1, \dots, a_n) = 0, \text{ all } f \in S \right\}$$

Such a subset of \mathbf{A}^n is called an affine algebraic set.

For instance, in \mathbf{A}^2 , we have $Z(\{x^2 + y^2 - 1\})$ is the circle. Well, sort of: it's the set of complex solutions to $x^2 + y^2 = 1$.

Example 2.3. $Z(\emptyset) = \mathbf{A}^n$, and $Z(\{0\}) = \mathbf{A}^n$. Also, $Z(\{1\}) = \emptyset$. Finally,

$$Z(\{x(x-3)\}) = \{0,3\}.$$

Example 2.4. When n = 1, what are the affine algebraic subsets of $A^1 = C$? A polynomial in one variable can only have finitely many roots, unless that polynomial is the zero polynomial, in which case it has all of C as its roots.

Thus a subset $S \subset \mathbf{A}^1$ is algebraic if and only if it is either finite or everything.

Example 2.5. What are the algebraic subsets of \mathbb{C}^2 ? Is $\{(3,4)\}$ algebraic? Yes, because

$$Z({x-3,y-4}) = {(3,4)}.$$

Also

$$Z({x,y}) = {(0,0)}.$$

What about $\{(3,4),(0,0)\}$? This too is algebraic, because

$$Z({x(x-3), x(y-4), y(x-3), y(y-4)}) = {(0,0), (3,4)}.$$

In fact, any finite subset of \mathbf{A}^n is algebraic. There are infinite algebraic subsets of \mathbf{A}^2 , given by Z(f), where f a nonconstant polynomial.

Observe that if $S \subset K[x_1, \ldots, x_n]$, then

$$Z(S) = Z(I),$$

where I is the ideal generated by S. If f(x) = 0 and g(x) = 0, and if h = af + bg, then h(x) = 0. So it's sufficient to only consider Z(I), where I is an ideal.

Remember that if I is an ideal in a ring, then the radical of I is

$$\sqrt{I} = \left\{ f \in K[x_1, \dots, x_n] \mid f^n \in I \text{ for some } n \right\}$$

Then \sqrt{I} is also an ideal, and in fact

$$Z(I) = Z(\sqrt{I}).$$

A radical ideal is an ideal I for which $\sqrt{I} = I$. Note that $\sqrt{\sqrt{I}} = \sqrt{I}$. So we might as well just consider Z(I) where I is a radical ideal.

So what we have is a function Z from radical ideals of $K[x_1, ..., x_n]$ to affine algebraic subsets of \mathbf{A}^n . There is a function going the other way:

Definition 2.6. Let $V \subset \mathbf{A}^n$ be any subset of affine space. Then

$$I(V) = \left\{ f \in K[x_1, \dots, x_n] \mid f(a_1, \dots, a_n) = 0 \text{ for all } (a_1, \dots, a_n) \in V \right\}$$

is a radical ideal (check this!).

Theorem 2.7 (Hilbert's Nullstellensatz). The functions $I \mapsto Z(I)$ and $S \mapsto I(S)$ are bijections between the set of radical ideals of $K[x_1, \ldots, x_n]$ and the set of algebraic subsets of \mathbf{A}^n . It is inclusion-reversing.

The last sentence says that if $I \subset J$, then $Z(J) \subset Z(I)$.

As a corollary, we find that the only maximal ideals of $K[x_1, \ldots, x_n]$ are of the form

$$(x_1-a_1,\ldots,x_n-a_n)$$

for some $(a_1, \ldots, a_n) \in \mathbf{A}^n$.

3. Properties of Z(I)

Given an ideal $I \subset K[x_1, \ldots, x_n]$, we have an affine algebraic set Z(I).

- (1) $Z(0) = \mathbf{A}^n$.
- (2) $Z(1) = \emptyset$
- (3) If $I \subset J$, then $Z(J) \subset Z(I)$.
- (4) $Z(I + J) = Z(I) \cap Z(J)$.
- (5) $Z(IJ) = Z(I) \cup Z(J)$.

Let's discuss the last two properties. If I, J are ideals, and $x \in Z(I+J)$, it means that (f+g)(x)=0 for all $f \in I$ and $g \in J$. In particular this is true if g=0, so that f(x)=0 for all $f \in I$, and so $x \in Z(I)$. Similarly, $x \in Z(J)$, so $x \in Z(I) \cap Z(J)$. I'll leave the converse to you.

Similarly, if x belongs to Z(IJ), it means that (fg)(x) = 0 for all $f \in I$ and $g \in J$. Assume that $x \notin Z(I)$. This means there exists $f \in I$ such that $f(x) \neq 0$. Thus whenever $g \in J$, we have f(x)g(x) = 0, which implies g(x) = 0. Thus $x \in Z(J)$.

