LECTURE APRIL 27: A CRASH COURSE IN ALGEBRAIC GEOMETRY

1. PYTHAGOREAN TRIPLETS
How do you solve the Diophantine equation:
a2 +b% =7
For instance, (3,4,5). Divide both sides by ¢2, and let z = a/ec, y = b/c to get
?+y? =1

The first observation is, that it is enough to find all solutions (z,y) of this last equation, where z,y € Q. So
we are trying to find the set of points on the unit circle centered at (0,0) with rational coordinates.
Stereographic projection gives a way from going from points on the line to points on the circle, and vice
versa. So if I have a point P’ = (¢,0) on the z-axis, I should find the line joining P’ to N = (0,1), and find
the point P = (z,y) on the intersection of the circle and the line.
The line joining P’ to N is y — 1 = —a/t, or ¥ = —ty +t. We want to intersect this with 2% + y? = 1.
Substituting the first equation into the second gives

(1+t2)y? — 2ty + (t* — 1) = 0.

We already know that y = 1 is a solution. The sum of the two roots has to be 2t/(1 + t?), and so the other
root is
y=—(1—1t)72/1+1%).

(&) = ( 2t _(1—t)2>
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This process puts into bijection the points on the circle, and the points of real projective line R u {o0}. In

So we get that the point P is

fact it also gives a bijection between rational points of the circle, and the points of the rational projective
line Q U {oo}. ¢ How far can this procedure go? Like, how could we solve

3+ y3 =1
in rational numbers (x,y)? Is there again a rational parametrization of this curve? In other words, are there
rational functions p(¢), ¢(t) € Q(t) such that p(t)% + ¢(t)® = 1, without p and ¢ being constants?
2. AFFINE ALGEBRAIC SETS

Algebraic geometry is the study of solution sets to polynomial equations.
Let K be an algebraically closed field (for instance, it is common to assume that K = C).

Definition 2.1. Affine space of dimension n is

A”z{(al,...,an)

a; € K}
Definition 2.2. Let S < K|[x1,...,x,] be a set of polynomials. I define

Z(S) = {(al,...,an)eA”

flay,...,;a,) =0, allfeS}

Such a subset of A™ is called an affine algebraic set.
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For instance, in A2, we have Z({x2 + 92— 1}) is the circle. Well, sort of: it’s the set of complex solutions
to 2% +y* = 1.

Example 2.3. Z(&) = A", and Z({0}) = A™. Also, Z({1}) = &. Finally,

Z({z(x —3)}) = {0,3}.
Example 2.4. When n = 1, what are the affine algebraic subsets of A1 = C? A polynomial in one variable
can only have finitely many roots, unless that polynomial is the zero polynomial, in which case it has all of

C as its roots.
Thus a subset S < Al is algebraic if and only if it is either finite or everything.

Example 2.5. What are the algebraic subsets of C2? Is {(3,4)} algebraic? Yes, because
Z({z =3,y —4}) = {(3,49)}.
Also
Z({z,y}) = {(0,0)}.
What about {(3,4),(0,0)}¢ This too is algebraic, because
Z({x(z = 3),2(y —4),y(z — 3),y(y — 4)}) = {(0,0),(3,4)} .
In fact, any finite subset of A™ is algebraic. There are infinite algebraic subsets of A2, given by Z(f), where
f a nonconstant polynomial.
Observe that if S ¢ K[z1,...,z,], then
Z(8) = Z(I),

where [ is the ideal generated by S. If f(z) = 0 and g(x) = 0, and if h = af + bg, then h(x) = 0. So it’s
sufficient to only consider Z(I), where T is an ideal.
Remember that if I is an ideal in a ring, then the radical of I is

VI = {feK[xl,...,xn] f™ e I for some n}
Then /I is also an ideal, and in fact
Z(I) = Z(VI).
A radical ideal is an ideal T for which /I = I. Note that v/v/T = v/I. So we might as well just consider
Z(I) where I is a radical ideal.

So what we have is a function Z from radical ideals of K[z1,...,2,] to affine algebraic subsets of A™.
There is a function going the other way:

Definition 2.6. Let V < A™ be any subset of affine space. Then
(V)= {feK[xh...,xn] flay,...,;a,) =0 for all (a,...,an) € V}
is a radical ideal (check this!).

Theorem 2.7 (Hilbert’s Nullstellensatz). The functions I — Z(I) and S — I(S) are bijections between the
set of radical ideals of K[x1,...,x,] and the set of algebraic subsets of A™. It is inclusion-reversing.

The last sentence says that if I < J, then Z(J) c Z(I).
As a corollary, we find that the only maximal ideals of K[z1,...,x,] are of the form

(x1— a1, .., T —an)

for some (ay,...,a,) € A™.



3. PROPERTIES OF Z(I)

Given an ideal I ¢ K[z1,...,z,], we have an affine algebraic set Z(I).

) Z(0) = A™.
Z(1)=o
3) If I < J, then Z(J)  Z(I).