It's possible to take the sum of arbitrarily many ideals. The sum of a collection of ideals is simply the smallest ideal containing all of them. Property 4 continues to hold:

$$Z\left(\sum_{i} I_{i}\right) = \bigcap_{i} Z(I_{i})$$

An affine algebraic set is a subset of \mathbf{A}^n of the form Z(I) for some ideal I. We have seen that the collection of affine algebraic sets is closed under finite unions and arbitrary intersections, and contains both \emptyset and \mathbf{A}^n .

This property led some mathematicians in the mid-20th century (Grothendieck) to define a *topology* on \mathbf{A}^n , called the Zariski topology, in which closed subsets are the affine algebraic sets.

4. Primes and irreducibles

Recall that a prime ideal P is a non-unit ideal having the property: If $fg \in P$, then $f \in P$ or $g \in P$ (or both).

Lemma 4.1. If P is a prime ideal, and I, J are ideals such that $IJ \subset P$, then either $I \subset P$ or $J \subset P$.

Proof. Assume $IJ \subset P$. Also assume that I is not contained in P: $I \not\subset P$. This means there exists $f \in I$ such that $f \notin P$. Let $g \in J$. We have $fg \in IJ \subset P$, so that $fg \in P$. Since P is prime, we have $g \in P$. Therefore $J \subset P$.

What are the prime ideals in K[x,y]? (Assume K is an algebraically closed field.)

- P = (x a, y b) (where $a, b \in K$) is prime, and in fact it is maximal. We have that $Z(P) = \{(a, b)\}$ is a single point.
- $P = (y x^2)$ is prime but not maximal (it is contained in (x, y) for instance). In fact any non-maximal prime ideal P is of the form (f(x, y)), where f(x, y) is an irreducible polynomial. Then Z(P) is the solution set $\{(x, y)|f(x, y) = 0\}$. This solution set is a curve.
- P = (0) is prime. $Z(0) = \mathbf{A}^2$.

These are in fact the only prime ideals.

Definition 4.2. An affine algebraic set V is reducible if it can be represented as a union $V = V_1 \cup V_2$, where V_1, V_2 are other affine algebraic sets, but neither is equal to V. Otherwise, V is irreducible.

Example 4.3. The affine algebraic set $V = Z(xy) \subset \mathbf{A}^2$ is reducible: it is $Z(x) \cup Z(y)$. But $Z(y - x^2)$ is irreducible.

Theorem 4.4. The only irreducible affine algebraic sets are Z(P), where P is a prime ideal.

Proof. (One direction) Let P be a prime ideal in $K[x_1, \ldots, x_n]$. Assume that $Z(P) = Z(I) \cup Z(J)$ for ideals I and J. Then Z(P) = Z(IJ). We get I(Z(P)) = I(Z(IJ)), so that $P = \sqrt{IJ} \supset IJ$. This means that $I \subset P$ or $J \subset P$, which means that either Z(I) or Z(J) was equal to Z(P). Thus Z(P) is irreducible. \square

5. Dimension

Let R be any commutative ring with unit. It might happen that we have chain of ideals

$$P_0 \subset P_1 \subset \cdots \subset P_n$$

all of which are prime. For instance if $R = K[x_1, \ldots, x_n]$ we can look at

$$(0) \subset (x_1) \subset (x_1, x_2) \subset \cdots \subset (x_1, \ldots, x_n).$$

Definition 5.1. The Krull dimension of the ring R is the maximum n for which there exists a chain of prime ideals of length n.

For instance, the polynomial ring in n variables has Krull dimension n.

If $V \subset \mathbf{A}^n$ is an irreducible affine algebraic set, then V = Z(I) for some ideal I, and then we can define the dimension of V to be the Krull dimension of $K[x_1, \ldots, x_n]/I$.

For instance, $Z(y-x^2) \subset \mathbf{A}^2$ has dimension 1: it is a curve.

6. Projective space

I define projective space \mathbf{P}^n to be the set of all nonzero points (x_0, x_1, \dots, x_n) , modulo multiplication by a nonzero scalar.

The projective version of the circle is the projective curve

$$x^2 + y^2 = z^2.$$

The formula we found last time is an isomorphism between the projective circle and \mathbf{P}^1 . In fact any projective curve inside of \mathbf{P}^2 with degree 2 is isomorphic to \mathbf{P}^1 .

But if I let X be the projective plane curve

$$x^3 + y^3 = z^3,$$

then this not isomorphic to \mathbf{P}^1 . The set of complex solutions to this equation is a real manifold of dimension 2 (a surface). It is also closed (compact). In fact this is a torus, whereas \mathbf{P}^1 is a sphere. Therefore they are not isomorphic.

In fact there is a way of defining the *genus* (= number of holes) of a projective curve without reference to topology at all; the notion is well-defined for curves over finite fields, for instance. It turns out there are no non-constant algebraic maps from a curve of genus g to a curve of genus g', if g < g'.