)
)
Y ZUI+J)=Z(I)n Z(J).
(5) Z(IJ)=ZI) v Z(J).

Let’s discuss the last two properties. If I, J are ideals, and « € Z(I + J), it means that (f + g)(z) =0
for all f € I and g € J. In particular this is true if g = 0, so that f(x) = 0 for all f € I, and so x € Z(I).
Similarly, x € Z(J), so x € Z(I) n Z(J). T'll leave the converse to you.

Similarly, if  belongs to Z(1.J), it means that (fg)(x) =0 for all f € I and g € J. Assume that x ¢ Z(I).
This means there exists f € I such that f(xz) # 0. Thus whenever g € J, we have f(z)g(z) = 0, which
implies g(z) = 0. Thus x € Z(J).

It’s possible to take the sum of arbitrarily many ideals. The sum of a collection of ideals is simply the
smallest ideal containing all of them. Property 4 continues to hold:

A (Z Ii> = OZ(I

An affine algebraic set is a subset of A™ of the form Z(I) for some ideal I. We have seen that the collection
of affine algebraic sets is closed under finite unions and arbitrary intersections, and contains both ¢§ and
A"

This property led some mathematicians in the mid-20th century (Grothendieck) to define a topology on
A", called the Zariski topology, in which closed subsets are the affine algebraic sets.
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4. PRIMES AND IRREDUCIBLES

Recall that a prime ideal P is a non-unit ideal having the property: If fg € P, then f e P or g€ P (or
both).

Lemma 4.1. If P is a prime ideal, and I,J are ideals such that IJ < P, then either I ¢ P or J  P.

Proof. Assume IJ < P. Also assume that I is not contained in P: I ¢ P. This means there exists f € I
such that f ¢ P. Let g € J. We have fg € IJ < P, so that fg € P. Since P is prime, we have g € P.
Therefore J < P. |

What are the prime ideals in K[z, y]? (Assume K is an algebraically closed field.)

e P=(x—a,y—>b) (where a,b € K) is prime, and in fact it is maximal. We have that Z(P) = {(a,b)}
is a single point.

e P = (y — 2?) is prime but not maximal (it is contained in (z,y) for instance). In fact any non-
maximal prime ideal P is of the form (f(x,y)), where f(x,y) is an irreducible polynomial. Then
Z(P) is the solution set {(z,y)|f(z,y) = 0}. This solution set is a curve.

e P =(0) is prime. Z(0) = A2.

These are in fact the only prime ideals.

Definition 4.2. An affine algebraic set V is reducible if it can be represented as a union V = V3 u Vs, where
Vi, Vo are other affine algebraic sets, but neither is equal to V. Otherwise, V is irreducible.

Example 4.3. The affine algebraic set V. = Z(xy) = A? is reducible: it is Z(z) v Z(y). But Z(y — x?) is
irreducible.

Theorem 4.4. The only irreducible affine algebraic sets are Z(P), where P is a prime ideal.
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Proof. (One direction) Let P be a prime ideal in K[z1,...,2,]. Assume that Z(P) = Z(I) v Z(J) for ideals
I and J. Then Z(P) = Z(IJ). We get I(Z(P)) = I(Z(IJ)), so that P = +/IJ > IJ. This means that
I < Por Jc P, which means that either Z(I) or Z(J) was equal to Z(P). Thus Z(P) is irreducible. O

5. DIMENSION
Let R be any commutative ring with unit. It might happen that we have chain of ideals
PycPc---cP,
all of which are prime. For instance if R = K[z1,...,z,] we can look at
(0) € (z1) < (w1, m2) € -+ < (21, .-, Ty)-

Definition 5.1. The Krull dimension of the ring R is the maximum n for which there exists a chain of
prime ideals of length n.

For instance, the polynomial ring in n variables has Krull dimension n.

If V< A™ is an irreducible affine algebraic set, then V' = Z(I) for some ideal I, and then we can define
the dimension of V' to be the Krull dimension of K[xzy,...,z,]/I.

For instance, Z(y — 2?) = A? has dimension 1: it is a curve.

6. PROJECTIVE SPACE

I define projective space P™ to be the set of all nonzero points (xg, x1, . . ., x,), modulo multiplication by
a nonzero scalar.
The projective version of the circle is the projective curve

2?4+ y? =22

The formula we found last time is an isomorphism between the projective circle and P!. In fact any projective
curve inside of P? with degree 2 is isomorphic to P*.
But if I let X be the projective plane curve

23 448 = 25,

then this not isomorphic to P'. The set of complex solutions to this equation is a real manifold of dimension
2 (a surface). It is also closed (compact). In fact this is a torus, whereas P! is a sphere. Therefore they are
not isomorphic.

In fact there is a way of defining the genus (= number of holes) of a projective curve without reference to
topology at all; the notion is well-defined for curves over finite fields, for instance. It turns out there are no
non-constant algebraic maps from a curve of genus g to a curve of genus ¢’, if g < ¢'.
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